Supporting Information

Optical properties regularities in the family of $\{Mo_6I_8\}$ aquahydroxo complexes

Margarita V. Marchuk,^a Natalya A. Vorotnikova,^a Yuri A. Vorotnikov,^{*a} Natalia V. Kuratieva,^a Dmitri V. Stass,^{b,c} Michael A. Shestopalov^a

^aNikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia ^bVoevodsky Institute of Chemical Kinetics and Combustion SB RAS, 3 Institutskaya st., 630090 Novosibirsk, Russia ^cNovosibirsk State University, 2 Pirogova Str., 630090 Novosibirsk, Russian Federation

*Corresponding Author: *Yuri A. Vorotnikov Tel. +7-383-330-92-53, Fax +7-383-330-94-89 e-mail: vorotnikov@niic.nsc.ru

Content

TIR spectra, XRPD patterns, and TGA curves	S 3
Crystallographic data and selected interatomic distances	S4
Representation of the layered structure in 1-NO ₃ and 1-OTs and absorption spectra of aqueous solutio of 1-NO ₃ at different pH	ns S5
Selected parameters of crystal structure and emission of the clusters and deconvolution of the emissio spectra of 1-NO₃ and 1-OTs in solid state	n S6
Deconvolution of the emission spectra of 2-h2 and 2-h12 ^{new} in solid state	S7
Parameters of deconvolution of emission spectra in solid state and deconvolution of the emission spectra of $1-NO_3$ in aqueous solution at pH = 3.2 and 2.1	S8
Deconvolution of the emission spectra of $1-NO_3$ in aqueous solution at pH = 1.2 and 0.0	S9
Parameters of deconvolution of emission spectra of 1-NO₃ in in aqueous solution at different pH	10

FTIR spectra, XRPD patterns, and TGA curves

Figure 1S. FTIR spectra of 1-NO₃ (*left*) and 1-OTs (*right*) in comparison with initial clusters.

Figure 2S. XRPD pattern of 2-h2 in comparison with calculated from the crystal structures of $[{Mo_6I_8}(H_2O)_2(OH)_4]\cdot 2H_2O$.

Figure 3S. TGA curves of 2-h2 and 2-h12^{new} (fresh and 3 and 11 days old). Heating rates of 10 °C min⁻¹.

	1-NO ₃	1-OTs	2-h12 ^{new}
Empirical formula	$H_{16}I_8Mo_6N_2O_{15}$	$C_{14}H_{28}I_8Mo_6O_{14}S_2$	$H_{32}I_8Mo_6O_{18}$
Formula weight	1874.99	2075.32	1911.09
Temperature (K)	150(2)	150(2)	150(2)
Crystal size (mm ³)	0.120 × 0.100 × 0.030	$0.160 \times 0.130 \times 0.040$	0.085 × 0.085 × 0.035
Crystal system	Triclinic	Triclinic	Triclinic
Space group	P-1	P-1	P-1
Ζ	2	1	1
Unit cell dimensions			
a (Å)	10.5553(3)	9.447(1)	9.4284(9)
b (Å)	11.5145(3)	9.459(1)	9.799(1)
c (Å)	12.9195(3)	11.504(1)	10.008(1)
α (°)	78.837(1)	77.300(3)	73.929(4)
<i>в</i> (°)	78.265(1)	79.348(3)	67.566(4)
γ (°)	67.511(1)	73.852(3)	88.598(4)
Volume (ų)	1408.80(6)	954.8(2)	817.8(1)
D _{calcd.} (g⋅cm ⁻³)	4.420	3.609	3.815
μ (mm⁻¹)	11.411	8.539	9.837
θ range (°)	1.623 – 27.619	1.831 – 27.157	2.300 - 36.312
Index ranges	$-12 \le h \le 13$ $-11 \le k \le 14$ $-13 \le l \le 16$	$-12 \le h \le 12$ $-12 \le k \le 12$ $-14 \le l \le 14$	$-15 \le h \le 12$ $-16 \le k \le 14$ $-16 \le l \le 13$
Reflections collected	12016	7699	22858
Independent reflections	6450 (R _{int} = 0.0293)	4143 (R _{int} = 0.0337)	7293 (R _{int} = 0.0411)
Data / restraints / parameters	6450 / 19 / 342	4143 / 6 / 210	7293 / 0 / 159
$R[F^2>2\sigma(F^2)]$	$R_1 = 0.0185$ w $R_2 = 0.0466$	$R_1 = 0.0634$ w $R_2 = 0.1967$	$R_1 = 0.0357$ w $R_2 = 0.0645$
R(F ²) (all data)	$R_1 = 0.0342$ w $R_2 = 0.0492$	$R_1 = 0.0680$ w $R_2 = 0.2010$	$R_1 = 0.0504$ w $R_2 = 0.0692$
Goodness-of-fit on F ²	1.037	1.063	1.018
$\Delta \rho_{max}$, $\Delta \rho_{min}$ (e·Å ⁻³)	1.135, –0.866	2.813, -7.017	1.462, -2.278

 Table 1S. Crystallographic data, data collection and refinement parameters.

Table 25. Selected interatomic distances (Å).

	1-NO ₃	1-OTs	2-h12 ^{new}
Mo-Mo	2.6509(4)-2.6751(4)	2.647(1)-2.662(1)	2.6566(5)-2.6670(5)
Mo-I	2.7599(4)-2.8049(4)	2.781(1)-2.801(1)	2.787(5)-2.8057(5)
Mo-O	2.113(2)-2.189(3)	2.053(7)-2.175(8)	2.089(3)-2.192(3)

Representation of the layered structure in $1-NO_3$ and 1-OTs and absorption spectra of aqueous solutions of $1-NO_3$ at different pH

Figure 4S. The side view on the layers in 1-NO₃ (*left*) and 1-OTs (*right*).

Figure 5S. Absorption spectra of aqueous solutions of 1-NO₃ at different pH (3.1, 2.1, 1.2 and 0).

Selected parameters of crystal structure and emission of the clusters and deconvolution of the emission spectra of 1-NO₃ and 1-OTs in solid state

Cluster	Number of direct hydrogen contacts	d_{calc} , g cm ⁻³	Cluster-cluster contacts, Å	λ_{em} , nm	Relative intensity, a.u.	S _{int,} a.u.#
1-OTs	0	3.609	9.447; 9.459; 11.504	661	395	50239
2- h12 ^{new}	0	3.815	9.428; 9.799; 10.008	693	274	7887
1-NO ₃	4	4.420	8.885; 8.945; 10.555	705	66	29261
2-h2	6	4.932	9.138; 9.634	706	18	1889

Table 35. Selected parameters of crystal structure and emission of the clusters.

[#]S_{int} is integrated emission intensity (area under the curve)

Figure 6S. Deconvolution of the emission spectra of 1-NO₃ in solid state.

Figure 7S. Deconvolution of the emission spectra of 1-OTs in solid state.

Deconvolution of the emission spectra of 2-h2 and 2-h12^{new} in solid state

Figure 8S. Deconvolution of the emission spectra of 2-h2 in solid state.

Figure 9S. Deconvolution of the emission spectra of 2-h12^{new} in solid state.

Parameters of deconvolution of emission spectra in solid state and deconvolution of the emission spectra of $1-NO_3$ in aqueous solution at pH = 3.2 and 2.1

Table 4S. Overall emission maximum (λ_{em}), integrated emission intensity (S_{int}), peak positions, FWHM, relative contributions of the peaks integrated area to the area of cumulative peak in %, and coefficient of determination of cumulative peak (R^2) for clusters in solid state.

Parameter	1-OTs	1-NO3	2-h12 ^{new}	2-h2
λ _{em} , nm;	661;	705;	693;	706,
(cm ⁻¹)	(15135)	(14180)	(14416)	(14164)
λ _{max1} , nm;	620;	_	_	_
(cm ⁻¹)	(16118)	_	-	_
λ_{max2} , nm;	647;	642	666;	663;
(cm ⁻¹)	(15455)	(15578)	(15013)	(15077)
λ_{max3} , nm;	706;	706;	706;	707;
(cm ⁻¹)	(14165)	(14159)	(14168)	(14147)
λ_{max4} , nm;	795;	793;	796;	792
(cm ⁻¹)	(12571)	(12605)	(12571)	(12629)
FWHM 1	958	_	-	-
FWHM 2	1575	948	1321	851
FWHM 3	2016	2062	1848	1868
FWHM 4	795	936	865	998
Cont. 1, %	3.51	-	-	-
Cont. 2, %	41.96	2.37	21.98	2.32
Cont. 3, %	52.70	91.79	75.78	93.19
Cont. 4, %	1.83	5.84	2.24	4.49
R ²	0.999	0.998	0.999	0.994

Figure 10S. Deconvolution of the emission spectra of 1-NO₃ in aqueous solution at pH = 3.2.

Figure 11S. Deconvolution of the emission spectra of 1-NO₃ in aqueous solution at pH = 2.1.

Deconvolution of the emission spectra of $1-NO_3$ in aqueous solution at pH = 1.2 and 0.0 Wavelength nm

Figure 12S. Deconvolution of the emission spectra of **1-NO**₃ in aqueous solution at pH = 1.2.

Figure 13S. Deconvolution of the emission spectra of $1-NO_3$ in aqueous solution at pH = 0.0.

Parameters of deconvolution of emission spectra of $1-NO_3$ in in aqueous solution at different pH

Table 5S. Overall emission maximum (λ_{em}), integrated emission intensity (S_{int}), peak positions, FWHM, relative contributions of the peaks integrated area to the area of cumulative peak in %, and coefficient of determination of cumulative peak (R^2) for **1-NO**₃ in aqueous solution at different pH.

Parameter	pH = 3.2	pH = 2.1	pH = 1.2	pH = 0.0
λ_{em} , nm;	658;	643;	636;	633,
(cm⁻¹)	(15198)	(15552)	(15723)	(15798)
S _{int,} a.u. [#]	22324	31797	42967	49345
λ_{max1} , nm;		615;	615;	616;
(cm ⁻¹)	-	(16261)	(16258)	(16242)
λ_{max2} , nm;	649;	644;	642;	645;
(cm⁻¹)	(15402)	(15532)	(15577)	(15500)
λ_{max3} , nm;	706;	706;	706;	706;
(cm ⁻¹)	(14166)	(14173)	(14167)	(14164)
λ_{max4} , nm;	795;	795;	795;	795;
(cm ⁻¹)	(12583)	(12577)	(12579)	(12575)
FWHM 1	-	1031	1137	1245
FWHM 2	1676	1696	1690	1588
FWHM 3	1738	1673	1628	1541
FWHM 4	884	935	934	947
Cont. 1, %	-	6.61	13.99	26.91
Cont. 2, %	61.60	70.70	70.83	60.80
Cont. 3, %	37.06	21.67	14.40	11.61
Cont. 4, %	1.34	1.01	0.78	0.68
R ²	0.998	0.999	0.999	0.999

[#]S_{int} is integrated emission intensity (area under the curve)