Layered terbium hydroxides for simultaneous drug delivery and imaging

Margarita Strimaite,^a Clarissa L. G. Harman,^a Huan Duan,^a Yuwei Wang,^{a,b} Gemma-Louise Davies,^c Gareth R. Williams.^a*

^a UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK

^b State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 98, Beijing, 100029, PR China

^cDepartment of Chemistry, University College London, 20 Gordon St, Bloomsbury, London, WC1H 0AJ, UK

* Corresponding author. Email: g.williams@ucl.ac.uk. Tel.: +44(0) 207 753 5863

Figure S1 Additional SEM images of LTbH-Cl and LTbH-drug intercalates, showing aggregation seen in the samples.

Figure S2 DLS plots for aqueous dispersions of LTbH and the LTbH-drug intercalates.

Figure S3 Thermograms of LTbH-Cl and LTbH-drug intercalates, showing intermediate phases calculated based on % mass loss.

Table S1 Summar	v oi	f observed	(and	calculated) values	for	elemental	analv	sis and	TGA data.
Tuble St Summa	$y \cup j$	ODJCIVCU	unu	culculated	/ varacs	101	ciciliciitui	unury	JIJ UIIU	ron aata.

Material	%C	%Н	%N	Mass loss % (H ₂ O)
LTbH-Cl	0.29 (0.13)	1.48 (1.73)	-	5.78 (5.81)
LTbH-dic	20.12 (19.82)	2.12 (2.51)	1.66 (1.64)	5.26 (5.29)
LTbH-ibu	24.81 (24.58)	2.65 (3.97)	-	4.25 (4.25)
LTbH-nap	23.96 (23.65)	2.61 (3.10)	-	5.82 (4.22)

Figure S4 Graphs showing the results of in-vitro cell viability assays using a.) Caco-2 and b.) HEK 293 cell lines, with diclofenac, ibuprofen, and naproxen at two concentrations (81 μ g / ml and 158 μ g / ml). The experiment was performed three times, each in triplicate. Results are presented as mean \pm standard deviation. * denotes groups with a significantly different mean viability from the untreated cells control, at the p = 0.05 level.

Figure S5 Absorbance spectra of unbound AS-3, AS-3 with LTbH-Cl, and AS-3 with TbCl₃· $6H_2O$ at a.) pH 1.5 and b.) pH 7.4. It can be seen that the characteristic peaks of both unbound and bound AS-3 appear at a slightly lower wavelength in acidic media relative to media at pH = 7.4.

Figure S6 Plot showing the absorbance at 652 nm of 1.25 mM solutions of $TbCl_3 \cdot 6H_2O$ in water (combined with equal volumes of a 2.5 mM solution of AS-3) across a range of pH values. The experiment was performed three separate times, each in triplicate. Results are presented as mean \pm standard deviation.

Figure S7 Fits of the Avrami (left) and Bhaskar (right) models to drug release data from LTbH-dic, LTbH-ibu, and LTbH-nap.