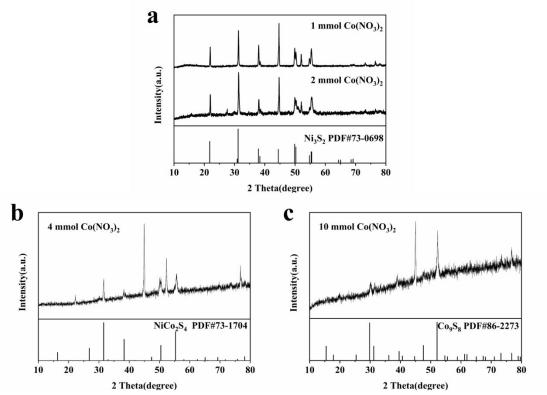
Cobalt and nitrogen co-doped Ni₃S₂ nanoflowers on nickel foam as highefficiency electrocatalysts for overall water splitting in alkaline media

Xiaoqiang Du^{a*}, Guangyu Ma^a and Xiaoshuang Zhang^b


a. School of Chemical Engineering and Technology, North University of China, Taiyuan 030051,

People's Republic of China. E-mail: 20160053@nuc.edu.cn

b. School of Science, North University of China, Taiyuan 030051, People's Republic of China.

DFT calculation

In this study, the Cambridge Serial Total Energy Package module of Materials Studio was used for DFT calculation. The interactions of electrons were calculated by the generalized gradient approximation functions of Perdew-Burke-Emzerh (GGA-PBE). The (010) plane optimal structures of Ni₃S₂/NF, Co-Ni₃S₂/NF, N-Ni₃S₂/NF and Co-N-Ni₃S₂/NF were calculated by setting a cutoff energy of 480 eV and $8 \times 8 \times 1$ k-points grid. The structures were also optimized for energy and force convergence choosing as 2.0×10^{-5} eV/atom and 0.05 eV/A, respectively. The vacuum space was up to 0.002 A to eliminate periodic interactions.

Fig. S1 XRD patterns of different cobalt contents for resulting materials (a) 1 mmol and 2 mmol $Co(NO_3)_2 \cdot 6H_2O$; (b) 4 mmol $Co(NO_3)_2 \cdot 6H_2O$ and (c) 10 mmol $Co(NO_3)_2 \cdot 6H_2O$.

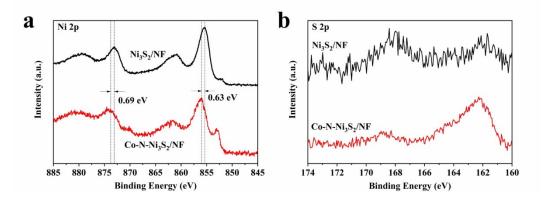


Fig. S2 High resolution XPS spectra (a) Ni 2p and (b) S 2p for Ni_3S_2/NF and Co-N-Ni₃S₂/NF, respectively.

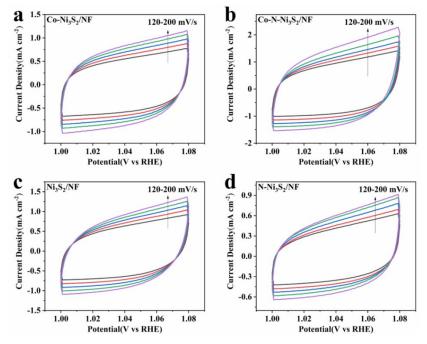


Fig. S3 The cyclic voltammetric curves of the catalyst at scanning speeds of 120, 140, 160, 180, 200 mV/s when the catalyst was used as an anode. (a)Co-Ni₃S₂/NF, (b) Co-N-Ni₃S₂/NF, (c) Ni₃S₂/NF and (d) N-Ni₃S₂/NF.

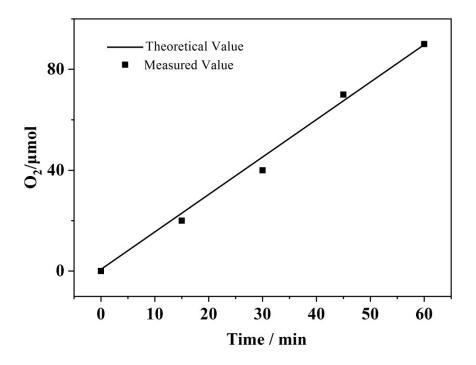


Fig. S4 Electrocatalytic efficiency of O_2 production over Co-N-Ni₃S₂/NF.

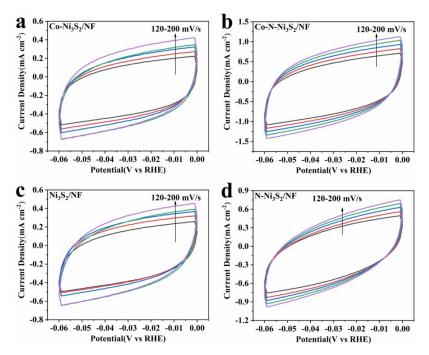


Fig. S5 The cyclic voltammetric curves of the catalyst at scanning speeds of 120, 140, 160, 180, 200 mV/s when the catalyst was used as a cathode. (a)Co-Ni₃S₂/NF, (b) Co-N-Ni₃S₂/NF, (c) Ni₃S₂/NF and (d) N-Ni₃S₂/NF.

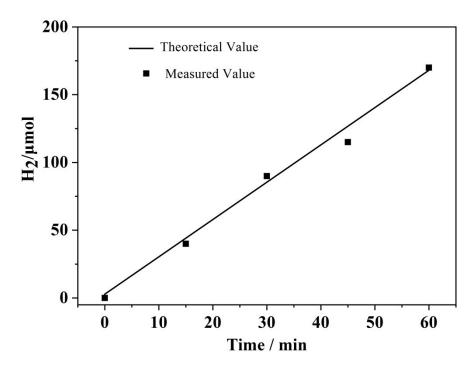


Fig. S6 Ectrocatalytic efficiency of H_2 production over Co-N-Ni₃S₂/NF.

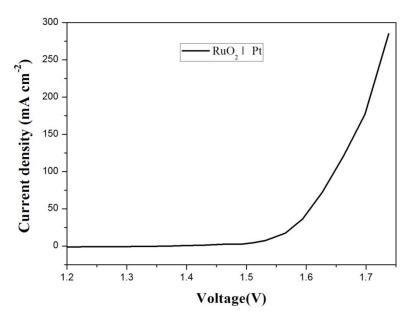


Fig. S7 Polarization curve of the RuO_2 and Pt for water splitting with a scan rate of 5 mV s⁻¹ in 1 M KOH.

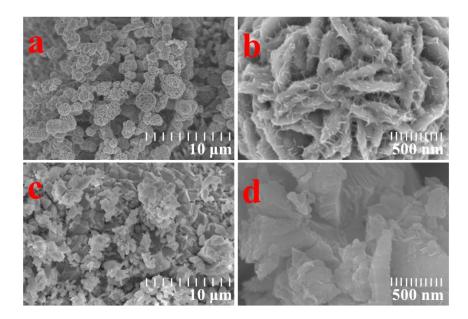


Fig. S8 SEM image of fresh(a,b) and recovered(c,d) Co-N-Ni $_3S_2$ /NF (after 12 h tests).

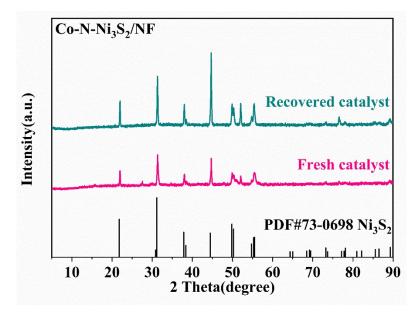


Fig. S9 XRD patterns of Co-N-Ni₃S₂/NF before and after stability test (after 12 h tests).

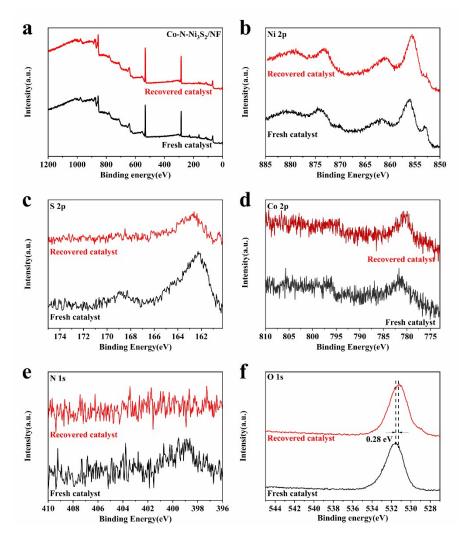


Fig. S10 (a) XPS survey spectra, (b) Ni 2p, (c) S 2p, (d) Co 2p,(e) N 1s and (f) O 1s high resolution XPS spectra of fresh and recovered Co-N-Ni₃S₂/NF, respectively (after 12 h tests).

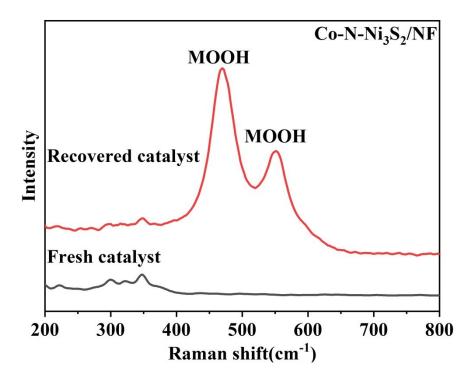


Fig. S11 Raman of fresh and recovered Co-N-Ni $_3S_2$ /NF for OER reaction.

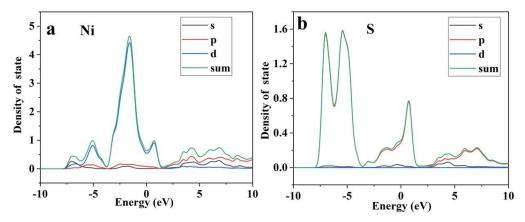


Fig. S12 Density of states for Ni_3S_2 , (a) Ni and (b) S.

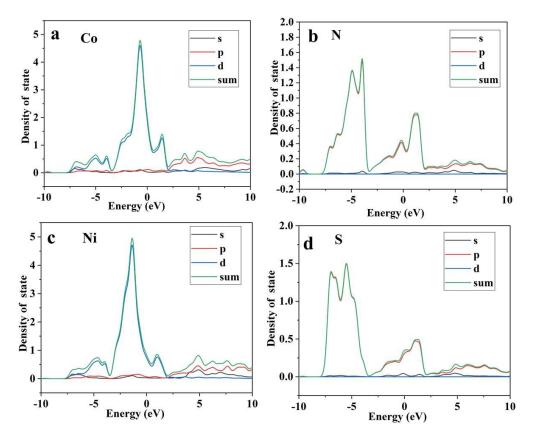


Fig. S13 Density of states for Co-N-Ni $_3S_2$, (a) Co, (b)N, (c) Ni and (d) S.

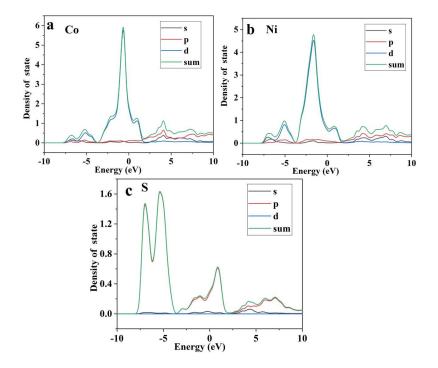
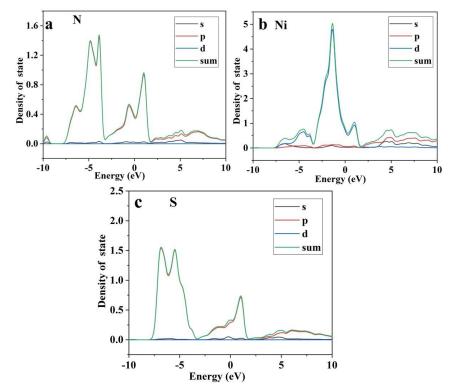



Fig. S14 Density of states for Co-Ni $_3$ S₂, (a) Co, (b) Ni and (c) S.

Fig. S15 Density of states for N-Ni $_3S_2$, (a) N, (b) Ni and (c) S.

Table S1. Overall water splitting performances of Co-N-Ni $_3S_2$ /NF and other reportedelectrocatalysts in alkaline media. (1 M KOH).

Catalyst	η_{10} (j = -10 mA/cm ²)	electrolyte	Ref.
Co-N-Ni ₃ S ₂ /NF	1.50 V	1 M KOH	This work
NiMoPO _x	1.55 V	1 M KOH	1
Co _{0.75} Ni _{0.25} Se/NF	1.60 V	1 M KOH	2
Mo-Ni ₃ S ₂	1.66 V	1 M KOH	3
Co ₂ P/EG	1.67 V	1 M KOH	4
CoSe	1.77 V	1 M KOH	5

Reference

- 1. F. Kong, L. Sun, L. Huo and H. Zhao, J. Power Sources, 2019, 430, 218-227.
- 2. S. Liu, Y. Jiang, M. Yang, M. Zhang, Q. Guo, W. Shen, R. He and M. Li, *Nanoscale*, 2019, **11**, 7959-7966.
- C. Wu, B. Liu, J. Wang, Y. Su, H. Yan, C. Ng, C. Li and J. Wei, *Appl. Surf. Sci.*, 2018, 441, 1024-1033.
- 4. H. Liu, D. Liu, M. Gu, Z. Zhao, D. Chen, P. Cui, L. Xu and J. Yang, *Mater. Today Energy*, 2019, **14**, 100336.
- 5. X. Li, L. Zhang, M. Huang, S. Wang, X. Li and H. Zhu, J. Mater. Chem. A, 2016, 4, 14789-14795.