## **Electronic Supporting Information**

Solvent Induced Structural Transformation from Heptanuclear to Decanuclear [Co–Ln] Coordination Clusters: Trapping of Unique Counteranion and Understanding of Aggregation Pathways

Dipmalya Basak,<sup>a</sup> Emma Regincós Martí,<sup>b</sup> Mark Murrie,<sup>b</sup> Ivan Nemec,<sup>c,d</sup> Debashis Ray<sup>\*a</sup>

<sup>a</sup>Department of Chemistry, Indian Institute of Technology, Kharagpur 721 302, India <sup>b</sup>School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, United Kingdom <sup>c</sup>Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77147 Olomouc, Czech Republic

<sup>d</sup>Central European Institute of Technology, CEITEC BUT, Purkyňova 656/123, 61200 Brno, Czech Republic



Chart S1. Different binding modes of pivalate ions found in this work.

#### Detailed description of molecular structure of 1

Within the individual partial  $\{Co_2Tb_2\}$  cubic halves in 1, the Co1…Co2 separation is shortest at 3.1038(2) Å whereas the longest separation is recorded at 3.9000(2) Å for Tb1…Tb2 (Figure 2). A triangular face bearing O3, O4 and O15 of the distorted O<sub>8</sub> coordination environment around Tb2 center was utilized to form the cube whereas Tb1 (also having O<sub>8</sub> environment) at the vertex-shared position share two triangular faces each consisting of O4, O5 and O15 to two cubes. Two water molecules fulfill the coordination requirement of Tb1. The two carboxylate bridged TbCoO<sub>2</sub> faces record a shorter separation between Tb1 and Co (Tb1···Co1, 3.4640(10) Å; Tb1···Co2, 3.4746(10) Å) compared to that between Tb2 and Co (Tb2···Co1, 3.4150(11) Å; Tb2···Co2, 3.4095(11) Å) of the two faces without such a bridge. The Tb2 centers at two corners of the cubes record the longest separation in the cluster between them (Tb2···Tb2, 4.8599(2) Å).

In **1**, the Co–O<sub>hyd</sub>–Tb (hy = hydroxido) bond angles range from 100.1(2)° to 107.0(2)° while the Tb–O<sub>hyd</sub>–Tb angles are larger varying from 107.55(18)° to 111.9(2)° (Table S1). The Co–O<sub>alk</sub>–Tb (alk = ligand alkoxido end) angles (96.83(19)° and 102.4(2)°) are similar to Co–O<sub>met</sub>–Tb (me = methoxido) angles (96.15(18)° and 102.19(19)°) as are the Co–O<sub>alk</sub>–Co (100.9(2)°) and Co–O<sub>met</sub>–Co (98.5(2)°) angles. Bond Valence Sum (BVS)<sup>R1,R2</sup> analysis for localized bonds around the cobalt and lanthanide centers validated a formal valence state of +II for Co1 and +III for Co2, Ln1, Ln2 and Ln3 (Table S2). To assess the O<sub>8</sub> and O<sub>6</sub>/O<sub>5</sub>N coordination geometry around the Ln<sup>III</sup> and Co<sup>II/III</sup> ions respectively, Continuous Shape Measures (CShM) calculations were performed (Tables S4 and S3). In **1**, the Tb1 center adopts a distorted Triangular Dodecahedron (TDD) geometry (CShM = 1.075 for TDD, 1.622 for SAPR, 1.929 for BTPR) while the geometry around Tb2 can be best described as distorted Square Antiprism (SAPR) (CShM = 0.915 for SAPR, 1.756 for BTPR, 1.947 for TDD) owing to low CShM values (Figure S1 and Table S4).



**Figure S1**. Distorted Triangular Dodecahedron (TDD) geometry around Tb1 (left) and distorted Square Antiprism (SAPR) geometry around Tb2 (right) in **1**.

CShM values indicated a distorted Octahedral geometry around both Co1 (2.897) and Co2 (0.312) (Figure S2 and Table S3). As is evident by the higher values, Co1 accommodates a higher degree of distortion of geometry compared to Co2. Similar observations were made for Ho<sup>III</sup> and Co<sup>II/III</sup> centers in **3**. Four six-coordinate Co<sup>III</sup> and Co<sup>II</sup> centers remain either in distorted NO<sub>5</sub> or O<sub>6</sub> coordination environments. In **1**, the five Co–O bonds around Co<sup>III</sup> centers record shorter distances from 1.885(5) to 1.945(5) Å, whereas the six Co–O distances

around Co<sup>II</sup> centers are longer and vary within a wide range from 2.008(6) to 2.148(5) Å. For the tridentate ONO coordination support around the 3*d* center in **1** the Co2–N1 distance is shorter at 1.886(7) Å. The bivalent Co1 center supports wide variation in *cis* angles from 60.9(2) to 112.4(2)° as compared to that around trivalent Co2 within 84.3(2) to 96.4(2)° with the smallest angle being recorded for chelating Me<sub>3</sub>CCO<sub>2</sub><sup>-</sup> around Co1.



Figure S2. Distorted octahedral coordination geometry around Co1 (left) and Co2 (right) in 1.

#### Hydrogen bonding interaction in 1

The two water molecules (O16) bound to Tb1 in **1** show hydrogen bonding interaction with phenoxido oxygen O1 of L1<sup>-</sup> (O16···O1, 2.5726(1) Å) and O11 of chelating  $\eta^2$ -Me<sub>3</sub>CCO<sub>2</sub><sup>-</sup> bound to Co1 (O16···O11, 2.718(8) Å) (Figure 4). Lattice water O22A is hydrogen bonded to O4 and O15 of  $\mu_3$ -OH<sup>-</sup> groups from two adjacent cubes (O4···O22A, 2.999(15) Å; O15···O22A, 2.899(15) Å). The Tb2 coordinated water (O13) shows interaction with a lattice MeOH molecule (O23) (O13···O23, 2.758(14) Å) which in turn is hydrogen bonded to O20 of  $\eta^1$ -Me<sub>3</sub>CCO<sub>2</sub><sup>-</sup> bound to Dy3 (O23···O20, 2.683(12) Å) forming a 1D chain structure. O20 is further engaged in hydrogen bonding interaction with O21 of MeOH (O21···O20, 2.613(11) Å) coordinated to Tb3. Figure S3 represents the crystal packing diagram along the b axis for **1**.



Figure S3. Crystal packing along the b axis in 1.



**Figure S4**. Bond distances within the cores of **4** (a) and **6** (b). Carbon atoms omitted for clarity. Color code: Grey, carbon; red, oxygen; blue, nitrogen; blue grey, terbium; teal, holmium; pink, cobalt(II); brown, cobalt(III).

#### Description of cobalt metal ion center geometry in 4 and 6

In **6**, the six Co<sup>II</sup>–O distances around Co1 vary within a wide range from 2.036(9) to 2.240(1) Å, respectively compared to the five Co<sup>III</sup>–O separations for Co2, Co3 and Co4 ranging from 1.885(9) to 1.931(9) Å, 1.938(8) to 1.988(9) Å and 1.877(10) to 1.922(10) Å, respectively. The Co<sup>III</sup>–N distance appears between 1.863(11) to 1.851(14) Å. For bivalent Co1 a wide variation in *cis* angles were observed between 60.1(4) to 106.0(4)° compared to that around trivalent Co2, Co3, Co4 from 82.1(4) to 96.3(4)°, 80.2(3) to 98.1(5)° and 83.1(4) to 94.9(4)°, respectively. A similar observation is made in the case of **4** with the exception of the vertex shared Co3 exhibiting a broad Co–O bond range from 2.008(9) to 2.095(8) Å due to its +II oxidation state and supporting a wide variation in its *cis* angles from 78.6(3) to 104.4(4)°.



Figure S5. Distorted octahedral geometries around the different cobalt centers in 4.



Figure S6. Distorted octahedral geometries around the different cobalt centers in 6.





**Figure S7**. Crystal packing along the c axis (top) and representation of voids (green surfaces) in the lattice visualized along the c axis (bottom) in **4**.



Figure S8. Crystal packing along the c axis (top) and representation of voids (green surfaces) in the lattice visualized along the c axis (bottom) in 6.



**Figure S9**. Various intra molecular hydrogen bonding interactions involved in the stabilisation of the structure in **6**.



 $\{[Co^{II}Co^{III}L1(O_2CCMe_3)_3(OMe)(H_2O)_2]\cdot 2CH_3OH\cdot H_2O+K+H\}^+$ 



 $\{[Tb^{III}Co^{II}Co^{III}L1(O_2CCMe_3)_3(HO_2CCMe_3)_2(OMe)(OH)_2] + H\}^+ \\ \{[Tb^{III}(O_2CCMe_3)_4(MeOH)_2] \cdot H_2O + 2H\}^+ \\ \{[Tb^{III}Co^{III}Co^{III}L1(O_2CCMe_3)_3(HO_2CCMe_3)_2(OMe)(OH)_2] + H\}^+ \\ \{[Tb^{III}Co^{III}Co^{III}Co^{III}L1(O_2CCMe_3)_2(OMe)(OH)_2] + H\}^+ \\ \{[Tb^{III}Co^{III}Co^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{IIII}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{III}CO^{IIII}CO^{III}CO^{III}$ 

Figure S10. Experimental and simulated peaks obtained from HRMS (+ve) of 1 in MeOH corresponding to different species present in solution.





 ${[Ho^{III}Co^{II}Co^{III}C1(O_2CCMe_3)_3(HO_2CCMe_3)_2(OMe)(OH)_2]+H}^+ {[Ho^{III}(O_2CCMe_3)_4(MeOH)_2]\cdot H_2O+2H}^+$ Figure S11. Experimental and simulated peaks obtained from HRMS (+ve) of 3 in MeOH corresponding to different species present in solution.

**1** and **3** exhibits base peaks (Figures S10 and S11) due to the protonated ligand  $\{H_2L1+H\}^+$ (C<sub>9</sub>H<sub>12</sub>NO<sub>2</sub>; calcd, 166.0868) at m/z = 166.0870 respectively. A peak due the species  $\{(CH_3)_3CCO_2H\}^{++}$  (C<sub>5</sub>H<sub>10</sub>O<sub>2</sub>; calcd, 102.0681) appears at m/z = 102.0680 in **1** and **3** respectively.





Figure S12. Experimental and simulated peaks obtained from HRMS (+ve) of 1 in MeCN corresponding to different species present in solution.





 $\{[Dy^{III}Co^{II}Co^{III}L1(O_2CCMe_3)_3(OH)_2(H_2O)_3]\cdot CH_3CN\cdot 3H_2O\}^+$ 



Figure S13. Experimental and simulated peaks obtained from HRMS (+ve) of 2 in MeCN corresponding to different species present in solution.





 $\{ [Ho^{III}(O_2CCMe_3)_4] + 2H \}^+ \qquad \{ [Ho^{III}Co^{III}_2L1_2(O_2CCMe_3)_4(OH)_4] \cdot 2CH_3CN \cdot 3H_2O + 5H \}^{2+1} \}^{1+1}$ 

Figure S14. Experimental and simulated peaks obtained from HRMS (+ve) of 3 in MeCN corresponding to different species present in solution.

All the clusters 1–3 exhibit a peak at m/z = 387.0753 in MeCN which can be assigned to the mononuclear species {Co<sup>III</sup>(HL1)<sub>2</sub>}+ (C<sub>18</sub>H<sub>20</sub>CoN<sub>2</sub>O<sub>4</sub>; calcd, 387.0755). Generation of such mononuclear entities having two coordinating ligands following complete collapse of the heptanuclear dicubane cores might explain the low yield of the transformed clusters 4–6. The peak at m/z = 102.0680 is due to the species {(CH<sub>3</sub>)<sub>3</sub>CCO<sub>2</sub>H}·+ (C<sub>5</sub>H<sub>10</sub>O<sub>2</sub>; calcd, 102.0681).

| Bond lengths (Å) |           |           |          |          |          |  |  |  |
|------------------|-----------|-----------|----------|----------|----------|--|--|--|
|                  | Complex 1 |           |          |          |          |  |  |  |
| Tb1 – O15        | 2.334(5)  | Tb3 – O19 | 2.308(7) | Co2 – O6 | 1.902(6) |  |  |  |

Table S1. Important bond lengths (Å) and angles (°) in 1, 3, 4, 5 and 6

| Tb1 – O16 | 2.375(5)  | Tb3-O18   | 2.369(7)  | Co2 – O3  | 1.910(5)   |  |  |  |  |
|-----------|-----------|-----------|-----------|-----------|------------|--|--|--|--|
| Tb1 – O4  | 2.375(5)  | Tb3 – O17 | 2.387(7)  | Co2 – O4  | 1.935(5)   |  |  |  |  |
| Tb1 – O5  | 2.497(5)  | Tb3 – O21 | 2.394(6)  | Co2 – O5  | 1.945(5)   |  |  |  |  |
| Tb2-O12   | 2.299(7)  | Co1 – O8  | 2.008(6)  | Tb1 – Co1 | 3.4640(10) |  |  |  |  |
| Tb2 – O7  | 2.355(6)  | Co1 – O15 | 2.073(5)  | Tb1 – Co2 | 3.4746(10) |  |  |  |  |
| Tb2-O14   | 2.355(6)  | Co1 – O3  | 2.112(5)  | Tb2 – Co1 | 3.4150(11) |  |  |  |  |
| Tb2 – O15 | 2.374(5)  | Co1 – O11 | 2.141(6)  | Tb2 – Co2 | 3.4095(11) |  |  |  |  |
| Tb2 – O9  | 2.378(6)  | Co1 – O10 | 2.146(6)  | Tb1 – Tb2 | 3.9000(2)  |  |  |  |  |
| Tb2 – O13 | 2.439(7)  | Co1 – O5  | 2.148(5)  | Tb2 – Tb2 | 4.8599(2)  |  |  |  |  |
| Tb2 – O3  | 2.444(5)  | Co2 – O1  | 1.885(5)  | Co1 – Co2 | 3.1038(2)  |  |  |  |  |
| Tb2 – O4  | 2.459(5)  | Co2 – N1  | 1.886(7)  |           |            |  |  |  |  |
|           | Complex 3 |           |           |           |            |  |  |  |  |
| Ho1 – O15 | 2.303(5)  | Ho3 – O19 | 2.288(8)  | Co2 – O6  | 1.898(6)   |  |  |  |  |
| Ho1 – O16 | 2.342(5)  | Ho3 – O17 | 2.357(8)  | Co2 – O3  | 1.908(5)   |  |  |  |  |
| Ho1 – O4  | 2.354(5)  | Ho3 – O21 | 2.370(6)  | Co2 – O4  | 1.934(5)   |  |  |  |  |
| Ho1 – O5  | 2.471(5)  | Ho3 – O18 | 2.379(8)  | Co2 – O5  | 1.942(5)   |  |  |  |  |
| Ho2 – O12 | 2.270(7)  | Co1 – O8  | 2.006(7)  | Ho1 – Co1 | 3.4451(11) |  |  |  |  |
| Ho2 – O14 | 2.328(7)  | Co1 – O15 | 2.082(6)  | Ho1 – Co2 | 3.4578(11) |  |  |  |  |
| Ho2 – O7  | 2.339(6)  | Co1 – O3  | 2.106(5)  | Ho2 – Co1 | 3.4015(12) |  |  |  |  |
| Ho2 – O15 | 2.353(5)  | Co1 – O5  | 2.141(5)  | Ho2 – Co2 | 3.3844(12) |  |  |  |  |
| Ho2 – O9  | 2.365(7)  | Co1 – O10 | 2.145(7)  | Но1 – Но2 | 3.8648(4)  |  |  |  |  |
| Ho2 – O13 | 2.395(7)  | Co1 – O11 | 2.150(6)  | Но2 – Но2 | 4.8310(8)  |  |  |  |  |
| Ho2 – O3  | 2.413(5)  | Co2 – N1  | 1.883(7)  | Co1 – Co2 | 3.0977(5)  |  |  |  |  |
| Ho2 – O4  | 2.433(5)  | Co2 – O1  | 1.885(6)  |           |            |  |  |  |  |
|           |           | Com       | olex 4    |           |            |  |  |  |  |
| Tb1-O18   | 2.413(9)  | Co1 – O7  | 2.221(10) | Co6 – N3  | 1.873(16)  |  |  |  |  |
| Tb1 – O19 | 2.340(10) | Co2 – O17 | 1.895(9)  | Co7 – O36 | 1.927(10)  |  |  |  |  |
| Tb1 – O2  | 2.452(8)  | Co2 – O18 | 1.921(8)  | Co7 – O35 | 1.904(10)  |  |  |  |  |
| Tb1 – O36 | 2.509(10) | Co2 – O2  | 1.909(8)  | Co7 – O28 | 1.860(9)   |  |  |  |  |
| Tb1 – O4  | 2.361(11) | Co2 – O1  | 1.891(8)  | Co7 – O30 | 1.875(12)  |  |  |  |  |
| Tb1 – O5  | 2.334(11) | Co2 – O3  | 1.919(9)  | Co7 – O27 | 1.889(10)  |  |  |  |  |

| Tb1 – O28 | 2.260(9)  | Co2 – N1  | 1.879(11) | Co7 – N4  | 1.848(14)  |
|-----------|-----------|-----------|-----------|-----------|------------|
| Tb1 – O29 | 2.370(10) | Co3 – O21 | 2.019(9)  | Tb1 – Co3 | 3.4657(18) |
| Tb2 – O21 | 2.413(9)  | Co3 – O22 | 2.033(9)  | Tb1 – Co2 | 3.3845(19) |
| Tb2 – O22 | 2.346(9)  | Co3 – O17 | 2.095(8)  | Tb1 – Co1 | 3.440(2)   |
| Tb2 – O10 | 2.410(8)  | Co3 – O18 | 2.008(9)  | Tb1 – Co7 | 3.319(2)   |
| Tb2 – O24 | 2.278(10) | Co3 – O19 | 2.055(9)  | Tb2 – Co3 | 3.4741(18) |
| Tb2 – O34 | 2.497(10) | Co3 – O20 | 2.095(8)  | Tb2 – Co5 | 3.3565(19) |
| Tb2 – O12 | 2.329(11) | Co4 – O22 | 2.048(9)  | Tb2 – Co4 | 3.426(2)   |
| Tb2 – O13 | 2.314(10) | Co4 – O10 | 2.246(9)  | Tb2 – Co6 | 3.277(2)   |
| Tb2 – O25 | 2.362(11) | Co4 – O20 | 2.096(8)  | Tb3 – Co7 | 3.088(2)   |
| Tb3 – O36 | 2.406(10) | Co4 – O15 | 2.205(10) | Tb3 – Co6 | 3.080(3)   |
| Tb3 – O35 | 2.382(10) | Co4 – O14 | 2.030(10) | Co1 – Co3 | 3.0617(2)  |
| Tb3 – O34 | 2.482(10) | Co4 – O16 | 2.082(11) | Co1 – Co2 | 3.1924(1)  |
| Tb3 – O33 | 2.298(12) | Co5 – O21 | 1.935(9)  | Co3 – Co2 | 2.984(2)   |
| Tb3 – O27 | 2.522(11) | Co5 – O10 | 1.916(8)  | Co3 – Co4 | 3.0529(2)  |
| Tb3 – O31 | 2.464(13) | Co5 – O20 | 1.896(9)  | Co3 – Co5 | 2.981(2)   |
| Tb3 – O23 | 2.499(12) | Co5 – O11 | 1.913(9)  | Co4 – Co5 | 3.2016(2)  |
| Tb3 – O32 | 2.453(14) | Co5 – O9  | 1.876(8)  | Tb1 – Tb2 | 6.1781(3)  |
| Tb3 – O1W | 2.497(14) | Co5 – N2  | 1.857(11) | Tb1 – Tb3 | 4.7219(2)  |
| Co1 – O17 | 2.081(8)  | Co6 – O24 | 1.874(10) | Tb2 – Tb3 | 4.7265(2)  |
| Co1 – O19 | 2.046(9)  | Co6 – O34 | 1.888(10) | Tb3 – Co3 | 5.1545(3)  |
| Co1 – O2  | 2.224(9)  | Co6 – O33 | 1.891(11) | Co3 – Co6 | 5.0777(2)  |
| Co1 – O6  | 2.039(9)  | Co6 – O23 | 1.894(12) | Co3 – Co7 | 4.9807(2)  |
| Co1 – O8  | 2.109(10) | Co6 – O26 | 1.882(12) |           |            |
|           | 1         | Comp      | olex 5    |           | 1          |
| Dy1-016   | 2.415(9)  | Co1 – O14 | 2.100(11) | Co4 – O10 | 1.876(12)  |
| Dy1 – O2  | 2.440(9)  | Co1 – O17 | 2.035(10) | Co4 – O3  | 1.881(15)  |
| Dy1-017   | 2.370(11) | Co1 – O13 | 2.232(11) | Co4 – N2  | 1.855(17)  |
| Dy1-O4    | 2.282(11) | Co2 – O1  | 1.878(9)  | Dy1 – Co3 | 3.4532(15) |
| Dy1 - O8  | 2.344(13) | Co2 – O15 | 1.901(10) | Dy1 – Co2 | 3.384(2)   |
| Dy1-O18   | 2.422(12) | Co2 – O16 | 1.937(9)  | Dy1 – Co1 | 3.439(2)   |

| Dy1-O6      | 2.307(12)       | Co2 – O2   | 1.911(9)  | Dy1-Co4   | 3.251(3)   |  |  |  |  |
|-------------|-----------------|------------|-----------|-----------|------------|--|--|--|--|
| Dy1-O9      | 2.355(12)       | Co2 – O7   | 1.926(10) | Dy2-Co4   | 3.052(3)   |  |  |  |  |
| Dy2-018     | 2.449(13)       | Co2 – N1   | 1.870(12) | Co1 – Co2 | 3.1944(1)  |  |  |  |  |
| Dy2-019     | 2.333(14)       | Co3 – O15  | 2.025(10) | Co1 – Co3 | 3.0221(2)  |  |  |  |  |
| Dy2 – O3    | 2.423(15)       | Co3 – O16  | 1.963(10) | Co2 – Co3 | 2.951(2)   |  |  |  |  |
| Dy2-011     | 2.25(3)         | Co3 – O17  | 1.991(10) | Dy1-Dy1   | 6.1064(3)  |  |  |  |  |
| Co1 – O15   | 2.107(9)        | Co4 – O4   | 1.888(12) | Dy1-Dy2   | 4.6738(2)  |  |  |  |  |
| Co1 – O2    | 2.207(10)       | Co4 – O18  | 1.912(12) | Dy2-Co3   | 5.1521(3)  |  |  |  |  |
| Co1 – O5    | 2.029(10)       | Co4 – O19  | 1.891(11) | Co3 – Co4 | 4.9831(2)  |  |  |  |  |
|             |                 | Comp       | plex 6    |           |            |  |  |  |  |
| Ho1 – O16   | 2.420(8)        | Co1 – O7   | 2.036(9)  | Co4 – O18 | 1.922(10)  |  |  |  |  |
| Ho1 – O2    | 2.445(8)        | Co1 – O14  | 2.103(10) | Co4 – O3  | 1.888(12)  |  |  |  |  |
| Ho1 – O17   | 2.370(8)        | Co1 – O13  | 2.240(10) | Co4 – N2  | 1.851(14)  |  |  |  |  |
| Ho1 – O4    | 2.265(9)        | Co2 – O16  | 1.931(9)  | Ho1 – Co3 | 3.4427(12) |  |  |  |  |
| Ho1 – O9    | 2.352(9)        | Co2 – O15  | 1.909(9)  | Ho1 – Co2 | 3.3859(19) |  |  |  |  |
| Ho1 – O6    | 2.331(11)       | Co2 – O2   | 1.919(9)  | Ho1 – Co1 | 3.4478(19) |  |  |  |  |
| Ho1 – O18   | 2.399(10)       | Co2 – O1   | 1.885(9)  | Ho1 – Co4 | 3.232(2)   |  |  |  |  |
| Ho1 – O8    | 2.299(10)       | Co2 – O5   | 1.908(9)  | Ho2 – Co4 | 3.039(2)   |  |  |  |  |
| Ho2 – O19   | 2.340(11)       | Co2 – N1   | 1.863(11) | Co1 – Co2 | 3.2050(1)  |  |  |  |  |
| Ho2 – O18   | 2.438(10)       | Co3 – O16  | 1.938(8)  | Co1 – Co3 | 3.0224(2)  |  |  |  |  |
| Ho2 – O3    | 2.422(11)       | Co3 – O15  | 1.988(9)  | Co2 – Co3 | 2.933(2)   |  |  |  |  |
| Ho2 – O11   | 2.237(17)       | Co3 – O17  | 1.968(9)  | Ho1 – Ho1 | 6.0719(3)  |  |  |  |  |
| Co1 – O15   | 2.113(8)        | Co4 – O4   | 1.877(10) | Ho1 – Ho2 | 4.6444(2)  |  |  |  |  |
| Co1 – O2    | 2.214(9)        | Co4 – O19  | 1.891(9)  | Ho2 – Co3 | 5.1380(3)  |  |  |  |  |
| Co1 – O17   | 2.057(8)        | Co4 – O10  | 1.907(10) | Co3 – Co4 | 4.9705(2)  |  |  |  |  |
|             | Bond angles (°) |            |           |           |            |  |  |  |  |
|             |                 | Comp       | plex 1    |           |            |  |  |  |  |
| O15–Tb1–O15 | 104.5(2)        | O14–Tb2–O3 | 140.7(2)  | O6–Co2–O4 | 92.8(2)    |  |  |  |  |
| O15–Tb1–O16 | 142.12(18)      | O15–Tb2–O3 | 71.76(17) | O3–Co2–O4 | 87.4(2)    |  |  |  |  |
| O15-Tb1-O16 | 88.37(18)       | O9–Tb2–O3  | 72.7(2)   | O1–Co2–O5 | 91.8(2)    |  |  |  |  |
| O16-Tb1-O16 | 103.2(3)        | O13–Tb2–O3 | 111.8(2)  | N1-Co2-O5 | 96.4(2)    |  |  |  |  |

| O15–Tb1–O4    | 68.14(17)  | O12–Tb2–O4  | 75.4(2)    | O6–Co2–O5   | 177.0(2)   |
|---------------|------------|-------------|------------|-------------|------------|
| O15–Tb1–O4    | 79.31(17)  | O7–Tb2–O4   | 75.03(19)  | O3–Co2–O5   | 85.1(2)    |
| O16–Tb1–O4    | 79.88(18)  | O14–Tb2–O4  | 129.4(2)   | O4–Co2–O5   | 84.3(2)    |
| O16–Tb1–O4    | 137.84(17) | O15–Tb2–O4  | 66.14(16)  | O8–Co1–O15  | 96.6(3)    |
| O4–Tb1–O4     | 125.8(2)   | O9–Tb2–O4   | 133.48(19) | O8–Co1–O3   | 96.0(2)    |
| O15–Tb1–O5    | 71.28(17)  | O13–Tb2–O4  | 143.1(2)   | O15-Co1-O3  | 84.9(2)    |
| O15-Tb1-O5    | 142.76(16) | O3–Tb2–O4   | 65.61(16)  | O8–Co1–O11  | 90.4(3)    |
| O16–Tb1–O5    | 77.06(17)  | O19–Tb3–O19 | 95.1(4)    | O15-Co1-O11 | 101.3(2)   |
| O16–Tb1–O5    | 75.05(17)  | O19–Tb3–O18 | 87.9(3)    | O3-Co1-O11  | 170.6(2)   |
| O4–Tb1–O5     | 64.59(16)  | O19–Tb3–O18 | 150.7(2)   | O8–Co1–O10  | 87.2(3)    |
| O4–Tb1–O5     | 141.48(16) | O18–Tb3–O18 | 103.6(5)   | O15-Co1-O10 | 161.8(2)   |
| O15–Tb1–O5    | 71.27(17)  | O19–Tb3–O17 | 81.7(3)    | O3–Co1–O10  | 112.4(2)   |
| O4 – Tb1 – O5 | 141.47(16) | O18–Tb3–O17 | 54.0(2)    | O11-Co1-O10 | 60.9(2)    |
| O5–Tb1–O5     | 134.4(2)   | O18–Tb3–O17 | 83.5(3)    | O8–Co1–O5   | 171.4(2)   |
| O12–Tb2–O7    | 81.4(2)    | O19–Tb3–O17 | 155.3(3)   | O15-Co1-O5  | 83.76(19)  |
| O12-Tb2-O14   | 77.4(3)    | O17–Tb3–O17 | 111.0(5)   | O8–Co1–O15  | 96.6(3)    |
| O7–Tb2–O14    | 140.4(2)   | O19–Tb3–O21 | 76.3(2)    | O8–Co1–O3   | 96.0(2)    |
| O12–Tb2–O15   | 106.9(2)   | O19–Tb3–O21 | 79.1(2)    | O15-Co1-O3  | 84.9(2)    |
| O7–Tb2–O15    | 135.99(19) | O18–Tb3–O21 | 75.6(3)    | Co2–O4–Tb1  | 107.0(2)   |
| O14–Tb2–O15   | 82.5(2)    | O19–Tb3–O19 | 95.1(4)    | Co2–O4–Tb2  | 101.1(2)   |
| O12–Tb2–O9    | 149.4(2)   | O18-Tb3-O21 | 129.7(2)   | Tb1–O4–Tb2  | 107.55(18) |
| O7–Tb2–O9     | 112.7(2)   | O17–Tb3–O21 | 76.4(3)    | Co1015Tb1   | 103.5(2)   |
| O14–Tb2–O9    | 74.9(2)    | O21–Tb3–O21 | 143.3(4)   | Co1O15Tb2   | 100.1(2)   |
| O15-Tb2-O9    | 82.3(2)    | 01-Co2-N1   | 94.8(3)    | Tb1O15Tb2   | 111.9(2)   |
| O12-Tb2-O13   | 89.9(3)    | O1-Co2-O6   | 87.5(3)    | Co2–O3–Co1  | 100.9(2)   |
| O7–Tb2–O13    | 69.3(3)    | N1-Co2-O6   | 86.6(3)    | Co2–O3–Tb2  | 102.4(2)   |
| O14–Tb2–O13   | 77.6(3)    | O1–Co2–O3   | 176.9(2)   | Co1–O3–Tb2  | 96.83(19)  |
| O15-Tb2-O13   | 150.5(3)   | N1-Co2-O3   | 85.6(3)    | Co2-O5-Co1  | 98.5(2)    |
| O9–Tb2–O13    | 71.7(3)    | O6–Co2–O3   | 95.6(2)    | Co2–O5–Tb1  | 102.19(19) |
| O12–Tb2–O3    | 137.9(2)   | O1–Co2–O4   | 92.3(2)    | Co1–O5–Tb1  | 96.15(18)  |
| O7–Tb2–O3     | 73.98(19)  | N1-Co2-O4   | 172.8(3)   |             |            |

| Complex <b>3</b> |            |             |           |             |          |  |  |
|------------------|------------|-------------|-----------|-------------|----------|--|--|
| 015-Но1-О15      | 104.3(3)   | О7-Но2-О3   | 74.8(2)   | O6–Co2–O4   | 92.9(2)  |  |  |
| O15-Ho1-O16      | 88.74(19)  | О15-Но2-О3  | 72.10(18) | O3–Co2–O4   | 86.8(2)  |  |  |
| O15-Ho1-O16      | 142.97(18) | О9-Но2-О3   | 72.8(2)   | N1-Co2-O5   | 97.2(3)  |  |  |
| O16-Ho1-O16      | 101.5(3)   | О13-Но2-О3  | 111.1(3)  | O1–Co2–O5   | 92.0(2)  |  |  |
| O15-Ho1-O4       | 68.09(19)  | О12-Но2-О4  | 75.8(2)   | O6–Co2–O5   | 176.5(2) |  |  |
| O15-Ho1-O4       | 79.18(19)  | O14-Ho2-O4  | 129.3(2)  | O3–Co2–O5   | 85.0(2)  |  |  |
| O16-Ho1-O4       | 137.27(18) | O7–Ho2–O4   | 75.7(2)   | O4–Co2–O5   | 83.7(2)  |  |  |
| O16-Ho1-O4       | 81.00(19)  | О15-Но2-О4  | 66.00(18) | O8–Co1–O15  | 97.1(3)  |  |  |
| O4–Ho1–O4        | 125.6(3)   | O9-Ho2-O4   | 133.8(2)  | O8–Co1–O3   | 95.9(3)  |  |  |
| O4-Ho1-O5        | 141.69(17) | О13-Но2-О4  | 144.0(2)  | O15-Co1-O3  | 84.1(2)  |  |  |
| O15-Ho1-O5       | 71.67(17)  | O3-Ho2-O4   | 66.03(17) | O8–Co1–O5   | 171.4(3) |  |  |
| O15-Ho1-O5       | 142.74(18) | О19-Но3-О19 | 95.7(5)   | O15-Co1-O5  | 83.0(2)  |  |  |
| O16-Ho1-O5       | 74.17(17)  | О19-Но3-О17 | 151.0(3)  | O3–Co1–O5   | 75.5(2)  |  |  |
| O16-Ho1-O5       | 77.09(17)  | О19-Но3-О17 | 87.8(3)   | O8–Co1–O10  | 86.9(3)  |  |  |
| O4–Ho1–O5        | 64.78(17)  | О17-Но3-О17 | 103.0(5)  | O15-Co1-O10 | 161.9(2) |  |  |
| O4-Ho1-O5        | 141.69(17) | О19-Но3-О21 | 79.0(3)   | O3–Co1–O10  | 113.2(2) |  |  |
| O15-Ho1-O5       | 142.74(17) | О19-Но3-О21 | 76.5(3)   | O5–Co1–O10  | 95.7(2)  |  |  |
| O5–Ho1–O5        | 133.8(2)   | О17-Но3-О21 | 129.6(3)  | O8–Co1–O11  | 89.9(3)  |  |  |
| 012-Но2-О14      | 76.8(3)    | О17-Но3-О21 | 75.9(3)   | O15-Co1-O11 | 101.4(2) |  |  |
| 012-Но2-О7       | 81.1(2)    | O21-Ho3-O21 | 143.1(4)  | O3–Co1–O11  | 171.5(2) |  |  |
| O14-Ho2-O7       | 139.3(2)   | О19-Но3-О18 | 82.2(3)   | O5-C01-O11  | 98.5(2)  |  |  |
| 012-Но2-О15      | 106.8(2)   | О19-Но3-О18 | 155.1(3)  | O10-Co1-O11 | 60.8(2)  |  |  |
| 014-Но2-О15      | 82.7(2)    | О17-Но3-О18 | 82.7(3)   | Со2–О4–Но1  | 107.1(2) |  |  |
| О7-Но2-О15       | 136.9(2)   | О17-Но3-О18 | 53.9(3)   | Со2–О4–Но2  | 101.0(2) |  |  |
| 012-Но2-О9       | 148.5(2)   | O21-Ho3-O18 | 126.8(3)  | Но1–О4–Но2  | 107.7(2) |  |  |
| O14-Ho2-O9       | 74.7(3)    | O21–Ho3–O18 | 76.4(3)   | Co1O15Ho1   | 103.4(2) |  |  |
| О7-Но2-О9        | 113.1(2)   | O18–Ho3–O18 | 109.8(5)  | Со1О15Но2   | 100.0(2) |  |  |
| О15-Но2-О9       | 82.4(2)    | N1-Co2-O1   | 94.6(3)   | Но1О15Но2   | 112.2(2) |  |  |
| 012-Но2-О13      | 90.4(3)    | N1-Co2-O6   | 86.2(3)   | Co2–O3–Co1  | 100.9(2) |  |  |
| O14-Ho2-O13      | 77.1(3)    | O1–Co2–O6   | 87.2(3)   | Со2О3Но2    | 102.5(2) |  |  |

| О7-Но2-О13  | 69.3(3)  | N1-Co2-O3   | 86.2(3)  | Со1–О3–Но2  | 97.4(2)   |
|-------------|----------|-------------|----------|-------------|-----------|
| О15-Но2-О13 | 149.6(3) | O1–Co2–O3   | 177.0(2) | Co2–O5–Co1  | 98.6(2)   |
| О9-Но2-О13  | 70.6(3)  | O6-Co2-O3   | 95.7(2)  | Со2О5Но1    | 102.5(2)  |
| 012-Но2-О3  | 138.6(2) | N1-Co2-O4   | 172.8(3) | Со1О5Но1    | 96.39(18) |
| O14-Ho2-O3  | 140.9(2) | O1–Co2–O4   | 92.5(2)  |             |           |
|             |          | Comp        | olex 4   | 1           |           |
| O18–Tb1–O2  | 66.3(3)  | O33–Tb3–O32 | 118.8(4) | O11-Co5-O21 | 91.9(4)   |
| O18–Tb1–O36 | 115.4(3) | O33–Tb3–O1W | 131.6(4) | O11-Co5-O10 | 95.9(4)   |
| O19–Tb1–O18 | 68.6(3)  | O31–Tb3–O34 | 140.5(4) | O9–Co5–O21  | 89.8(4)   |
| O19–Tb1–O2  | 72.8(3)  | O31–Tb3–O27 | 87.0(4)  | O9–Co5–O10  | 173.9(4)  |
| O19–Tb1–O36 | 76.3(3)  | O31–Tb3–O23 | 86.9(4)  | O9–Co5–O20  | 91.6(4)   |
| O19–Tb1–O4  | 137.3(3) | O31–Tb3–O1W | 123.2(5) | O9–Co5–O11  | 90.0(4)   |
| O19–Tb1–O29 | 142.9(3) | O23–Tb3–O27 | 143.6(4) | N2-Co5-O21  | 174.2(4)  |
| O2–Tb1–O36  | 145.6(3) | O32–Tb3–O34 | 131.3(4) | N2-Co5-O10  | 86.2(4)   |
| O4–Tb1–O18  | 75.0(3)  | O32–Tb3–O27 | 74.6(4)  | N2-Co5-O20  | 95.4(4)   |
| O4–Tb1–O2   | 72.6(3)  | O32–Tb3–O31 | 52.3(4)  | N2-Co5-O11  | 86.8(4)   |
| O4–Tb1–O36  | 141.8(3) | O32–Tb3–O23 | 73.4(4)  | N2-Co5-O9   | 95.8(4)   |
| O4–Tb1–O29  | 79.4(4)  | O32–Tb3–O1W | 70.8(5)  | O24–Co6–O34 | 90.5(4)   |
| O5–Tb1–O18  | 135.3(3) | O1W-Tb3-O27 | 79.2(4)  | O24–Co6–O33 | 90.4(5)   |
| O5–Tb1–O19  | 80.0(3)  | O1W-Tb3-O23 | 74.4(5)  | O24–Co6–O23 | 177.1(5)  |
| O5–Tb1–O2   | 74.7(3)  | O17-Co1-O2  | 70.6(3)  | O24–Co6–O26 | 93.8(5)   |
| O5–Tb1–O36  | 85.5(3)  | O17–Co1–O8  | 96.5(4)  | O34–Co6–O33 | 82.9(5)   |
| O5–Tb1–O4   | 113.6(4) | O17–Co1–O7  | 91.0(4)  | O34–Co6–O23 | 88.4(5)   |
| O5–Tb1–O29  | 78.8(4)  | O19–Co1–O17 | 83.0(3)  | O33–Co6–O23 | 86.8(5)   |
| O28–Tb1–O18 | 74.2(3)  | O19–Co1–O2  | 83.4(3)  | O26–Co6–O34 | 94.1(5)   |
| O28–Tb1–O19 | 107.0(3) | O19–Co1–O8  | 98.8(4)  | O26–Co6–O33 | 174.8(6)  |
| O28–Tb1–O2  | 137.5(3) | O19–Co1–O7  | 157.3(4) | O26-Co6-O23 | 88.9(6)   |
| O28–Tb1–O36 | 66.6(3)  | O6-Co1-O17  | 157.1(4) | N3-Co6-O24  | 85.4(6)   |
| O28–Tb1–O4  | 83.0(3)  | O6-Co1-O19  | 102.3(4) | N3-Co6-O34  | 175.7(6)  |
| O28–Tb1–O5  | 147.8(3) | O6–Co1–O2   | 87.7(4)  | N3-Co6-O33  | 95.8(6)   |
| O28-Tb1-O29 | 77.5(4)  | O6–Co1–O8   | 104.5(4) | N3-Co6-O23  | 95.6(6)   |

| O29–Tb1–O18 | 143.7(3) | O6–Co1–O7   | 91.7(4)  | N3-Co6-O26  | 87.5(6)  |
|-------------|----------|-------------|----------|-------------|----------|
| O29–Tb1–O2  | 128.9(3) | O8–Co1–O2   | 166.7(4) | O35–Co7–O36 | 81.8(4)  |
| O29–Tb1–O36 | 72.0(3)  | O8–Co1–O7   | 60.0(4)  | O28–Co7–O36 | 87.8(4)  |
| O21–Tb2–O34 | 117.6(3) | O7–Co1–O2   | 115.3(3) | O28–Co7–O35 | 91.0(4)  |
| O22–Tb2–O21 | 68.3(3)  | O17–Co2–O18 | 85.1(4)  | O28–Co7–O30 | 93.6(5)  |
| O22–Tb2–O10 | 73.6(3)  | O17–Co2–O2  | 81.8(4)  | O28–Co7–O27 | 177.2(5) |
| O22–Tb2–O34 | 77.4(3)  | O17–Co2–O3  | 176.7(4) | O30–Co7–O36 | 93.7(5)  |
| O22–Tb2–O25 | 143.1(4) | O2–Co2–O18  | 88.0(3)  | O30–Co7–O35 | 173.4(5) |
| O10-Tb2-O21 | 67.6(3)  | O2–Co2–O3   | 95.9(4)  | O30–Co7–O27 | 88.8(5)  |
| O10-Tb2-O34 | 145.6(3) | O1–Co2–O17  | 92.4(4)  | O27–Co7–O36 | 90.5(5)  |
| O24–Tb2–O21 | 76.3(3)  | O1–Co2–O18  | 90.2(4)  | O27–Co7–O35 | 86.4(5)  |
| O24–Tb2–O22 | 109.1(3) | O1–Co2–O2   | 174.1(4) | N4Co7O36    | 173.5(5) |
| O24–Tb2–O10 | 139.8(3) | O1–Co2–O3   | 89.9(4)  | N4Co7O35    | 94.8(6)  |
| O24–Tb2–O34 | 67.9(3)  | O3–Co2–O18  | 92.6(4)  | N4Co7O28    | 86.6(5)  |
| O24–Tb2–O12 | 80.6(4)  | N1-Co2-O17  | 94.6(4)  | N4-Co7-O30  | 90.2(6)  |
| O24–Tb2–O13 | 144.9(4) | N1-Co2-O18  | 174.1(4) | N4-Co7-O27  | 94.8(6)  |
| O24–Tb2–O25 | 78.1(4)  | N1-Co2-O2   | 86.1(4)  | Co2–O2–Tb1  | 101.1(3) |
| O12–Tb2–O21 | 75.8(3)  | N1-Co2-O1   | 95.7(4)  | Co2–O2–Co1  | 100.9(3) |
| O12–Tb2–O22 | 138.6(3) | N1-Co2-O3   | 87.5(4)  | Co1–O2–Tb1  | 94.6(3)  |
| O12–Tb2–O10 | 74.2(3)  | O21–Co3–O22 | 82.5(4)  | Со2–О17–Со3 | 96.7(4)  |
| O12–Tb2–O34 | 139.8(4) | O21–Co3–O17 | 94.4(3)  | Co2–O17–Co1 | 106.7(4) |
| O12–Tb2–O25 | 77.7(4)  | O21-Co3-O19 | 104.4(4) | Co1O17Co3   | 94.3(3)  |
| O13-Tb2-O21 | 136.6(3) | O21–Co3–O20 | 78.6(3)  | Co3–O18–Tb1 | 102.9(3) |
| O13–Tb2–O22 | 80.9(3)  | O22–Co3–O17 | 174.9(3) | Co2–O18–Tb1 | 102.1(3) |
| O13-Tb2-O10 | 75.0(3)  | O22–Co3–O19 | 102.1(3) | Co2–O18–Co3 | 98.8(4)  |
| O13-Tb2-O34 | 82.5(3)  | O22–Co3–O20 | 83.1(3)  | Co3–O19–Tb1 | 103.9(4) |
| O13-Tb2-O12 | 114.6(4) | O18-Co3-O21 | 169.0(4) | Co1–O19–Tb1 | 103.1(4) |
| O13-Tb2-O25 | 75.1(4)  | O18–Co3–O22 | 104.6(4) | Co1O19Co3   | 96.6(4)  |
| O25–Tb2–O21 | 145.6(4) | O18–Co3–O17 | 77.9(3)  | Co5–O10–Tb2 | 101.2(3) |
| O25–Tb2–O10 | 124.7(3) | O18-Co3-O19 | 82.5(4)  | Co5O10Co4   | 100.3(4) |
| O25–Tb2–O34 | 72.0(4)  | O18-Co3-O20 | 93.8(3)  | Co4010Tb2   | 94.7(3)  |

| O36–Tb3–O34 | 116.4(3) | O19–Co3–O17 | 82.5(3)  | Со3-О20-Со4 | 93.5(4)  |
|-------------|----------|-------------|----------|-------------|----------|
| O36–Tb3–O27 | 66.7(3)  | O19–Co3–O20 | 174.2(3) | Со5-О20-Со3 | 96.5(4)  |
| O36-Tb3-O31 | 71.1(4)  | O20–Co3–O17 | 92.4(3)  | Со5-О20-Со4 | 106.5(4) |
| O36–Tb3–O23 | 142.9(4) | O22–Co4–O10 | 83.0(3)  | Co3–O21–Tb2 | 102.9(4) |
| O36–Tb3–O32 | 111.6(4) | O22–Co4–O20 | 82.7(3)  | Co5–O21–Tb2 | 100.5(4) |
| O36–Tb3–O1W | 142.7(4) | O22–Co4–O15 | 159.0(4) | Co5–O21–Co3 | 97.8(4)  |
| O35–Tb3–O36 | 63.2(3)  | O22–Co4–O16 | 100.3(4) | Co3–O22–Tb2 | 104.8(4) |
| O35–Tb3–O34 | 75.6(3)  | O20-Co4-O10 | 70.6(3)  | Co3–O22–Co4 | 96.9(4)  |
| O35–Tb3–O27 | 63.9(4)  | O20-Co4-O15 | 90.3(4)  | Co4–O22–Tb2 | 102.2(4) |
| O35–Tb3–O31 | 132.4(4) | O15-Co4-O10 | 113.3(4) | Co6–O23–Tb3 | 87.9(4)  |
| O35–Tb3–O23 | 138.8(4) | O14-Co4-O22 | 101.1(4) | Co6–O24–Tb2 | 103.8(5) |
| O35–Tb3–O32 | 136.6(4) | O14-Co4-O10 | 91.2(4)  | Co7–O27–Tb3 | 87.6(4)  |
| O35–Tb3–O1W | 89.1(4)  | O14Co4O20   | 161.0(4) | Co7–O28–Tb1 | 107.0(4) |
| O34–Tb3–O27 | 132.3(4) | O14-Co4-O15 | 92.0(4)  | Co6–O33–Tb3 | 94.2(5)  |
| O34–Tb3–O23 | 63.9(4)  | O14-Co4-O16 | 101.8(4) | Tb3–O34–Tb2 | 143.3(5) |
| O34–Tb3–O1W | 76.0(4)  | O16Co4O10   | 165.6(4) | Co6–O34–Tb2 | 95.7(4)  |
| O33–Tb3–O36 | 81.5(4)  | O16Co4O20   | 95.8(4)  | Co6–O34–Tb3 | 88.6(4)  |
| O33–Tb3–O35 | 103.4(4) | O16Co4O15   | 60.6(4)  | Co7–O35–Tb3 | 91.5(4)  |
| O33–Tb3–O34 | 62.9(3)  | O10-Co5-O21 | 88.3(4)  | Tb3–O36–Tb1 | 147.8(4) |
| O33–Tb3–O27 | 148.1(4) | O20-Co5-O21 | 85.7(4)  | Co7–O36–Tb1 | 96.0(4)  |
| O33–Tb3–O31 | 81.4(4)  | O20-Co5-O10 | 82.5(4)  | Co7–O36–Tb3 | 90.2(4)  |
| O33–Tb3–O23 | 65.5(4)  | O20-Co5-O11 | 177.1(4) |             |          |
|             |          | Com         | olex 5   |             |          |
| O16-Dy1-O2  | 66.4(3)  | O11–Dy2–O19 | 138.0(7) | O16–Co3–O17 | 103.2(4) |
| O16-Dy1-O18 | 116.5(3) | O11–Dy2–O19 | 96.1(7)  | O16–Co3–O17 | 83.5(4)  |
| O17–Dy1–O16 | 66.8(3)  | O11–Dy2–O3  | 80.2(7)  | O17–Co3–O15 | 84.3(4)  |
| O17–Dy1–O2  | 71.9(3)  | O11-Dy2-O3  | 76.4(7)  | O17–Co3–O15 | 175.4(4) |
| O17–Dy1–O18 | 76.8(4)  | O11–Dy2–O11 | 94.6(14) | O17–Co3–O17 | 99.6(6)  |
| O4–Dy1–O16  | 74.2(4)  | O15-Co1-O2  | 70.9(3)  | O4-Co4-O18  | 89.7(5)  |
| O4–Dy1–O2   | 137.4(4) | O15-Co1-O13 | 90.1(4)  | O4-Co4-O19  | 91.4(5)  |
| O4–Dy1–O17  | 107.3(4) | O2–Co1–O13  | 113.9(4) | O19–Co4–O18 | 82.9(5)  |

| O4–Dy1–O8   | 82.0(4)  | O5-Co1-O15  | 160.1(4) | O10-Co4-O4  | 93.4(5)  |
|-------------|----------|-------------|----------|-------------|----------|
| O4–Dy1–O18  | 69.4(4)  | O5–Co1–O2   | 90.0(4)  | O10-Co4-O18 | 94.3(5)  |
| O4-Dy1-O6   | 148.5(4) | O5–Co1–O14  | 105.3(5) | O10-Co4-O19 | 174.5(6) |
| O4-Dy1-O9   | 77.7(4)  | O5–Co1–O17  | 102.6(4) | O10-Co4-O3  | 88.9(6)  |
| O8–Dy1–O16  | 75.2(4)  | O5-Co1-O13  | 92.8(4)  | O3–Co4–O4   | 177.2(6) |
| O8–Dy1–O2   | 72.9(4)  | O14Co1O15   | 93.2(4)  | O3–Co4–O18  | 88.5(6)  |
| O8–Dy1–O17  | 135.8(4) | O14Co1O2    | 163.5(4) | O3–Co4–O19  | 86.3(6)  |
| O8–Dy1–O18  | 143.1(4) | O14Co1O13   | 60.1(4)  | N2-Co4-O4   | 86.4(7)  |
| O8–Dy1–O9   | 78.2(4)  | O17–Co1–O15 | 81.2(4)  | N2-Co4-O18  | 175.0(7) |
| O18–Dy1–O2  | 143.8(4) | O17–Co1–O2  | 83.4(4)  | N2-Co4-O19  | 93.9(6)  |
| O6-Dy1-O16  | 134.6(4) | O17–Co1–O14 | 99.0(4)  | N2-Co4-O10  | 89.1(7)  |
| O6–Dy1–O2   | 74.1(4)  | O17–Co1–O13 | 157.1(4) | N2-Co4-O3   | 95.3(7)  |
| O6-Dy1-O17  | 80.5(4)  | O1–Co2–O15  | 91.5(4)  | Co2–O2–Dy1  | 101.4(4) |
| O6-Dy1-O8   | 114.1(4) | O1–Co2–O16  | 90.3(4)  | Co2O2Co1    | 101.5(4) |
| O6-Dy1-O18  | 83.4(4)  | O1–Co2–O2   | 173.4(4) | Co1–O2–Dy1  | 95.4(3)  |
| O6-Dy1-O9   | 79.5(4)  | O1–Co2–O7   | 89.7(4)  | Co3O15Co1   | 94.0(4)  |
| O9–Dy1–O16  | 143.5(4) | O15-Co2-O16 | 83.4(4)  | Co2O15Co3   | 97.4(4)  |
| O9–Dy1–O2   | 127.7(4) | O15-Co2-O2  | 82.0(4)  | Co2O15Co1   | 105.6(4) |
| O9–Dy1–O17  | 145.6(4) | O15-Co2-O7  | 176.1(5) | Co3O16Dy1   | 103.6(4) |
| O9–Dy1–O18  | 73.4(4)  | O2–Co2–O16  | 87.4(4)  | Co2O16Dy1   | 101.5(4) |
| O18–Dy2–O18 | 114.1(5) | O2–Co2–O7   | 96.6(4)  | Co2O16Co3   | 98.3(4)  |
| O19–Dy2–O18 | 63.5(4)  | O7–Co2–O16  | 92.9(4)  | Co3O17Dy1   | 104.4(5) |
| O19–Dy2–O18 | 76.4(4)  | N1-Co2-O1   | 95.7(5)  | Co3017Co1   | 97.3(4)  |
| O19–Dy2–O19 | 102.6(6) | N1-Co2-O15  | 95.3(5)  | Co1–O17–Dy1 | 102.4(4) |
| O19–Dy2–O3  | 141.8(4) | N1-Co2-O16  | 173.9(5) | Co4–O3–Dy2  | 89.4(6)  |
| O19–Dy2–O3  | 65.7(5)  | N1-Co2-O2   | 86.5(5)  | Co4–O4–Dy1  | 102.1(5) |
| O3–Dy2–O18  | 137.4(4) | N1-Co2-O7   | 88.2(5)  | Dy1-O18-Dy2 | 147.3(5) |
| O3–Dy2–O18  | 65.8(4)  | O15-Co3-O15 | 91.9(5)  | Co4O18Dy1   | 96.5(5)  |
| O3–Dy2–O3   | 145.2(7) | O16-Co3-O15 | 79.6(4)  | Co4O18Dy2   | 87.9(4)  |
| O11–Dy2–O18 | 145.0(7) | O16-Co3-O15 | 93.2(4)  | Co4O19Dy2   | 91.9(5)  |
| O11-Dy2-O18 | 85.3(7)  | O16-Co3-O16 | 169.7(6) |             |          |

| Complex 6   |          |             |           |             |          |  |  |
|-------------|----------|-------------|-----------|-------------|----------|--|--|
| O16-Ho1-O2  | 66.4(3)  | O11-Ho2-O18 | 145.0(5)  | O16–Co3–O17 | 83.9(3)  |  |  |
| O17-Ho1-O16 | 66.1(3)  | O11-Ho2-O18 | 82.0(6)   | O15-Co3-O15 | 92.0(5)  |  |  |
| O17-Ho1-O2  | 72.1(3)  | О11-Но2-О3  | 77.3(6)   | O17–Co3–O15 | 175.8(3) |  |  |
| O17-Ho1-O18 | 76.5(3)  | О11-Но2-О3  | 80.7(5)   | O17–Co3–O15 | 85.0(3)  |  |  |
| O4-Ho1-O16  | 74.5(3)  | О11-Но2-О11 | 103.0(11) | O17–Co3–O17 | 98.1(5)  |  |  |
| O4-Ho1-O2   | 137.5(3) | O15-Co1-O2  | 70.9(3)   | O4–Co4–O19  | 90.9(4)  |  |  |
| O4–Ho1–O17  | 106.9(3) | O15-Co1-O13 | 90.6(4)   | O4–Co4–O10  | 93.0(4)  |  |  |
| O4-Ho1-O9   | 78.5(3)  | O2Co1O13    | 113.6(3)  | O4–Co4–O18  | 89.4(4)  |  |  |
| O4-Ho1-O6   | 82.4(4)  | O17-Co1-O15 | 79.7(3)   | O4–Co4–O3   | 177.3(5) |  |  |
| O4–Ho1–O18  | 69.9(3)  | O17-Co1-O2  | 83.1(3)   | O19–Co4–O10 | 175.6(5) |  |  |
| O4–Ho1–O8   | 148.3(4) | O17–Co1–O14 | 99.2(4)   | O19–Co4–O18 | 83.1(4)  |  |  |
| O9–Ho1–O16  | 143.7(3) | O17–Co1–O13 | 157.0(4)  | O10Co4O18   | 94.9(4)  |  |  |
| O9–Ho1–O2   | 126.3(3) | O7–Co1–O15  | 160.1(4)  | O3–Co4–O19  | 87.0(5)  |  |  |
| O9–Ho1–O17  | 146.8(4) | O7–Co1–O2   | 89.8(4)   | O3–Co4–O10  | 89.0(5)  |  |  |
| O9–Ho1–O18  | 74.8(3)  | O7–Co1–O17  | 103.6(4)  | O3–Co4–O18  | 88.7(5)  |  |  |
| O6-Ho1-O16  | 75.7(3)  | O7–Co1–O14  | 106.0(4)  | N2-Co4-O4   | 87.2(5)  |  |  |
| O6–Ho1–O2   | 72.6(3)  | O7–Co1–O13  | 92.6(4)   | N2-Co4-O19  | 94.0(5)  |  |  |
| O6-Ho1-O17  | 135.7(3) | O14Co1O15   | 92.6(4)   | N2-Co4-O10  | 88.2(5)  |  |  |
| O6–Ho1–O9   | 77.1(4)  | O14Co1O2    | 162.8(4)  | N2-Co4-O18  | 175.5(5) |  |  |
| O6–Ho1–O18  | 143.7(3) | O14-Co1-O13 | 60.1(4)   | N2-Co4-O3   | 94.6(6)  |  |  |
| O18-Ho1-O16 | 116.6(3) | O15-Co2-O16 | 82.4(4)   | Со2-О2-Но1  | 101.1(3) |  |  |
| O18-Ho1-O2  | 143.5(3) | O15-Co2-O2  | 82.1(4)   | Co2–O2–Co1  | 101.5(3) |  |  |
| O8–Ho1–O16  | 134.4(3) | O2–Co2–O16  | 87.5(3)   | Co1–O2–Ho1  | 95.3(3)  |  |  |
| O8–Ho1–O2   | 74.2(3)  | O1–Co2–O16  | 90.9(4)   | Co3O15Co1   | 94.9(4)  |  |  |
| O8–Ho1–O17  | 80.9(3)  | O1–Co2–O15  | 91.8(4)   | Co2–O15–Co3 | 97.6(4)  |  |  |
| O8–Ho1–O9   | 79.2(4)  | O1–Co2–O2   | 173.8(4)  | Co2015Co1   | 105.6(4) |  |  |
| O8–Ho1–O6   | 113.9(4) | O1–Co2–O5   | 89.9(4)   | Со3016Но1   | 103.8(4) |  |  |
| O8–Ho1–O18  | 82.8(4)  | O5-Co2-O16  | 93.7(4)   | Co2O16Ho1   | 101.6(3) |  |  |
| О19-Но2-О19 | 102.4(5) | O5-Co2-O15  | 175.7(4)  | Co2–O16–Co3 | 98.6(4)  |  |  |
| O19-Ho2-O18 | 75.9(3)  | O5–Co2–O2   | 96.3(4)   | Со3О17Но1   | 104.7(4) |  |  |

| O19-Ho2-O18 | 63.9(3)  | N1-Co2-O16  | 173.6(4) | Co3O17Co1 | 97.3(4)  |
|-------------|----------|-------------|----------|-----------|----------|
| О19-Но2-О3  | 66.2(4)  | N1-Co2-O15  | 95.9(4)  | Со1017Но1 | 102.1(3) |
| О19-Но2-О3  | 141.9(4) | N1-Co2-O2   | 86.1(4)  | Со4О3Но2  | 88.8(4)  |
| O18-Ho2-O18 | 113.8(4) | N1-Co2-O1   | 95.4(4)  | Со4О4Но1  | 102.2(4) |
| O3-Ho2-O18  | 66.4(3)  | N1-Co2-O5   | 87.9(4)  | Но1О18Но2 | 147.5(4) |
| O3-Ho2-O18  | 137.2(4) | O16-Co3-O16 | 169.8(5) | Co4018Ho1 | 96.2(4)  |
| O3-Ho2-O3   | 144.4(6) | O16-Co3-O15 | 92.7(3)  | Со4018Но2 | 87.5(3)  |
| O11-Ho2-O19 | 137.3(5) | O16–Co3–O15 | 80.2(3)  | Со4019Но2 | 91.2(4)  |
| О11-Но2-О19 | 92.6(6)  | O16-Co3-O17 | 102.9(4) |           |          |

 Table S2. Suggested central atom valencies from BVS calculations in 1–6 [Metal atom, valency, (BVS discrepancy)]

| Complex 1        | Tb1<br>Co1               | +3 (0.037)<br>+2 (0.014)                             | Tb2<br>Co2        | +3 (0.089)<br>+3 (0.053)               | Tb3               | +3 (0.273)                             |
|------------------|--------------------------|------------------------------------------------------|-------------------|----------------------------------------|-------------------|----------------------------------------|
| Complex <b>3</b> | Ho1<br>Co1               | +3 (0.212)<br>+2 (0.016)                             | Ho2<br>Co2        | +3 (0.244)<br>+3 (0.072)               | Ho3               | +3 (0.353)                             |
| Complex 4        | Tb1<br>Co1<br>Co4<br>Co7 | +3 (0.184)<br>+2 (0.076)<br>+2 (0.057)<br>+3 (0.294) | Tb2<br>Co2<br>Co5 | +3 (0.266)<br>+3 (0.114)<br>+3 (0.161) | Tb3<br>Co3<br>Co6 | +3 (0.673)<br>+2 (0.286)<br>+3 (0.270) |
| Complex 5        | Dy1<br>Co1<br>Co4        | +3 (0.007)<br>+2 (0.060)<br>+3 (0.279)               | Dy2<br>Co2        | +3 (0.073)<br>+3 (0.114)               | Co3               | +2 (0.665)                             |
| Complex 6        | Ho1<br>Co1<br>Co4        | +3 (0.271)<br>+2 (0.109)<br>+3 (0.242)               | Ho2<br>Co2        | +3 (0.319)<br>+3 (0.126)               | Co3<br>Co3        | +3 (0.515)<br>+3 (0.515)               |

Table S3. Continuous Shape Measures calculation for Co<sup>II/III</sup> in 1–6. Pink: Co<sup>II</sup>, Brown: Co<sup>III</sup>.

S H A P E v2.1 Continuous Shape Measures calculation (c) 2013 Electronic Structure Group, Universitat de Barcelona Contact: llunell@ub.edu [ML<sub>6</sub>] HP-6 1 D6h Hexagon

PPY-6 2 C5v Pentagonal pyramid OC-6 3 Oh Octahedron TPR-6 4 D3h Trigonal prism

JPPY-6 5 C5v Johnson pentagonal pyramid J2

| Complex | Structure [ML <sub>6</sub> ] | HP-6   | PPY-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OC-6         | TPR-6  | JPPY-6 |
|---------|------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------|--------|
| 1       | Col                          | 27.582 | 22.992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>2.897</u> | 13.403 | 26.284 |
| I       | Co2                          | 29.847 | 26.511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>0.312</u> | 14.078 | 29.983 |
| 3       | Col                          | 27.619 | 23.101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>2.978</u> | 13.185 | 26.358 |
| 3       | Co2                          | 29.748 | 26.428                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>0.345</u> | 13.929 | 29.861 |
|         | Col                          | 28.239 | 20.655                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>4.371</u> | 11.725 | 23.78  |
|         | Co2                          | 29.85  | 27.029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>0.274</u> | 14.887 | 30.442 |
|         | Co3                          | 29.644 | 28.162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>1.233</u> | 13.282 | 31.3   |
| 4       | Co4                          | 28.71  | 21.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>3.854</u> | 12.279 | 24.871 |
|         | Co5                          | 29.811 | 26.653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>0.286</u> | 14.711 | 30.11  |
|         | Co6                          | 30.463 | 27.427                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>0.305</u> | 15.078 | 30.774 |
|         | Co7                          | 31.428 | 27.582       22.992       2.8         29.847       26.511 <b>0.3</b> 27.619       23.101       2.9         29.748       26.428 <b>0.3</b> 28.239       20.655 <b>4.3</b> 29.85       27.029 <b>0.2</b> 29.644       28.162 <b>1.2</b> 28.71       21.75 <b>3.8</b> 29.811       26.653 <b>0.2</b> 30.463       27.427 <b>0.3</b> 31.428       27.43 <b>0.2</b> 29.577       26.799 <b>0.3</b> 29.472       27.436 <b>0.9</b> 31.055       27.894 <b>0.2</b> 27.578       20.935 <b>4.1</b> 29.364       26.979 <b>0.3</b> 29.372       27.453 <b>0.9</b> | <u>0.281</u> | 14.906 | 31.191 |
|         | Co1                          | 27.759 | 21.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>4.123</u> | 12.418 | 24.066 |
| -       | Co2                          | 29.577 | 26.799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>0.329</u> | 14.497 | 30.161 |
| 3       | Co3                          | 29.472 | 27.436                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>0.992</u> | 12.939 | 30.658 |
|         | Co4                          | 31.055 | 27.894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>0.205</u> | 14.784 | 31.208 |
|         | Col                          | 27.578 | 20.935                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>4.154</u> | 12.52  | 23.964 |
|         | Co2                          | 29.364 | 26.979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.338        | 14.612 | 30.301 |
| 0       | Co3                          | 29.372 | 27.453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.946        | 12.906 | 30.62  |
|         | Co4                          | 31.037 | 28.061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.216        | 14.995 | 31.495 |

# **Table S4.** Continuous Shape Measures calculation for $Ln^{III}$ in 1–6

|                    | SHAPE v2.1 Con                                               | Measures calculation |                                              |  |  |  |  |  |
|--------------------|--------------------------------------------------------------|----------------------|----------------------------------------------|--|--|--|--|--|
|                    | (c) 2013 Electronic Structure Group Universitat de Barcelona |                      |                                              |  |  |  |  |  |
|                    | Contact                                                      | 1u                   |                                              |  |  |  |  |  |
|                    |                                                              |                      |                                              |  |  |  |  |  |
| [ML <sub>9</sub> ] |                                                              | $[ML_8]$             |                                              |  |  |  |  |  |
| EP-9               | 1 D9h Enneagon                                               | OP-8                 | 1 D8h Octagon                                |  |  |  |  |  |
| OPY-9              | 2 C8v Octagonal pyramid                                      | HPY-8                | 2 C7v Heptagonal pyramid                     |  |  |  |  |  |
| HBPY-9             | 3 D7h Heptagonal bipyramid                                   | HBPY-8               | 3 D6h Hexagonal bipyramid                    |  |  |  |  |  |
| JTC-9              | 4 C3v Johnson triangular cupola J3                           | CU-8                 | 4 Oh Cube                                    |  |  |  |  |  |
| JCCU-9             | 5 C4v Capped cube J8                                         | SAPR-8               | 5 D4d Square antiprism                       |  |  |  |  |  |
| CCU-9              | 6 C4v Spherical-relaxed capped cube                          | TDD-8                | 6 D2d Triangular dodecahedron                |  |  |  |  |  |
| JCSAPR-9           | 7 C4v Capped square antiprism J10                            | JGBF-8               | 7 D2d Johnson gyrobifastigium J26            |  |  |  |  |  |
| CSAPR-9            | 8 C4v Spherical capped square antiprism                      | JETBPY-8             | 8 D3h Johnson elongated triangular bipyramid |  |  |  |  |  |
| JTCTPR-9           | 9 D3h Tricapped trigonal prism J51                           | JBTPR-8              | 9 C2v Biaugmented trigonal prism J50         |  |  |  |  |  |
| TCTPR-9            | 10 D3h Spherical tricapped trigonal prism                    | BTPR-8               | 10 C2v Biaugmented trigonal prism            |  |  |  |  |  |
| JTDIC-9            | 11 C3v Tridiminished icosahedron J63                         | JSD-8                | 11 D2d Snub diphenoid J84                    |  |  |  |  |  |
| HH-9               | 12 C2v Hula-hoop                                             | TT-8                 | 12 Td Triakis tetrahedron                    |  |  |  |  |  |
| MFF-9              | 13 Cs Muffin                                                 | ETBPY-8              | 13 D3h Elongated trigonal bipyramid          |  |  |  |  |  |

| Complex                      |              | 1            |              |              | 3            |              |              | 4            | 4            | 5            |              | 6            |                              | 4      |
|------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|------------------------------|--------|
| Structure [ML <sub>8</sub> ] | Tb1          | Tb2          | Tb3          | Ho1          | Ho2          | Ho3          | Tb1          | Tb2          | Dy1          | Dy2          | Ho1          | Ho2          | Structure [ML <sub>9</sub> ] | Tb3    |
| OP-8                         | 28.329       | 29.052       | 33.02        | 28.856       | 29.169       | 33.18        | 28.192       | 27.818       | 28.035       | 29.726       | 28.31        | 29.814       | EP-9                         | 33.048 |
| HPY-8                        | 22.408       | 22.638       | 22.995       | 22.343       | 22.417       | 22.928       | 22.737       | 22.705       | 22.763       | 22.283       | 22.404       | 22.257       | OPY-9                        | 22.720 |
| HBPY-8                       | 16.146       | 16.741       | 17.138       | 15.866       | 16.699       | 17.181       | 15.801       | 16.205       | 16.28        | 15.719       | 16.105       | 15.902       | HBPY-9                       | 18.246 |
| CU-8                         | 12.015       | 10.77        | 11.93        | 12.101       | 10.604       | 11.965       | 10.096       | 10.102       | 10.383       | 11.121       | 10.373       | 10.669       | JTC-9                        | 16.700 |
| SAPR-8                       | 1.622        | <u>0.915</u> | 3.759        | 1.702        | <u>0.936</u> | 3.656        | <u>0.666</u> | <u>0.416</u> | <u>0.536</u> | 3.248        | <u>0.518</u> | 2.346        | JCCU-9                       | 10.811 |
| TDD-8                        | <u>1.075</u> | 1.947        | <u>2.272</u> | <u>1.097</u> | 1.841        | <u>2.272</u> | 2.241        | 2.289        | 2.031        | <u>1.401</u> | 2.005        | <u>1.161</u> | CCU-9                        | 9.213  |

| JGBF-8   | 13.586 | 14.962 | 14.711 | 13.369 | 15.031 | 14.668 | 13.999 | 14.59  | 14.639 | 14.846 | 14.856 | 14.772 | JCSAPR-9 | 3.066        |
|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------|--------------|
| JETBPY-8 | 27.428 | 27.712 | 28.175 | 27.591 | 27.840 | 28.468 | 26.606 | 27.092 | 27.326 | 25.546 | 27.212 | 27.478 | CSAPR-9  | 1.796        |
| JBTPR-8  | 2.007  | 2.130  | 3.327  | 1.944  | 2.160  | 3.310  | 2.197  | 2.101  | 2.183  | 2.185  | 2.162  | 2.167  | JTCTPR-9 | 3.910        |
| BTPR-8   | 1.929  | 1.756  | 3.044  | 1.862  | 1.780  | 3.021  | 1.834  | 1.818  | 1.685  | 1.947  | 1.663  | 2.000  | TCTPR-9  | 2.536        |
| JSD-8    | 2.606  | 4.341  | 4.507  | 2.549  | 4.351  | 4.501  | 3.745  | 3.944  | 3.757  | 2.987  | 3.720  | 2.827  | JTDIC-9  | 12.743       |
| TT-8     | 12.805 | 11.562 | 12.405 | 12.809 | 11.359 | 12.432 | 10.636 | 10.687 | 11.011 | 11.952 | 11.056 | 11.479 | НН-9     | 9.543        |
| ETBPY-8  | 23.936 | 23.562 | 25.146 | 24.014 | 23.676 | 25.215 | 23.167 | 22.891 | 23.37  | 22.589 | 23.592 | 23.759 | MFF-9    | <u>0.874</u> |

| Interactions | Type of H-bond | DH (Å)    | D…A (Å)   | H…A (Å)  | D–H…A (Å) |  |  |  |  |
|--------------|----------------|-----------|-----------|----------|-----------|--|--|--|--|
|              |                | Complex 1 |           |          |           |  |  |  |  |
| O4–H4…O22A   | Inter          | 0.98      | 2.999(15) | 2.06     | 159       |  |  |  |  |
| O15–H15…O22A | Inter          | 0.98      | 2.899(15) | 2.02     | 149       |  |  |  |  |
| O16–H16A…O11 | Intra          | 0.87      | 2.718(8)  | 1.93     | 149       |  |  |  |  |
| O16…O1       | Intra          | _         | 2.5726(1) | _        | _         |  |  |  |  |
| O13–H13D…O23 | Inter          | 0.80      | 2.758(14) | 2.03     | 150       |  |  |  |  |
| O23–H23…O20  | Inter          | 0.82      | 2.683(12) | 2.24     | 114       |  |  |  |  |
| O21–H21…O20  | Intra          | 0.93      | 2.613(11) | 1.92     | 130       |  |  |  |  |
|              |                | Complex 3 |           |          |           |  |  |  |  |
| O4–H4…O22A   | Inter          | 0.80(5)   | 3.004(16) | 2.23(6)  | 165(7)    |  |  |  |  |
| O15–H15…O22A | Inter          | 0.80(7)   | 2.899(15) | 2.17(6)  | 151(8)    |  |  |  |  |
| O16–H16A…O11 | Intra          | 0.89      | 2.704(8)  | 1.83     | 169       |  |  |  |  |
| O16–H16B…O1  | Intra          | 0.89      | 2.601(8)  | 1.75     | 159       |  |  |  |  |
| O13–H13B…O23 | Inter          | 0.91      | 2.759(17) | 2.04     | 136       |  |  |  |  |
| O23–H23…O20  | Inter          | 0.82      | 2.704(19) | 1.89     | 174       |  |  |  |  |
| O21–H21…O20  | Intra          | 0.85(7)   | 2.617(12) | 1.94(14) | 136(12)   |  |  |  |  |
|              |                | Complex 4 |           |          |           |  |  |  |  |
| O17–H17…O9   | Intra          | 0.81(13)  | 2.78(2)   | 2.02(13) | 156(15)   |  |  |  |  |
| O18–H18…O16  | Intra          | 0.80(6)   | 3.18(2)   | 2.53(6)  | 139(11)   |  |  |  |  |
| O19–H19…O33  | Intra          | 0.81(10)  | 2.97(2)   | 2.29(9)  | 142(13)   |  |  |  |  |
| O20–H20…O1   | Intra          | 0.80(6)   | 2.777(19) | 2.25(12) | 124(9)    |  |  |  |  |
| O21–H21…O8   | Intra          | 0.80(9)   | 3.200(18) | 2.58(8)  | 136(12)   |  |  |  |  |
| O22–H22…O35  | Intra          | 0.80(9)   | 2.79(2)   | 2.10(11) | 143(10)   |  |  |  |  |
| O34–H34…O1W  | Intra          | 0.81(9)   | 3.072(19) | 2.53(17) | 125(15)   |  |  |  |  |
| O36–H36…O31  | Intra          | 0.79(9)   | 2.831(17) | 2.32(9)  | 123(13)   |  |  |  |  |
| Complex 5    |                |           |           |          |           |  |  |  |  |
| O15–H15D…O1  | Intra          | 0.78(9)   | 2.743(16) | 2.09(10) | 142(9)    |  |  |  |  |
| O16–H16D…O14 | Intra          | 0.81(9)   | 3.072(16) | 2.48(7)  | 131(8)    |  |  |  |  |
| O17–H17D…O18 | Intra          | 0.80(10)  | 2.974(17) | 2.45(8)  | 124(8)    |  |  |  |  |

 Table S5. Hydrogen bonding parameters for 1, 3, 4, 5 and 6

| O17–H17D…O19 | Intra | 0.80(10)  | 2.81(2)   | 2.21(8)  | 132(11) |
|--------------|-------|-----------|-----------|----------|---------|
| O18–H18D…O11 | Intra | 0.81(7)   | 3.21(3)   | 2.57(9)  | 137(10) |
| O19–H19D…O12 | Intra | 0.80(4)   | 2.98(4)   | 2.32(6)  | 140(5)  |
|              |       | Complex 6 |           |          |         |
| O15-H15D…O1  | Intra | 0.80(7)   | 2.723(13) | 2.09(10) | 136(8)  |
| O16–H16D…O14 | Intra | 0.81(7)   | 3.054(14) | 2.42(6)  | 136(8)  |
| O17–H17D…O18 | Intra | 0.80(7)   | 2.953(14) | 2.39(6)  | 128(7)  |
| O17–H17D…O19 | Intra | 0.80(7)   | 2.779(15) | 2.13(7)  | 138(10) |
| O18–H18D…O11 | Intra | 0.81(8)   | 3.07(2)   | 2.59(8)  | 120(7)  |
| O19–H19D…O12 | Intra | 0.80(3)   | 3.02(3)   | 2.33(5)  | 144(5)  |

### References

R1. I. D. Brown and D. Altermatt, *Acta Crystallogr.*, *Sect. B: Struct. Sci.*, 1985, 41, 244–247.
R2. I. D. Brown, *Chem. Rev.*, 2009, 109, 6858–6919.