Supplementary Materials

Hollow Co$_9$S$_8$ rods-acidified CNT-NiCoLDH composite enabling excellent electrochemical performance in asymmetric supercapacitors

Chao Sun, Li Sun*, Kaifeng Fan, Yan Shi, Jialin Gu, Yifan Lin, Jingjing Hu and Yihe Zhang*

Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, PR China
*Corresponding authors
E-mail address: sunli@cugb.edu.cn, zyh@cugb.edu.cn

Supplementary figures

Fig. S1 Schematic diagram of Ke-Kendal effect.
Fig. S2 SEM images of (a) CNTs, (b) aCNTs, (c) Co$_9$S$_8$-aCNT (low), (d) Co$_9$S$_8$-aCNT (high), (e) NiCoLDH.

Fig. S3 TEM image of NiCoLDH.
Fig. S4 a-j CV curves and GCD curves of (a, b) Co₉S₈, (c, d) NiCoLDH, (e, f) Co₉S₈-aCNT, (g, h) Co₉S₈-aCNT (low) and (i, g) Co₉S₈-aCNT (high).

Fig. S5 Comparison of (a) CV curve, (b) GCD curves and (c) specific capacitance of Co₉S₈-aCNT (low), Co₉S₈-aCNT (high) and Co₉S₈-aCNT.
Fig. S6 Cycling performance of Co9S8-aCNT-NiCoLDH electrodes after 5000 cycles at 10 A g\(^{-1}\).

Fig. S7 GCD curves of active carbon (AC) at 1 A g\(^{-1}\)