Reaction of Diborylstannylene with CO₂ and N₂O: Diboration of Carbon Dioxide by a Main Group Bis(boryl) Complex

Andrey V. Protchenko, M. Ángeles Fuentes, Jamie Hicks, Caitilín McManus, Rémi Tirfoin and Simon Aldridge

SUPPORTING INFORMATION

1. Synthetic procedures and NMR spectra	S2
2. X-ray crystallographic studies	S20
3. References for supporting information	S21

(21 pages total)

1. Synthetic procedures

(i) General methods and instrumentation. All manipulations were carried out using standard Schlenk line or dry-box techniques under an atmosphere of argon or dinitrogen. Hydrocarbon solvents were degassed by sparging with dinitrogen and dried by passing through a column of the appropriate drying agent and stored over Na or K mirror.^{S1} THF was refluxed over potassium-sodium alloy and distilled prior to use. NMR spectra were measured in C₆D₆ which was dried over potassium, distilled under reduced pressure and stored under dinitrogen in Teflon valve ampoules. NMR samples were prepared under dinitrogen in 5 mm Wilmad 507-PP tubes fitted with J. Young Teflon valves. ¹H and ¹³C{¹H} NMR spectra were recorded on Bruker Avance III HD nanobay 400 MHz or Bruker Avance III 500 MHz spectrometer at ambient temperature unless stated otherwise and referenced internally to residual protio-solvent (¹H) or solvent (¹³C) resonances and are reported relative to tetramethylsilane ($\delta = 0$ ppm). ¹¹B{¹H} NMR spectra were referenced to external Et₂O·BF₃. Assignments were confirmed using two dimensional ¹H-¹H and ¹³C-¹H NMR correlation experiments. Chemical shifts are quoted in δ (ppm) and coupling constants in Hz. Coupling to ^{203/205-}T1 nuclei was confirmed by measuring the spectrum of the same sample at different spectrometer frequency. Elemental analyses were carried out by London Metropolitan University.

(ii) Starting materials. $Sn\{B(NDippCH)_2\}_2$ (Dipp = 2,6-C₆H₃^{*i*}Pr₂) (1) and (thf)₂Li{B(NDippCH)₂} were synthesised according to published procedures.^{S2, S3} Carbon dioxide was stored in a Young's tap ampoule at 1 atm over P₂O₅ before use. {(HCDippN)₂B}CO₂H was made by the route similar to that described in ref.^{S3} but we have found that it was necessary to use a strong acid (*p*-toluenesulfonic acid monohydrate, Aldrich) before flash chromatography in order to convert initially formed lithium carboxylate into free borylcarboxilic acid.

Reaction of Sn{B(NDippCH)₂**}**₂ with 1 equiv CO₂: Solution of Sn{B(NDippCH)}₂ (27 mg, 0.030 mmol) in C₆D₆ (0.5 mL) was degassed by freeze/pump/thaw procedure, then the tube was filled with CO₂ and gently shaken. The solution colour changed from yellow-green to light orange. Immediately ¹H NMR showed formation of a single asymmetrical product, but the starting stannylene was not completely consumed. After shaking for 10 min the reaction was complete. All volatiles were removed *in vacuo*, the oily residue was dissolved in pentane (0.5 mL), transferred into crystallisation tube, concentrated to a smaller volume and stored at -30 °C overnight producing orange-yellow (depending on viewing angle) crystals of Sn{B(NDippCH)} {O₂CB(NDippCH)} {O₂CB(NDippCH)} {(2) suitable for X-ray diffraction.

Compound **2** was highly soluble (and thermally unstable, *vide infra*) in aliphatic hydrocarbon solvents even at low temperature so that only few crystals could be isolated; however, the ¹H NMR

spectrum of the crystals was nearly identical (apart from signals of the crystallisation solvent pentane and minor decomposition products) to the spectrum of *in situ* prepared sample.

¹H NMR (C₆D₆): δ 7.05-7.19 (12H, m, CH of Ar + C₆D₅H), 6.18 (2H, s, NCH), 6.01 (2H, s, NCH), 3.16 (4H, septet, ³*J* = 6.9 Hz, C*H*Me₂), 3.10 (4H, septet, ³*J* = 6.9 Hz, C*H*Me₂), 1.24 (12H, septet, ³*J* = 6.9 Hz, CHMe₂), 1.17 (12H, septet, ³*J* = 6.9 Hz, CHMe₂), 1.17 (12H, septet, ³*J* = 6.9 Hz, CHMe₂), 1.13 (12H, septet, ³*J* = 6.9 Hz, CHMe₂), 1.07 (12H, septet, ³*J* = 6.9 Hz, CHMe₂).

¹³C-NMR (C₆D₆): δ 190 (br, BCO₂), 145.78 (*o*-C of Ar), 145.68 (*o*-C of Ar), 139.24 (*ipso*-C of Ar), 138.66 (*ipso*-C of Ar), 128.53 (*p*-CH of Ar), 127.83 (*p*-CH of Ar, overlapping with C₆D₅H), 123.63 (*m*-CH of Ar), 123.42 (*m*-CH of Ar), 121.71 (NCH), 120.60 (NCH), 28.73 (*C*HMe₂), 28.69 (*C*HMe₂), 24.96 (*C*HMe₂), 24.84 (*C*HMe₂), 24.32 (*C*HMe₂), 24.07 (*C*HMe₂).

¹¹B{¹H} (C₆D₆): δ 58.1 (BSn), 19.8 (BCO₂).

Fig. s1. ¹H, ¹³C{¹H} and ¹¹B{¹H} NMR spectra of *in situ* prepared **2**.

Decomposition of 2. Similarly to the previous experiment, solution of $Sn\{B(NDippCH)_2\}_2$ (34 mg, 0.038 mmol) in C₆D₆ (0.5 mL) was degassed by freeze/pump/thaw procedure, then the tube was filled with CO₂ and gently shaken for 10 min. The colour gradually changed from yellow-green to orange-yellow and the ¹H NMR spectrum showed clean formation of a single product. The mixture was transferred into a two-section crystallization tube and all volatiles removed *in vacuo*. The residue was dissolved in hexane (0.5 mL) and the tube was sealed under vacuum. The concentrated solution failed to produce crystals at -30 °C for several days, so it was stored at room temperature. Initially, after 1 d, a small amount (less than 5%) of very well shaped rhombic colourless crystals was formed, which were identified by X-ray diffraction as Sn₃{O₂CB(NDippCH)₂}₄(µ₃-O) (**5**).

The remaining solution was stored for two weeks, while slowly darkening to brown and almost black, then concentrated again producing large colourless blocks, which were washed with a small amount of cold hexane and dried *in vacuo* yielding {(HCDippN)₂B}C(O)O{B(NDippCH)₂} (**3**) (21 mg, 0.025 mmol, 67%). Anal. found (calcd. for $C_{53}H_{72}B_2N_4O_2$): C, 77.82 (77.75); H, 9.05 (8.86); N, 6.80 (6.84) %. From the mother liquor black (dark brown when crushed) crystals precipitated which were of insufficient quality/size for X-ray diffraction.

¹H NMR (C₆D₆) for **3**: δ 7.14-7.20 (4H, m, *p*-CH of Ar + C₆D₅H), 7.02-7.05 (8H, m, *m*-CH of Ar), 5.89 (2H, s, NCH), 5.88 (2H, s, NCH), 3.15 (4H, septet, ³*J* = 6.9 Hz, C*H*Me₂), 2.94 (4H, septet, ³*J* = 6.9 Hz, C*H*Me₂), 1.24 (12H, septet, ³*J* = 6.9 Hz, CHMe₂), 1.13 (12H, septet, ³*J* = 6.9 Hz, CHMe₂), 1.10 (12H, septet, ³*J* = 6.9 Hz, CHMe₂), 0.97 (12H, septet, ³*J* = 6.9 Hz, CHMe₂), 0.95 (12H, septet, ³*J* = 6.9 Hz, CHMe₂).

¹³C{¹H} NMR (C₆D₆) for **3**: δ 175.5 (very broad, only observed in HMBC, BCO₂), 146.66 (*o*-C of Ar), 146.71 (*o*-C of Ar), 138.58 (*ipso*-C of Ar), 138.02 (*ipso*-C of Ar), 127.88 (*p*-CH of Ar), 127.61 (*p*-CH of Ar), 123.55 (*m*-CH of Ar), 123.43 (*m*-CH of Ar), 120.62 (NCH), 118.64 (NCH), 28.67 (CHMe₂), 28.52 (CHMe₂), 25.29 (CHMe₂), 24.68 (CHMe₂), 23.93 (CHMe₂), 23.77 (CHMe₂).

 $^{11}B\{^{1}H\}$ (C₆D₆) for **3**: δ 21.4 (br), 19.5 (br).

Fig. s2. ${}^{1}H$, ${}^{13}C{}^{1}H$ and ${}^{11}B{}^{1}H$ NMR spectra of crystalline 3.

Alternative synthesis of $\{(HCDippN)_2B\}C(O)O\{B(NDippCH)_2\}$ (3): Initial attempts to make 4 by nucleophilic substitution of bromoborane Br $\{B(NDippCH)_2\}$ using Li or K borylcarboxylates were unsuccessful (no reaction with Li salt in C₆D₆/thf or MeCN at 80 °C, slow reaction with K salt

giving a mixture of unidentified products). However, use of neutral nucleophile $HO_2C\{B(NDippCH)_2\}$ in the presence of amine base (similar approach to the large-scale synthesis of $HO\{B(NDippCH)_2\}$ where water and pyridine reacted with bromoborane^{S4}) produced the desired product.

 $HO_2C\{B(NDippCH)_2\}$ (15.5 mg, 0.035 mmol) and Br $\{B(NDippCH)_2\}$ (16.5 mg, 0.035 mmol) were dissolved in C₆D₆ (0.5 mL) followed by the addition of NEt₃ (5 µL, 0.036 mmol). The mixture was heated at 80 °C for 3 h showing 25% conversion by ¹H NMR. After 2 d at 80 °C the reaction slowed down at 70% conversion, so more NEt₃ (5 µL, 0.036 mmol) was added and the mixture was heated for another 2 d at 80 °C when the conversion reached more than 90%. Solution was transferred into crystallisation tube (leaving crystalline [Et₃NH]Br), all volatiles removed *in vacuo* and the residue was recrystallized from hexane yielding colourless plates of **3** (18 mg, 0.022 mmol, 63%), identified by ¹H and ¹¹B NMR.

Reaction of Sn{B(NDippCH)₂₂ with 2 equiv CO₂: Solution of Sn{B(NDippCH)}₂₂ (27 mg, 0.030 mmol) in C₆D₆ (0.5 mL) was degassed by freeze/pump/thaw procedure, then the tube was filled with CO₂ and shaken for 10 min. The ¹H NMR spectrum showed clean formation of a single product. The tube was reconnected to the CO₂ ampoule to top up the gas pressure. Monitoring by ¹H NMR showed formation of one major product after 10 days, as the colour changed to pale brown.

Fig. s3. ¹H NMR spectrum of the reaction mixture $Sn\{B(NDippCH)_2\}_2 + CO_2$: 10 min after addition (top); after 3 d (middle); after 10 d (bottom).

Volatiles were removed *in vacuo* but attempted crystallisation of the oily residue from hexane or pentane gave only small amount of colourless crystals identified as **5** by X-ray diffraction. The oily product was transferred into NMR tube with C_6D_6 (0.5 mL) and solid 4-Me₂NC₅H₄N (DMAP) (6.0

mg, 0.049 mmol) was added resulting in mainly one product. Removal of volatiles and extraction with warm hexane (the product was sparingly soluble) produced off-white needles and plates of $Sn\{O_2CB(NDippCH)_2\}_2(DMAP)$ (4(DMAP)) (18 mg, 0.016 mmol, 54%). X-ray quality crystals of $Sn\{O_2CB(NDippCH)_2\}_2(DMAP)\cdot 1/2C_6H_{14}$ were obtained by slow evaporation of hexane solution. Anal. found (calcd. for $C_{61}H_{82}B_2N_6O_4Sn$): C, 66.08 (66.38); H, 7.43 (7.49); N, 7.42 (7.61) %.

¹H NMR (C₆D₆): δ 7.51 (br m, 2H, *o*-H of DMAP), 7.14-7.21 (m, 12H, *m*- and *p*-H of Ar + C₆D₅H), 6.09 (s, 4H, NCH), 5.69 (d, ³J = 6.2 Hz, 2H, *m*-H of DMAP), 3.25 (sept, ³J = 6.9 Hz, 8H, CHMe₂), 2.19 (s, 6H, NMe₂), 1.29 (d, ³J = 6.9 Hz, 24H, CHMe₂), 1.26 (d, ³J = 6.9 Hz, 24H, CHMe₂ + CH₂ of hexane), 0.88 (t, 3H, CH₃ of hexane).

¹³C-NMR (C₆D₆): δ 154.40 (*p*-C of DMAP), 147.54 (*o*-CH of DMAP), 146.20 (*o*-C of Ar), 139.30 (*ipso*-C of Ar), 127.40 (*p*-CH of Ar), 123.25 (*m*-CH of Ar), 119.78 (NCH), 106.31 (*m*-CH of DMAP), 38.17 (NMe₂), 31.92 (CH₂ of hexane), 28.71 (*C*HMe₂), 24.71 (CHMe₂), 24.46 (CHMe₂), 23.01 (CH₂ of hexane), 14.31 (CH₃ of hexane), (BCO₂ was not observed).

¹¹B NMR (C_6D_6): δ 20.9 (br).

¹¹⁹Sn NMR (C₆D₆): δ –375.3.

Fig. s4. ¹H and ¹³C{¹H} NMR spectra of crystalline $Sn{O_2CB(NDippCH)_2}_2(DMAP)$.

Fig. s5. ¹¹B NMR spectrum of crystalline $Sn\{O_2CB(NDippCH)_2\}_2(DMAP)$.

Fig. s6. ¹¹⁹Sn NMR spectrum of crystalline Sn{O₂CB(NDippCH)₂}₂(DMAP).

Alternative routes towards tin(II) bis(borylcarboxilate)

Via reaction of SnBr₂ with 2 equiv of Li{O₂CB(NDippCH)₂}:

Solution of $(thf)_2Li\{B(NDippCH)_2\}$ (45 mg, 0.083 mmol) in C_6D_6 (0.5 mL) was degassed by

freeze/pump/thaw procedure, then the tube was backfilled with CO₂ and gently shaken. ¹H NMR spectrum showed clean formation of a single product. Excess CO₂ was removed from the headspace, the tube was taken into the glovebox and solid SnBr₂ (11.5 mg, 0.042 mmol) was added. The mixture was sonicated for 10 min until all solid dissolved forming clear solution showing a single set of ¹H NMR signals. The mixture was transferred into a two-section crystallization tube and all volatiles removed *in vacuo* at 50 °C. When hexane was added to the oily residue, a white powder (assumed to be LiBr) precipitated. The clear solution was decanted into the second section, concentrated to almost dryness and stored at room temperature overnight forming colourless blocks of **4**·LiBr(thf) (28 mg, 0.025 mmol, 58%). Anal. found (calcd. for C₅₈H₈₀B₂BrLiN₄O₅Sn): C, 61.24 (61.08); H, 7.21 (7.07); N, 4.99 (4.91) %.

¹H NMR (C₆D₆): δ 7.05-7.13 (m, 12H, *m*- and *p*-H of Ar), 6.08 (s, 4H, NCH), 3.08 (br sept, 8H, CHMe₂), 2.99 (br m, 4H, OCH₂ of thf), 1.30 (br m, 4H, CH₂ of thf), 1.18-1.28 (m, 48H, CHMe₂). ¹³C{¹H} NMR (C₆D₆): δ 181.0 (very broad, only observed in HMBC, BCO₂), 145.78 (*o*-C of Ar), 145.69 (*o*-C of Ar), 139.54 (*ipso*-C of Ar), 127.36 (*p*-CH of Ar), 123.18 (*m*-CH of Ar), 120.08 (NCH), 67.56 (OCH₂ of thf), 28.70 (CHMe₂), 25.44 (CH₂ thf), 24.52 (CHMe₂), 24.48 (CHMe₂). ¹¹B{¹H} NMR (C₆D₆): δ 20.0 (br).

⁷Li NMR (C₆D₆): δ 0.22 (s).

¹¹⁹Sn NMR (C₆D₆): δ -408.3.

Fig. s7. ¹H NMR spectra of the reaction mixture $(thf)_2Li\{B(NDippCH)_2\} + CO_2$ (top) and after addition of SnBr₂ (bottom)

Fig. s8. ¹H and ¹³C{¹H} NMR spectra of crystalline $Sn{O_2CB(NDippCH)_2}_2(LiBr)(thf)$.

Fig. s9. ¹¹B NMR spectrum of crystalline $Sn{O_2CB(NDippCH)_2}_2(LiBr)(thf)$.

Fig. s10. ¹¹⁹Sn NMR spectrum of crystalline Sn{O₂CB(NDippCH)₂}₂(LiBr)(thf).

Via reaction of SnBr₂ with 2 equiv of K{O₂CB(NDippCH)₂}:

(1) Preparation of [K{O₂CB(NDippCH)₂}]₄(C₆H₆)_x (7)

Solid potassium hydride (5.5 mg, 0.138 mmol) was added to a solution of HO₂C{B(NDippCH)₂} (54 mg, 0.125 mmol) in benzene (1.0 mL) and the mixture was sonicated for 1 h until no more hydrogen was evolving (excess pressure was removed when the initial vigorous reaction slowed down after ~10 min); light brown colour developed by the end of the reaction. Solution was filtered and concentrated to half of its volume when small colourless crystals started precipitating. Precipitation was completed by addition of equal volume of hexane and storing overnight. Washing with hexane and drying under vacuum yielded white powder (still containing some benzene of crystallisation) of 7 (34 mg, 0.072 mmol, 57.8%). Large colourless blocks suitable for X-ray diffraction were obtained by careful layering benzene solution of 7 with hexane.

¹H NMR (C₆D₆): δ 7.21 (br t, ³*J* = 7.4 Hz, 2H, *p*-H of Ar), 7.12 (br d, ³*J* = 7.4 Hz, 4H, *m*-H of Ar), 6.07 (s, 2H, NCH), 3.26 (br s, 4H, *CH*Me₂), 1.25 (d, ³*J* = 6.9 Hz, overlapping with br s, 24H, CHMe₂).

¹³C{¹H} NMR (C₆D₆): δ 146.34 (*o*-C of Ar), 140.78 (*ipso*-C of Ar), 126.93 (*p*-CH of Ar), 123.00 (*m*-CH of Ar), 118.50 (NCH), 28.25 (CHMe₂), 24.52 (CHMe₂), 24.21 (CHMe₂), (BCO₂ was not observed).

¹¹B{¹H} NMR (C_6D_6): δ 20.9 (v br).

Fig. s11s ¹H and ¹¹B NMR spectra of crystalline [K{ $O_2CB(NDippCH)_2$ }]₄(C₆H₆)_x (7).

Figure s12. Molecular structure of **7** in the solid state as determined by X-ray crystallography. Hydrogen atoms omitted and Dipp groups shown in wireframe format for clarity.

(2) Preparation of Sn{O₂CB(NDippCH)₂}₂ (4) from 7:

Solid potassium hydride (3.0 mg, 0.075 mmol) was added to a solution of HO₂C{B(NDippCH)₂} (23 mg, 0.053 mmol) in C₆D₆ (0.4 mL) and the mixture was sonicated for 1 h until no more hydrogen was evolving and ¹H NMR spectrum showed disappearance of the starting compound and formation of **7**. The solution was transferred into a new NMR tube and the residue was washed with C₆D₆ (0.1 mL). Solid SnBr₂ (7.2 mg, 0.026 mmol) was added, but no reaction was observed after sonication for 30 min. Then thf (0.15 mL) was vacuum-transferred to the tube and sonication continued for another 30 min resulting in clear solution with a single new set of ¹H NMR signals, but no KBr precipitate. All volatiles were removed *in vacuo*, the residue was extracted with hexane (0.5 mL), leaving white powder of KBr. Attempted crystallisation from the extract was unsuccessful, removing the solvent gave pale brown oil, which showed similar ¹H NMR spectrum to that of **4** obtained via CO₂ insertion. Addition of DMAP (3.4 mg, 0.028 mmol) resulted in the formation of **4** (**DMAP**) by comparison of its ¹H NMR spectrum to the reported above.

Experiment demonstrating decarbonylative instability of *in situ* prepared solution of (thf)₂Li{O₂CB(NDippCH)₂}

Solution of $(thf)_2Li\{B(NDippCH)_2\}$ (45 mg, 0.083 mmol) in C₆D₆ (0.5 mL) was degassed by freeze/pump/thaw procedure, then the tube was backfilled with CO₂ and gently shaken. ¹H and ¹³C NMR spectra showed clean formation of a single product. Next day (after ~17 h) the sample showed unexpectedly complex spectra, particularly ¹³C NMR spectrum, in which a small sharp peak at 184 ppm indicated CO formation. Solid SnBr₂ (11.5 mg, 0.042 mmol) was added and the mixture was sonicated for 10 min until all solid dissolved forming cloudy solution. ¹H NMR spectrum showed that a mixture of products was formed with a major component having two backbone CH peaks at 5.88 and 6.05 ppm (corresponding to BCO₂ and BO moieties). All volatiles were removed *in vacuo*, the residue was extracted with hexane (0.5 mL), leaving white powder of LiBr. Crystallisation from concentrated solution at room temperature still gave a mixture with a major product **6** forming large colourless blocks, suitable for X-ray diffraction. Additional recrystallisation yielded almost pure Sn{O₂CB(NDippCH)₂}{OB(NDippCH)₂}(LiBr)(thf) (**6**) (27 mg, 0.024 mmol, 58%).

Fig. s13. ¹H NMR spectra of the reaction mixture $(thf)_2Li\{B(NDippCH)_2\} + CO_2$ (lower) and after 17 h at room temperature (upper).

Fig. s14. ¹³C NMR spectrum of freshly prepared (thf)₂Li{O₂CB(NDippCH)₂} showing broad signal of BCO₂ moiety at 184 ppm (inset).

Fig. s15. ¹³C NMR spectrum of the reaction mixture $(thf)_2Li\{B(NDippCH)_2\} + CO_2$ after 17 h at

room temperature.

Fig. s16. Proposed mechanism for the decomposition of $(thf)_2Li\{O_2CB(NDippCH)_2\}$ in the presence of added CO₂ (the isolated carboxylate was stable in C₆D₆ solution).

Fig. s17. Reactions of lithium borylcarboxylate with SnBr₂. Reagents and conditions: (a) benzene, 1 atm CO₂, 10 min; (b) benzene, 1 atm CO₂, 17 h; (c) SnBr₂, benzene, sonication 30 min, hexane extraction

¹H NMR (C₆D₆) for 7: δ 7.13-7.21 (2H, m, *p*-CH of Ar + C₆D₅H), 7.01-7.11 (10H, m, *m*- and *p*-CH of Ar), 6.05 (2H, s, NCH), 5.88 (2H, s, NCH), 3.34 (2H, septet, ³*J* = 6.8 Hz, *CH*Me₂), 3.29 (2H, septet, ³*J* = 6.8 Hz, *CH*Me₂), 3.22 (2H, septet, ³*J* = 6.8 Hz, *CH*Me₂), 3.06 (2H, septet, ³*J* = 6.8 Hz, *CH*Me₂), 2.84 (4H, br m, OCH₂ of thf), 1.29-1.32 (16H, br m, CH*Me*₂ + CH₂ of thf), 1.15-1.27 (36H, m, CH*Me*₂).

¹³C{¹H} NMR (C₆D₆) for 7: δ 183.0 (very broad, only observed in HMBC, BCO₂), 147.60 (*o*-C of Ar), 147.45 (*o*-C of Ar), 145.94 (*o*-C of Ar), 145.66 (*o*-C of Ar), 139.80 (*ipso*-C of Ar), 139.36

(*ipso*-C of Ar), 127.63 (*p*-CH of Ar), 127.28 (*p*-CH of Ar), 124.18 (*m*-CH of Ar), 124.12 (*m*-CH of Ar), 123.18 (*m*-CH of Ar), 123.06 (*m*-CH of Ar), 120.40 (NCH), 116.46 (NCH), 67.88 (OCH₂ of thf), 28.76 (CHMe₂), 28.69 (CHMe₂), 28.65 (CHMe₂), 25.22 (CH₂ thf), 24.99 (CHMe₂), 24.87 (CHMe₂), 24.84 (CHMe₂), 24.65 (CHMe₂), 24.49 (CHMe₂), 24.45 (CHMe₂), 24.17 (CHMe₂), 23.81 (CHMe₂).

 $^{11}B\{^{1}H\}$ (C₆D₆) for 7: δ 21.5 (br).

 7 Li NMR (C₆D₆) for **7**: δ –0.30.

¹¹⁹Sn NMR (C_6D_6) for 7: δ –287.5.

Fig. s18. ¹H and ¹³C{¹H} NMR spectra of crystalline $Sn\{O_2CB(NDippCH)_2\}\{OB(NDippCH)_2\}$ -(LiBr)(thf).

Fig. s19. ¹¹B NMR spectrum of crystalline Sn{O₂CB(NDippCH)₂}{OB(NDippCH)₂}(LiBr)(thf).

Fig. s20. ¹¹⁹Sn NMR spectrum of crystalline Sn{O₂CB(NDippCH)₂}{OB(NDippCH)₂}(LiBr)(thf).

Reaction of Sn{B(NDippCH)₂}₂ with N₂O: Solution of Sn{B(NDippCH)₂}₂ (15 mg, 0.017 mmol) in C₆D₆ (0.5 mL) was degassed by freeze/pump/thaw procedure, then the tube was filled with N₂O and gently shaken. The solution colour changed from yellow-green to dark purple. Immediately ¹H NMR showed formation of a single asymmetrical product. After staying at room temperature for 12 h the colour changed to light yellow and a complex mixture (including free diazadiene DippN=CHCH=NDipp with backbone CH signal at 8.17 ppm) was formed due to overoxidation.

Fig. s21. ¹H NMR spectrum of the reaction $Sn\{B(NDippCH)_2\}_2 + N_2O$: before the N₂O addition (top); immediately after addition (middle); after 12 h (bottom) (star indicates signals of $H_2Sn\{B(NDippCH)_2\}_2$ impurity).

In order to crystallise the initial product, reaction was carried out in a two-section tube. Solution of $[Sn{B(NDippCH)_2}_2]$ (25 mg, 0.028 mmol) in C_6H_6 (0.5 mL) was degassed by freeze/pump/thaw procedure and treated with N₂O until the colour turned dark purple. The tube was then quickly degassed by freeze/pump/thaw to avoid further oxidation and sealed under vacuum. The solution was concentrated to ¹/₄ volume and stored at room temperature overnight producing deep red-purple crystals of $[Sn{B(NDippCH)_2}{OB(NDippCH)_2}]$ (8) suitable for X-ray diffraction.

The crystalline material isolated after picking crystals **8** for crystallographic study contained also some starting $[Sn{B(NDippCH)_2}_2]$ and $[Sn{OB(NDippCH)_2}_2]$ (identified by comparison of its ¹H NMR spectrum with that of the reported compound^{S4}).

¹H NMR (C₆D₆): δ 7.15-7.21 (m, 4H, *p*-H of Ar), 7.04-7.07 (m, 8H, *m*-H of Ar), 6.14 (s, 2H, NCH), 6.00 (s, 2H, NCH), 3.33 (septet, ³*J* = 6.9 Hz, 4H, C*H*Me₂), 3.14 (septet, ³*J* = 6.9 Hz, 4H, C*H*Me₂), 1.21 (d, ³*J* = 6.9 Hz, 12H, CH*M*e₂), 1.11 (d, ³*J* = 6.9 Hz, 12H, CH*M*e₂), 1.06 (d, ³*J* = 6.9 Hz, 12H, CH*M*e₂), 0.99 (d, ³*J* = 6.9 Hz, 12H, CH*M*e₂).

¹³C{¹H} NMR (C₆D₆): δ 147.27 (*o*-C of Ar), 145.85 (*o*-C of Ar), 139.34 (*ipso*-C of Ar), 138.74 (*ipso*-C of Ar), 127.92 (*p*-CH of Ar), 127.00 (*p*-CH of Ar), 123.74 (*m*-CH of Ar), 123.48 (*m*-CH of Ar), 122.13 (NCH), 116.60 (NCH), 28.74 (CHMe₂), 28.65 (CHMe₂), 24.85 (CHMe₂), 24.68 (CHMe₂), 24.41 (CHMe₂), 24.16 (CHMe₂).

¹¹B{¹H} NMR (C₆D₆): δ 79.4 (SnB), 24.6 (SnOB).

Fig. s22. ¹H, ¹¹B{¹H} and ¹³C{¹H} NMR spectra of *in situ* prepared 8.

Fig. s23. ¹H NMR spectra showing conversion of **8** into a mixture of bis(boryl)- and bis(boryloxy)tin. Bottom: freshly prepared **8**; successive spectra measured after 1 day, 10 days and 3 months at room temperature.

2. X-ray crystallographic studies

2: C₅₃H₇₂B₂N₄O₂Sn, C₅H₁₂, monoclinic, $P2_1/c$, $M_r = 1009.60$, a = 20.0173(2), b = 12.9464(1), c = 24.1828(2) Å, $\beta = 111.287(1)^\circ$, V = 5839.44(10) Å³, $\rho_x = 1.148$ Mg m⁻³, Z = 4, $R_1 = 0.0380$ (10492 observed reflections), w $R_2 = 0.1062$ (12081 total reflections). CCDC ref: 2077134.

3: C₁₀₆H₁₄₄B₄N₈O₄, orthorhombic, $P2_12_12_1$, $M_r = 1637.60$, a = 12.4748(3), b = 20.5322(4), c = 39.6202(9) Å, V = 10148.1(4) Å³, $\rho_x = 1.072$ Mg m⁻³, Z = 4, $R_1 = 0.0714$ (17328 observed reflections), w $R_2 = 0.1889$ (20233 total reflections). CCDC ref: 2077137.

5: $C_{108}H_{144}B_4N_8O_9Sn_3$, triclinic, *P*-1, $M_r = 2097.61$, a = 14.3697(3), b = 14.8194(3), c = 28.2627(6)Å, $\alpha = 77.969(2)^\circ$, $\beta = 78.949(2)^\circ$, $\gamma = 67.924(2)^\circ$, V = 5388.7(2) Å³, $\rho_x = 1.293$ Mg m⁻³, Z = 2, $R_1 = 0.0307$ (19556 observed reflections), w $R_2 = 0.790$ (21962 total reflections). CCDC ref: 2077136.

4(DMAP): C₆₁H₈₂B₂N₆O₄Sn, 0.5C₆H₁₄, monoclinic, $P2_1/c$, $M_r = 1146.75$, a = 9.9561(1), b = 22.1784(3), c = 29.1176(3) Å, $\beta = 97.887(1)^\circ$, V = 6368.65(13) Å³, $\rho_x = 1.196$ Mg m⁻³, Z = 4, $R_1 = 0.0419$ (11243 observed reflections), w $R_2 = 0.1156$ (13211 total reflections). CCDC ref: 2077140.

4(LiBr)(thf): C₅₈H₈₀B₂BrLiN₄O₅Sn, monoclinic, $P2_1/c$, $M_r = 1140.42$, a = 10.3410(1), b = 21.4584(1), c = 27.4349(1) Å, $\beta = 92.851(1)^\circ$, V = 6080.31(7) Å³, $\rho_x = 1.246$ Mg m⁻³, Z = 4, $R_1 = 0.0343$ (11777 observed reflections), w $R_2 = 0.0887$ (12634 total reflections). CCDC ref: 2077135.

6: C₅₇H₈₀B₂BrLiN₄O₄Sn, monoclinic, $P2_1/c$, $M_r = 1112.41$, a = 19.7798(9), b = 16.8149(5), c = 19.3768(9) Å, $\beta = 117.717(6)^\circ$, V = 5705.1(5) Å³, $\rho_x = 1.295$ Mg m⁻³, Z = 4, $R_1 = 0.0497$ (9830 observed reflections), w $R_2 = 0.1441$ (11843 total reflections). CCDC ref: 2077133.

7: $C_{108}H_{144}B_4K_4N_8O_8$, $3C_6H_6$, monoclinic, C2/c, $M_r = 2116.27$, a = 29.0119(2), b = 15.7055(1), c = 28.1694(3) Å, $\beta = 103.568(1)^\circ$, V = 12477.08(18) Å³, $\rho_x = 1.127$ Mg m⁻³, Z = 4, $R_1 = 0.0654$ (11308 observed reflections), w $R_2 = 0.2100$ (13016 total reflections). CCDC ref: 2077139.

8: C₅₈H₇₈B₂N₄OSn, C₆H₆, tetragonal, *I*4₁/*a*, *M*_r = 987.55, *a* = 12.7358(2), *b* = 12.7358(2), *c* = 69.4576(16) Å, V = 11266.1(4) Å³, $\rho_x = 1.164$ Mg m⁻³, *Z* = 8, *R*₁ = 0.0781 (5467 observed reflections), w*R*₂ = 0.1745 (5886 total reflections). CCDC ref: 2077138.

3. References

- s1 A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen and F. J. Timmers, *Organometallics*, 1996, **15**, 1518.
- s2 A. V. Protchenko, K. H. Birjkumar, D. Dange, A. D. Schwarz, D. Vidovic, C. Jones, N. Kaltsoyannis, P. Mountford and S. Aldridge, *J. Am. Chem. Soc.*, 2012, **134**, 6500.
- s3 Y. Segawa, Y. Suzuki, M. Yamashita and K. Nozaki, J. Am. Chem. Soc., 2008, 47, 16069.
- s4 Y. K. Loh, L. Ying, M. Á. Fuentes, D. C. H. Do and S. Aldridge, *Angew. Chem. Int. Ed.*, 2019, **58**, 4847.