Supporting Information

for

$\mathrm{W}_{2} \mathrm{O}_{3} \mathrm{I}_{4}$ and $\mathrm{WO}_{2} \mathrm{I}_{2}$: Metallic Phases in the Chemical Transport Reaction of Tungsten

Manuel Löber, Markus Ströbele, Carl P. Romao, and Hans-Jürgen Meyer*

Section for Solid State and Theoretical Inorganic Chemistry, Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany.

Experimental Section

Synthesis of $\mathrm{WO}_{2} \mathrm{I}_{2}:{ }^{1} \mathrm{~W}, \mathrm{WO}_{3}$ and I_{2} were mixed and pestled in an agate mortar under dry argon atmosphere in a $1: 2: 6$ molar ratio (100 mg total mass). The reaction mixture was transferred to a silica ampoule (length approx. 15 cm) and fused under vacuum. The silica ampoule was placed in a tube furnace with the reaction mixture in the middle of the tube. The ampule was heated in a temperature gradient of $800{ }^{\circ} \mathrm{C}$ (middle of the tube) to $300^{\circ} \mathrm{C}$ at $2^{\circ} \mathrm{C} / \mathrm{min}$ for 5 h , until cooling to room temperature at $2^{\circ} \mathrm{C} / \mathrm{min}$. The crystalline product ($\mathrm{WO}_{2} \mathrm{I}_{2}$) was obtained as metallic lustrous needle-shaped plates at the cooler section of the ampoule.

Synthesis of $\mathbf{W}_{2} \mathrm{O}_{3} \mathrm{I}_{4}$: Ground powder of (50 mg) $\mathrm{WO}_{2} \mathrm{I}_{2}$ was placed in a silica ampoule (length approx. 7 cm) under dry argon atmosphere. The silica ampoule was fused under vacuum and placed into a crucible furnace. The ampoule was heated at $2^{\circ} \mathrm{C} / \mathrm{min}$ to $380^{\circ} \mathrm{C}$ and remained there for 48 h , until cooling to room temperature at $2^{\circ} \mathrm{C} / \mathrm{min}$. The compound ($\mathrm{W}_{2} \mathrm{O}_{3} \mathrm{I}_{4}$) was obtained as black needles with metallic luster.

Computational methods: Density functional theory calculations were performed with the DFT software package Abinit (v. 9.2.2). ${ }^{2}$ The projector-augmented wave (PAW) method ${ }^{3}$ was used with the Perdew-Burke-Erzenhof exchange correlation functional ${ }^{4}$ and the vdw-DFTD3 dispersion correction. ${ }^{5}$ PAW datasets were used as received from the Abinit repository. Methfessel-Paxton smearing was used to determine the occupation of metallic bands. ${ }^{6}$ Plane-wave basis set cutoffs and \mathbf{k}-point grid spacings were chosen following convergence studies (to 1% in pressure). Structural relaxation was performed prior to calculations of electronic band structures. Example input files are available as Supporting Information.

Powder X-ray Diffraction:

PXRD patterns of well ground powders were recorded using a StadiP diffractometer (Stoe, Darmstadt) with Ge-monochromated $\mathrm{Cu}-\mathrm{K} \alpha_{1}$ radiation and a Mythen1 Detector.

Single-Crystal X-ray Diffraction:

Single crystals of $\mathrm{WO}_{2} \mathrm{I}_{2}$ and $\mathrm{W}_{2} \mathrm{O}_{3} \mathrm{I}_{4}$ were collected and placed on the tip of a cryoloop. Data were recorded using a Rigaku XtaLAB Synergy-S single-crystal X-ray diffractometer equipped with HyPix-6000HE detector and monochromated Mo-K ${ }_{\alpha}$ radiation ($\lambda=0.7107 \AA$) at 100 K . The X-ray intensities were corrected for absorption with numerical method using CrysAlisPro 1.171.41.80a (Rigaku Oxford Diffraction, 2021). The structure was solved by direct methods (SHELXS), ${ }^{7}$ and full-matrix least-squares structure refinements, performed with SHELXL-2014 ${ }^{8}$ implemented in Olex2 1.3-ac4. ${ }^{9}$

Results

Table S1. selected Crystal and structure refinement data of $\mathrm{WO}_{2} \mathrm{I}_{2}$ and $\mathrm{W}_{2} \mathrm{O}_{3} \mathrm{I}_{4}$, recorded at 100 K .

Empirical formula	WO2 ${ }_{2}$	$\mathrm{W}_{2} \mathrm{O}_{3} \mathrm{l}_{4}$
CSD No.	2004434	2054404
Formula weight / g.mol ${ }^{-1}$	469.65	923.30
Temperature / K	100	100
Wavelength/ pm	71.073	71.073
Crystal system	Orthorhombic	Monoclinic
Space group	1 mmm	$12 / \mathrm{m}$
a / pm	374.84(3)	924.84(6)
b / pm	390.49(3)	748.82(4)
c / pm	1662.8(1)	1336.48(8)
$6 /{ }^{\circ}$		98.810(6)
Volume / nm^{3}	0.24339(4)	0.91464(10)
Z	2	4
$\boldsymbol{\mu}$ (Mo-K ${ }_{\text {a }}$) / mm ${ }^{-1}$	36.26	38.58
Density (calculated) / g cm^{-3}	6.41	6.71
Theta range for data collection $/^{\circ}$	4.90 to 25.93	3.52 to 26.02
Total number of reflections	873	9630
Refined parameters	14	48
R_{1}	0.0181	0.0297
wR_{2}	0.0403	0.0672
Goodness-of-fit on $\mathrm{F}^{\mathbf{2}}$	1.071	1.048

Table S2. Atomic coordinates, Wyckoff positions (Wyck) and equivalent isotropic displacement parameters (in $\mathrm{pm}^{2} \times 10^{-1}$) for $\mathrm{WO}_{2} \mathrm{I}_{2}$

atom	Wyck	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\boldsymbol{U (e q) ^ { a }}$
W1	2a	$1 / 2$	$1 / 2$	$1 / 2$	$39(1)$
I1	4 i	$1 / 2$	$1 / 2$	$0.66072(4)$	$12(1)$
O1	2d	$1 / 2$	0	$1 / 2$	$6(2)$
O2	2b	0	$1 / 2$	$1 / 2$	$18(2)$

${ }^{\text {a) }} U(e q)$ is defined as one-third of the trace of the orthogonalized $U^{i j}$ tensor.

Table S3. Atomic coordinates, Wyckoff positions (Wyck) and equivalent isotropic displacement parameters (in $\mathrm{pm}^{2} \times 10^{-1}$) for $\mathrm{W}_{2} \mathrm{O}_{3} \mathrm{I}_{4}$.

atom	Wyck	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\boldsymbol{U (e q) ^ { a }}$
$\mathbf{W 1}$	4 e	$1 / 4$	$1 / 4$	$1 / 4$	$4(1)$
$\mathbf{W} \mathbf{2}$	4 g	$1 / 2$	$0.2927(1)$	$1 / 2$	$5(1)$
\mathbf{I}	4 i	$0.3420(1)$	0	$0.5661(1)$	$7(1)$
$\mathbf{I 2}$	4 i	$0.6923(1)$	$1 / 2$	$0.4190(1)$	$8(1)$
$\mathbf{1 3}$	8 j	$0.0142(1)$	$0.2482(1)$	$0.3483(1)$	$9(1)$
$\mathbf{0 1}$	8 j	$0.3741(6)$	$0.2866(7)$	$0.3761(4)$	$8(1)$
$\mathbf{0 2}$	4 i	$0.2261(10)$	$1 / 2$	$0.2351(7)$	$18(2)$

[^0]
References

1 J. Tillack, P. Eckerlin and J. H. Dettingmeijer, Angew. Chem. Int. Ed., 1966, 5, 421-421.
2 A. H. Romero, D. C. Allan, B. Amadon, G. Antonius, T. Applencourt, L. Baguet, J. Bieder, F. Bottin, J. Bouchet, E. Bousquet, F. Bruneval, G. Brunin, D. Caliste, M. Côté, J. Denier, C. Dreyer, P. Ghosez, M. Giantomassi, Y. Gillet, O. Gingras, D. R. Haman n, G. Hautier, F. Jollet, G. Jomard, A. Martin, H. P. C. Miranda, F. Naccarato, G. Petretto, N. A. Pike, V. Planes, S. Prokhoren ko, T. Rangel, F. Ricci, G.-M. Rignanese, M. Royo, M. Stengel, M. Torrent, M. J. van Setten, B. Van Troeye, M. J. Verstraete, J. Wiktor, J. W. Zwanziger and X. Gonze, J. Chem. Phys., 2020, 152, 124102.
M. Torrent, F. Jollet, F. Bottin, G. Zérah and X. Gonze, Comput. Mater. Sci., 2008, 42, 337-351.
J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.
S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
M. Methfessel and A. T. Paxton, Phys. Rev. B, 1989, 40, 3616.
M. Sheldrick, University of Göttingen, 1997.

8 G. M. Sheldrick, Acta Cryst., 2015, C71, 3-8.
9 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339-341.

[^0]: ${ }^{\text {a) }} U(e q)$ is defined as one-third of the trace of the orthogonalized $U^{i j}$ tensor.

