Supporting Information

Reduced Polyoxomolybdate Immobilized on Reduced Graphene

Oxide for Rapid Catalytic Decontamination of Sulfur Mustard

Simulant

Yanyan Wu^a, Jing Dong^{*b}, Chengpeng Liu^a, Xiaoting Jing^a, Huifang Liu^a, Yue Guo^a, Yingnan Chi^{*a}, Changwen Hu^a

^a Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, People's Republic of China.

^b College of Chemistry and Materials Engineering, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, People's Republic of China.

Figure S1. Liquid-phase UV-Vis spectrum from leaching test of PMo₁₂@PDDA-rGO immersed in water for 12 h.

Figure S2. FT-IR spectra of PMo₁₂@PDDA-rGO prepared by a two-step method, rGO, PDDA and PMo₁₂.

 $PMo_{12}@PDDA$ -rGO prepared by a two-step method as follows. The mixture of PDDA (0.3 mL) and GO (2 mg/mL, 15 mL) was first treated under hydrothermal conditions (100 °C) for 10 h, and then the resulting PDDA-rGO was dispersed in the aqueous solution of PMo_{12} (5 mmol/L, 10 mL). The reaction mixture was stirred for 5 h at room temperature, and the solid product was separated by centrifugation, and washed with deionized water for several times to remove any unloaded PMo_{12} . The obtained product was frozen in liquid nitrogen and dried in freeze dryer for two days.

Figure S3. Leaching test for CEES degradation using PMo₁₂@PDDA-rGO prepared by a two-step method.

Figure S4. Liquid-phase UV-vis spectra from leaching test of (a) PMo₁₀V₂@PDDArGO and (b) PW₁₂@PDDA-rGO immersed in water for 12 h; FT-IR spectra of (c) PMo₁₀V₂@PDDA-rGO and (d) PW₁₂@PDDA-rGO.

Figure S5. TEM image of PMo₁₂@PDDA-rGO

Figure S6. SEM image of rGO.

Figure S7. PXRD patterns of PMo₁₂@PDDA-rGO, PMo₁₂ and rGO.

Figure S8. (a) PXRD patterns of PW₁₂@PDDA-rGO, rGO and PW₁₂; (b) PXRD patterns of PMo₁₀V₂@PDDA-rGO, rGO and PMo₁₀V₂.

Figure S9. Raman spectra of PMo₁₂@PDDA-rGO and rGO.

Figure S10. (a) The N₂ adsorption-desorption isotherms of PMo₁₂@PDDA-rGO and rGO; Pore size distributions of (b) rGO and (c) PMo₁₂@PDDA-rGO.

Sample	Contact angle		
PMo ₁₂	39°		
rGO	70°		
PMo ₁₂ @PDDA-rGO	61°		

Figure S11. Contact angle images of PMo₁₂@PDDA-rGO, PMo₁₂ and rGO.

Figure S12. XPS survey spectra of PMo₁₂@PDDA-rGO.

Figure S13. EPR spectrum of PMo₁₂@PDDA-rGO.

Figure S14. Mass spectrum of (a) CEESO and (b) CEESO₂.

Figure S15. XPS spectra for the Mo3d core level spectrum of $PMo_{10}V_2@PDDA$ -rGO.

Figure S16. Possible reaction mechanism of CEES decontamination using PMo₁₂@PDDA-rGO as catalyst.

Sample	Mo(wt%)	P(wt%)	PM0 ₁₂ (wt%)
PMo ₁₂ @PDDA-rGO-26%	16.15	0.28	26
PMo ₁₂ @PDDA-rGO-33%	21.10	0.49	33
PMo12@PDDA-rGO-45%	28.46	0.82	45
PMo ₁₂ @PDDA-rGO-47%	29.91	0.88	47

Table S1. The elemental analysis of PMo₁₂@PDDA-rGO.

Table S2. Comparison of the heterogeneous catalysts for the oxidative degradation of sulfur mustard simulant.

Catalyst	Oxidant	Loading	TON ^[e]	TOF	Conv	Sel.	Time	ref.
		(mmol)		(min ⁻¹) ^[f]	. (%)	(%) ^[a]	(min)	
PMo ₁₂ @PDDA-rGO	$3\%~\mathrm{H_2O_2}$	0.005	49.5	1.7 ^[g]	99	90	30	This
								work
Mg ₃ Al-LDH-Nb ₆	$3\%~\mathrm{H_2O_2}$	0.003	158.3	1.3 ^[h]	95	97	120	1
Zn ₂ Cr-LDH-PW ₁₁ Ni	$3\%~\mathrm{H_2O_2}$	0.0015	326.7	1.8 ^[i]	98	94	180	2
Nb_2O_5	$30\%~\mathrm{H_2O_2}$	0.075	3.7	0.012 ^[j]	>99	73	300	3
Nb-SAP ^[b]	$30\%\mathrm{H_2O_2}$	0.0028	95.9	$0.2^{[k]}$	>98	73	480	4
Fe-DECON1[c]	$30\%~\mathrm{H_2O_2}$	0.043	1.3	0.0009 ^[1]	20	-	1440	5
V-APMS ^[d]	TBHP	0.031	1.3	$0.02^{[m]}$	97	75.6	60	6
PW ₁₂ @NU-1000	$30\%~\mathrm{H_2O_2}$	0.0017	20.8	$10.4^{[n]}$	98	57	20	7

[a] The selectivity for CEESO; [b] Nb-SAP: Niobium (V) Saponite Clay; [c] Fe-DECON1: Iron-montmorillonite clays; [d] V-APMS: vanadium-doped acid-prepared mesoporous silica; [e] TON = moles product / moles of total catalytic clusters; [f]TOF = moles product / (moles of total catalytic clusters × amount of time); [g] Time = 90 min; [h] Time = 120 min; [i] Time = 180 min; [j] Time = 300 min; [k] Time = 480 min; [l] Time = 1440 min; [m] Time = 60 min; [n] Time = 2 min.

As shown in Table S2, the TON or TOF of $PMo_{12}@PDDA$ -rGO is not better than that of Mg₃Al-LDH-Nb₆ or Zn₂Cr-LDH-PW₁₁Ni we reported previously. But for the detoxification of chemical warfare agents the decontamination efficiency is a key point to be concern. The decontamination rate of CEES catalyzed by PMo₁₂@PDDA-rGO is much better than that by Mg₃Al-LDH-Nb₆ or Zn₂Cr-LDH-PW₁₁Ni as high POM loading can be achieved with the help of PDDA.

Radical scavengers	Time (min)	Conv. (%)	Sele. (%)		
-	30	98	90		
<i>p</i> -benzoquinone ($\cdot O_2^{-}/\cdot O_2 H$)	30	97	88		
<i>tert</i> -butyl alcohol (·OH)	30	98	89		
diphenylamine (·OH)	30	98	90		

in the presence of radical scavengers.

Reaction conditions: $PMo_{12}@PDDA$ -rGO (20 mg), CEES (0.25 mmol), 1,3dichlorobenzene (0.125 mmol), 3 wt% aqueous H_2O_2 (internal standard, 0.275 mmol), radical scavengers (0.25 mmol) and acetonitrile (4 mL) at room temperature.

References

- 1 J. Dong, H. J. Lv, X. R. Sun, Y. Wang, Y. M. Ni, B. Zou, N. Zhang, A. X. Yin, Y. N Chi and C. W. Hu, *Chem.-Eur. J.*, 2018, **24**, 19208-19215.
- 2 X. R. Sun, J. Dong, Z. Li, H. F. Liu, X. T. Jing, Y. N. Chi and C. W. Hu, *Dalton Trans.*, 2019, **48**, 5285-5291.
- 3 C. Bisio, F. Carniato, C. Palumbo, S. L. Safronyuk, M. F. Starodub, A. M. Katsev, L. Marchese and M. Guidotti, *Catal. Today*, 2016, **277**, 192-199.
- 4 F. Carniato, C. Bisio, R. Psaro, L. Marchese and M. Guidotti, *Angew. Chem. Int. Ed.*, 2014, **53**, 10095-10098.
- 5 F. Carniato, C. Bisio, C. Evangelisti, R. Psaro, V. Dal Santo, D. Costenaro, L. Marchese and M. Guidotti, *Dalton Trans.*, 2018, **47**, 2939-2948.
- 6 C. R. Ringenbach, S. R. Livingston, D. Kumar and C. C. Landry, *Chem. Mater.*, 2005, **17**, 5580-5586.
- 7 C. T. Buru, P. Li, B. L. Mehdi, A. Dohnalkova, A. E. Platero-Prats, N. D. Browning, K. W. Chapman, J. T. Hupp and O. K. Farha, *Chem. Mater.*, 2017, **29**, 5174-5181.