Electronic Supplementary Information

Dual role of silver in a fluorogenic N-squaraine probe based on

Ag(I)- π interactions

Manel Vega,[†] Salvador Blasco, [‡] Enrique García-España,[‡] Bartolomé Soberats,[†] Antonio Frontera,[†]

Carmen Rotger[†] and Antonio Costa^{†,*}

† Department of Chemistry, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, 07122, Palma (Spain)

‡ Instituto de Ciencia Molecular (ICMOL). Universidad de Valencia, C/ Catedrático José Beltrán 2, 46980 Valencia (Spain)

Table of content

1. Reagents and apparatus	S2
2. Synthesis and characterization	S3
3. NMR spectra	S4
4. Spectrophotometric pK_a determination of N-squaraine 1	S8
5. X-ray structure of N-squaraine 1 [TBA(HSQ1)]	S9
6. UV-vis and fluorescence spectra	. S10
7. TD-DFTcalculations	S12

1. Reagents and apparatus

All chemicals were obtained from commercial sources and used without further purification unless otherwise indicated. All reactions were performed in a single-mode Biotage Initiator microwave reactor according to the parameters described below.

NMR spectroscopy: Proton nuclear magnetic resonance (¹H NMR) spectra and carbon nuclear resonance (¹³C NMR) were recorded at room temperature on a Bruker Avance and Bruker Avance III spectrometers operating at 300 and 600 MHz for ¹H and at 75.4 and 150.9 MHz for 13-carbon, respectively. The residual proton signal in the NMR solvent was used as reference (DMSO: δ 2.50 ppm, for proton, and δ 39.51 ppm, respectively for 13-carbon) unless specifically stated otherwise. Chemical shifts (δ) are reported in ppm and coupling constants (J) in Hz. Multiplicities for proton signals are abbreviated as s, t, m, and br for singlet, triplet, multiplet, and broad signal, respectively. ¹³C-*CP-MAS NMR* were obtained with 4 mm ZrO₂ MAS rotors on a Bruker SB-MAS probe head.

Mass Spectrometry: High-resolution mass spectra (HRMS) were recorded on a Thermo Scientific Orbitrap Q-Exactive mass spectrometer equipped with a heated electrospray module (HESI-HRMS).

Absorbance (UV-Vis) spectroscopy: UV/Vis absorption spectra were recorded on Cary 60, Cary 300 UV-Vis-NIR or, JASCO V-750 spectrophotometers. JASCO V-750 was equipped with a Peltier thermostated cell holder device temperature-control unit ($\Delta T = \pm 0.05$ °C).

Fluorescence spectroscopy and Quantum Yield: fluorescence excitation-emission spectra were recorded on a Cary Eclypse spectrophotometer. The measurements were carried out in 1 cm quartz glass cuvettes using spectroscopic grade solvents. Slit widths were set to 5 mm bandpass for both excitation and emission. All spectra were recorded at 25 ± 1 °C. Solutions of N-squaraines were prepared in DMF or DMF-H₂O mixtures of variable composition, as indicated in the text. The solutions were allowed to stand for 5 min before obtaining absorption and emission spectra. The quantum yield for Ag₂(SQ1) was obtained by comparison of the integrated area of the emission spectrum of the sample with that of fluorescein in 0.1 N NaOH, which has a quantum efficiency of 0.925.¹ The quantum efficiency of Ag₂(SQ1) was evaluated by registering the UV-vis and emission spectra of diluted samples prepared from squaraine 1 (~ 1.273 × 10⁻⁶ M, Abs < 0.1) in DMF containing 0.4 mM AgNO₃ and 2% v/v of an aqueous solution 0.1 M of NaOAc. Emission for Ag₂(SQ1) was integrated from 500 to 650 nm with excitation at 490 nm. Refractive indexes: 1.33 for water and 1.428 for DMF. All measurements were made in triplicate and averaged. The quantum yield was evaluated with the expression in eq. 1.

$$\Phi_F = \Phi_{ref} \left(\frac{I_F}{I_{ref}} \right) \left(\frac{A_{ref}}{A_F} \right) \left(\frac{\eta_F^2}{\eta_{ref}^2} \right) \qquad \text{Eq. 1}$$

 Φ_F ; $\Phi_{ref.}$, fluorescence quantum yield of sample and reference. I_F ; $I_{ref.}$ Integrated fluorescence intensity. (area under spectrum). η_F ; $\eta_{ref.}$ Refractive index.

Infrared spectroscopy: FT-IR spectra were obtained on Bruker FT-IR Tensor 27 on KBr pellets. Spectral features are tabulated as follows: wavenumb¹r (cm⁻¹); intensity: strong (s), medium (m), weak (w).

2. Synthesis and characterization

2-((4-cyanophenyl)amino)-4-((4-cyanophenyl)iminio)-3-oxocyclobut-1-en-1-olate. (N-squaraine 1; R = CN).

¹ A. M. Brouwer, *Pure Appl. Chem.* 2011, **83**, 2213–2228.

A mixture of 4-aminobenzonitrile (142 mg, 1.2 mmol) and squaric acid (57 mg, 0.5 mmol) in water (1.5 mL) were microwave heated at 120 °C for 1 h in a closed 0.5-2 mL vials. After cooling, the slurry was filtered and the solid washed sequentially with HCl (1N) solution (3 × 10 mL), ethyl acetate-DMSO (10% v/v) (3 × 10 mL), and ethyl acetate (3 × 10 mL). The remaining solid N-squaraine was dried at 100 °C for 1h to give N-squaraine **1** (150 mg, 95 % yield). M.p. > 300 °C. ¹H NMR (d_6 -DMSO) $\delta_{\rm H}$ 12.04 (s, 2H), 7.99 (d, J = 8.4 Hz, 4H), 7.89 (d, J = 8.4 Hz, 4H) ppm. ¹³C CP-MAS NMR $\delta_{\rm C}$ 173.8, 169.3, 138.7, 135.78, 119.3, 117.8, 112.0 ppm. IR(KBr) v 3235(m), 3062(m), 2980(m), 2236(m), 1596(s), 1537(s), 1417(s), 1385(s) cm⁻¹. ESI(–)-HRMS *m/z* (%) calcd for C₁₈H₉N₄O₂: [M–H]⁻ 313.0731; found 313.0732. Anal Calcd for C₁₈H₁₀N₄O₂: C, 68.79; H, 3.21; N, 17.83; found: C, 68.54; H, 3.31; N, 17.68.

[TBA(HSQ1)] Crystals suitable for X-ray diffraction analysis of N-squaraine 1 (as TBA salt) were grown by slow evaporation from a MeOH solution containing N-squaraine 1 and excess TBAF until complete dissolution of the N-squaraine.

[TMA(HSQ1)] Used for comparison in the ¹³C CP MAS spectrum, was prepared from a mixture of N-squaraine 1 (100 mg) and two equiv of (TMA)OAc suspended in MeCN (10 mL). After sonication in an ultrasonic bath for several minutes, the solvent was evaporated to dryness.

 $[Ag(HSQ1)] \cdot 2H_2O$ A mixture of N-squaraine 1 (100 mg) and two equiv of (TMA)OAc in MeCN was dissolved by sonication as above. Then, a solution of AgNO₃ (1 equiv) in MeCN (2 mL) was added and left with continuous agitation until complete precipitation. After an additional one-hour period for aging, the resulting dark green precipitate was filtered, washed with MeCN (2 x 5 mL), and dried to afford amorphous [Ag(HSQ1)] (112 mg) as a dihydrate. ¹H NMR (*d*₆-DMSO) $\delta_{\rm H}$ 9.92 (br, 1H), 7.78 (d, *J* = 8.1 Hz, 2H), 7.63 (br, 4H)), 7.48 (br, 2H) ppm. ¹³C CP-MAS NMR $\delta_{\rm C}$ 184.2, 176.4, 169.5, 166.0, 152.1, 145.5, 130.6, 1234.5, 119.4, 102.0, 99.6 ppm. Anal Calcd for C₁₈H₁₃AgN₄O₄: C, 47.29; H, 2.87; N, 12.25; found: C, 47.24; H, 2.82; N, 12.26.

The ¹³C CP-MAS spectra of the TMA and Ag salts of N-squaraine **1**, show the loss of symmetry characteristic of the N-squaraine **1** monoanion (see ¹³C NMR spectra of these salts in Figure S3).

2-((4-methoxyphenyl)amino)-4-((4-methoxyphenyl)iminio)-3-oxocyclobut-1-en-1-olate. (N-squaraine 2; R = OMe). This compound was prepared.¹starting from a mixture of squaric acid (0.5 g, 4.3 mmol) and *p*-Anisidine (1.7 g, 13.7 mmol) were introduced in a Schlenk flask tube. The mixture was disaggregated and homogenized well before closing the flask. Then, the mixture was heated at 120 °C for 12 h in an oil bath. The resulting dark green solid was taken in HCl 1N (20 mL) and sonicated in a bath for 15 min. The mixture was filtered and the solid washed with HCl 1N (5 × 20 mL), ethyl acetate-DMSO (30% v/v) (5 × 20 mL) to remove a residue of the competitive squaramide, and ethyl acetate (5 × 10 mL) and dried at 100°C to afford a green amorphous solid (1.09 g, 90 % yield). mp > 300 °C. ¹H NMR (*d*₆-DMSO) $\delta_{\rm H}$ 11.18 (s, 2H), 7.71 (br, 4H), 6.95 (d, *J* = 8.7 Hz, 4H), 3.75 (s, 6H ppm. ESI(-)-HRMS *m/z* (%) calcd for C₁₈H₁₅O₄N₂: [M–H]⁻ 323.10367; found 323.10373. Anal Calcd for

C₁₈H₁₆N₂O₄: C, 66.66; H, 4.97; N, 8.64; found: C, 66.12; H, 4.96; N, 8.64. IR(KBr) v 3243(m), 3127(m), 3070(m), 2961(s), 2835(m), 1619-1512(s), 1429(s), 1183(s) cm⁻¹.

3. NMR spectra

Figure S1. ¹H NMR spectrum of N-squaraine 1 (H2SQ1) in *d6*-DMSO

Figure S2. ¹³C CP-MAS NMR spectrum of N-squaraine 1 (H2SQ1).

Figure S3. ¹H NMR spectrum of silver salt of N-squaraine 1 [Ag(H2SQ1)].

Figure S4. ¹³C CP-MAS NMR spectra of N-squaraine 1 (H2SQ1) and its monoanion as tetramethylammonium [TMA(HSQ1)] and silver [Ag(HSQ1) salts respectively.

Figure S5. ¹H NMR spectrum of N-squaraine 2 (H2SQ2) in d6-DMSO

Figure S6. Partial 2D COSY NMR spectrum of N-squaraine 1 monoanion (HSQ1) in *d6*-DMSO containing 10 equiv. of NaOAc.

Figure S7. Stack plot of partial ¹H-NMR spectra of N-squaraine **2** (H2SQ**2**) in DMSO- d_6 before (a) and after addition of bases. (b) NaOAc (10 equiv); (c) TMAOH (1 equiv) and (d) TMAOH (2 equiv), respectively. Spectrum (d) shows partial degradation of H2SQ**2** in the presence of a slight excess of TMAOH, thus precluding further additions of base.

4. Spectrophotometric pK_a determination of N-squaraine 1

The apparent pK_a values of N-squaraine 1 (1.75 x 10⁻⁵ M) in water (0.1M NaCl, ionic strength) was measured by registering the UV/vis absorption spectra in the range 250-550 nm against pH starting from pH = 9 and adding standardized 0.19 M NaOH up to pH = 13. Data sets were evaluated with HypSpec6 (Protonic Software). Output files include the calculated spectra for all species considered (H2SQ1), (HSQ1) and (SQ1). The titration was repeated two times.

Table S1. Logarithms of the stepwise and cumulative protonation constants for H2SQ1, determined at 298.1 \pm 0.1 K.

Reaction ^[a]	Log K	
$L + H \rightleftharpoons HL$	12.18(8)	
$\mathrm{HL} + \mathrm{L} \rightleftharpoons \mathrm{H_2L}$	11.39(3)	
$\log \beta^{[b]}$	23.48(1) ^[c]	

[a] Charges are omitted.

[b] Cumulative acid dissociation constant was calculated as log $\beta = \sum \log K_{HjL}$.

[c] Values in parenthesis are standard deviations in the last significant figures

Figure S8. Calculated UV-vis spectra of N-squaraine 1 in water corresponding to the fully protonated (H2SQ1), monoanion (HSQ1), and dianion (SQ1) forms, as provided by HypSpec data.

5. X-ray structure of N-squaraine 1 [TBA(HSQ1]

Figure S9. (a) ORTEP model of [TBA(HSQ1)] at 50% probability level. (b) Labelled structure and selected distances and angles of HSQ1. (a) X-ray dimeric structure of [TBA(HSQ1)]. TBA counter ions have been removed for clarity.

6. UV-vis spectra

Figure S10. UV-vis spectra of [H2SQ1] $(1.0 \times 10^{-5} \text{ M})$ dissolved in DMF (black line), DMF containing 10 equiv. of NaOAc added as a solid (blue line), and DMF containing 10 equiv. of NaOAc and, additionally, adding a 2% v/v of an aqueous solution 0.1 M of NaOAc (red line), respectively, to give the monoanion HSQ1.

The formation of HSQ1 (λ_{max} 428 nm) in DMF containing 10 equiv. of NaOAc shows a notable hyperchromic effect compared to the fully protonagted form H2SQ1 (Fig. S10). The same trend, but at shorter wavelength, was observed for the calculated spectra of HSQ1 (λ_{max} 368 nm), in the acid-base titration of H2SQ1 in water (cf. Figure S8)

Figure S11. UV-vis spectra of [H2SQ1] (1.0×10^{-5} M) dissolved in DMF containing 10 equiv of NaOAc (black line) and, additionally, 2; 5; 10; 20; 30; 40; 50 % v/v of an aqueous solution H₂O (NaOAc, 0.1 M), respectively.

Figure S12. UV-vis titration of [Ag(HSQ1)] $(2.0 \times 10^{-6} \text{ M})$ with an increasing amount of Ag(I) in DMF (2% v/v 0.1 M of NaOAc in water) with Ag(I).

6. Fluorescence spectra

Figure S13. Emission spectra of [HSQ1] $(1.0 \times 10^{-6} \text{ M})$ in DMF(10 equiv NaOAc)-H₂O (2% v/v, 0.1M NaOAc) recorded by exciting at 428(blue), 480(green) and 494(red) nm, respectively. The UV-vis absorption spectrum of [HSQ1] $(1.0 \times 10^{-5} \text{ M})$ registered in the same solvent media is included.

7. TD-DFT calculations

7.1 Theoretical methods

The neutral squaraine (H₂SQ1), its anionic form (HSQ1⁻) and complexes with silver (AgHSQ1 and Ag₂SQ1) in their singlet ground state (S₀) were optimized by DFT and time-dependent DFT (TDDFT)¹⁻² methods with the B3LYP³-D3⁴ functional approach associated with the conductor-like polarizable continuum model (CPCM).⁵⁻⁷

We calculated 20 singlet–singlet transitions using the ground S_0 state geometries and the conductor-like polarizable continuum model. In some cases, explicit solvent molecules have been used coordinated to the silver atom (*vide infra*). The def2-TZVP as basis set⁸ has been used. The def2-TZVP implementation used in this work employs for Ag the ECP-28 set and scalar relativistic effects.⁸ In particular, the core AOs for Ag comprise from 1s to 3d.⁹ The calculated electronic density plots for the frontier molecular orbitals were prepared by using the GaussView 6.0 software.¹⁰ All the TDDFT calculations were performed with the Gaussian 16 software package.¹¹

6.2 Additional results and discussion

In Figure S14, the optimized structure of squaraine (H₂SQ1) and the frontier orbitals are represented. The HOMO is localized in the four membered ring and its shape embracing the whole ring is typical of aromatic rings. The results from the TD-DFT calculation for this compound using the first 20 excited states are summarized in Table S1. The lowest lying UV-band correspond to the $S_0 \rightarrow S_1$ excitation that is composed by a single transition (HOMO \rightarrow LUMO). The theoretical value $\lambda_{abs} = 422.2$ nm is in reasonable agreement with the experimental one (slightly underestimated by 9 nm). The TD-DFT analysis of the optimized first excited state predicts an emission band at 448.2 nm with a modest oscillator strength (f = 0.4083) in agreement with the almost negligible fluorescence observed for this squaraine derivative.

Figure S14. B3LYP-D3/def2-TZVP optimized geometry (a) and frontier orbitals (b,c) of H₂SQ1.

Table S1. Selected parameters for the vertical excitation (UV–Vis absorptions) and emission (from S1) of complex
H ₂ SQ1 electronic excitation energies (eV) and oscillator strengths (f), configuration of the excited states, energy
gap based on optimized ground-state geometry (DMF used as solvent).

Process	Composition	Excitation	Osc. strength (f)	%	$\lambda_{exp}(nm)$
		energy			
$S_0 \rightarrow S_1$	HOMO → LUMO	2.9364 eV	1.3977	100 %	430
(absorption)		422.2 nm			
$S_1 \rightarrow S_0$	HOMO → LUMO	2.7660 eV	0.4083	100 %	????
(emission)		448.24 nm			

Figure S15a shows the optimized structures of the complex between squaraine monoanion (HSQ1⁻) and silver(I). The silver atom is coordinated to the anionic N-atom and the adjacent O-atom of the four-membered ring. It is worthy to clarify that we have treat solvent effects (DMF) using a polarized continuum model (PCM) as implemented in Gaussian-16 program. Moreover, we have also evaluated the effect of using an explicit DMF molecule coordinated to Ag(I) in addition to the continuum model (Figure 2a). It can be observed that the presence/absence of the solvent molecule does not influence the shape of the frontier orbitals, since he DMF molecule is not involved in any of both orbitals. Moreover, the agreement between the experimental and theoretical values of λ_{abs} is better for the complex without the inclusion of the DMF molecule coordinated to silver. Therefore,

we have simply used the PCM model to treat solvent effects without the utilization of explicit solvent molecules. Both HOMO and LUMO orbitals are π -type with participation of the four and six membered rings. The silver atom does not participate in any of both MOs and the transition is interligand $\pi \rightarrow \pi^*$ type and almost equivalent to the one observed for the free ligand (see Figure S14).

Additionally, we have studied the effect of using water as solvent due to the fact that the elementary analysis suggests the presence of two water molecules. We have computed two situations, where the silver is coordinated to one or two water molecules. The results are shown in Figure S15, confirming the fact that the solvent is a mere spectator, since it does not participate in any of both frontier orbitals and its influence upon the theoretical λ_{abs} values is minimum.

Figure S15. B3LYP-D3/def2-TZVP optimized geometries (a,b) and frontier orbitals (b,c,e,f) of Ag(DMF)(HSQ1) and Ag(HSQ1) complexes. Distances in Å.

Figure S16. B3LYP-D3/def2-TZVP optimized geometries (a,b) and frontier orbitals (b,c,e,f) of Ag(H₂O)(HSQ1) and Ag(H₂O)₂(HSQ1) complexes. Distances in Å.

In Table S2 we summarize the results from the TD-DFT calculations. In all models the lowest lying energy excitation corresponds to the $S_0 \rightarrow S_1$ that is composed by a single HOMO \rightarrow LUMO transition. As commented above, the theoretical λ_{abs} is 433.2 nm (f = 1.4763) for the Ag(HSQ1) complex that is in excellent agreement with the experimental value ($\lambda_{exp} = 431$ nm).

Table S2. Selected parameters for the vertical excitation (UV–Vis absorptions) of complexes Ag(HSQ1), and Ag(DMF)(HSQ1) electronic excitation energies (eV), oscillator strengths (f), configuration of the excited states, energy gap based on optimized ground–state geometry (DMF used as solvent).

Process	Composition	Excitation	Oscillator strength (f)	%	$\lambda_{exp}(nm)$		
		energy					
Ag(HSQ1)							
~ ~				100.01			
$S_0 \rightarrow S_1$	$ HOMO \rightarrow $	2.8621 eV	1.0763	100 %	431		

	LUMO	433.2 nm				
	1	Ag(HSC	21)(DMF)	I	I	
$S_0 \rightarrow S_1$	$\begin{array}{c} \text{HOMO} & \rightarrow \\ \text{LUMO} \end{array}$	2.8082 eV 441.5 nm	1.0733	100 %	431	
		Ag(H ₂ C	D)(HSQ1)			
$S_0 \rightarrow S_1$	$\begin{array}{c} \text{HOMO} & \rightarrow \\ \text{LUMO} \end{array}$	2.8614 eV 433.3 nm	1.4261	100 %	431	
Ag(H ₂ O) ₂ (HSQ 1)						
$S_0 \rightarrow S_1$	$\begin{array}{c} \text{HOMO} & \rightarrow \\ \text{LUMO} \end{array}$	2.8392 eV 436.7 nm	1.4148	100 %	431	

Figure S17a shows the DFT-optimized structure of the complex with stoichiometry 2:1, Ag₂(SQ1). Each Ag atom is coordinated to one O-atom from the squaraine ring and establishes a π -interaction with one C-atom of the sixmembered ring (2.34 Å). This provokes a loss of conjugation between the four and six-membered rings. This binding mode is different in comparison to the 1:1 complex where the Ag is coordinated to the N and O-atoms of the SQ ring and the conjugation between the six and four membered ring remains unaltered. This different binding mode is favored because it reduces the Ag(+)...Ag(+) repulsion by increasing the Ag...Ag distance with respect to the hypothetical complex where both Ag(+) would be located in the SQ plane and coordinated to the O and Natoms. The frontier orbitals are represented in Figure S17b,c and it can be observed that the silver atomic orbitals have a negligible participation in the HOMO but a significant participation of the LUMO, thus changing the electronic characteristics of the system. The loss of conjugation increases the energy of the HOMO and consequently increases the theoretical value of $\lambda_{abs} = 481.7$ nm that is in reasonable agreement with the experimental value ($\lambda_{exp} = 494$ nm). More importantly, there is also a very good agreement between the experimental and theoretical λ_{em} values, thus giving reliability to the proposed geometry of the 2:1 complex and mechanism. In both the absorption and emission bands, each process is composed by two transitions where the HOMO \rightarrow LUMO dominates ($\geq 96\%$).

Figure S17. B3LYP-D3/def2-TZVP optimized geometries (a,b) and frontier orbitals (b,c,e,f) of Ag₂(SQA) complex. Distances in Å.

Table S3. Selected parameters for the vertical excitation (UV–Vis absorptions) and emission (from S_1) of complex $Ag_2(SQ)$, electronic excitation energies (eV) and oscillator strengths (*f*), configuration of the excited states, energy gap based on optimized ground–state geometry (DMF used as solvent).

Process	Composition	Excitation energy	Osc. strength (<i>f</i>)	%	$\lambda_{exp}(nm)$		
Ag ₂ (SQ1)							
$S_{0} \rightarrow S_{1}$	$HOMO \rightarrow UUMO$	2.57/1 eV	1 0787	96 %	191		
		2.3741 CV	1.0707	10 /0	T /T		
(absorption)	HOMO \rightarrow LUMO+2	401.7 1111		4%			
$S_1 \rightarrow S_0$	HOMO-1 \rightarrow LUMO+1	2.3901 eV	2.0270	8.2 %	517		
(emission)	HOMO → LUMO	518.7 nm		91.8 %			

Figure S18 shows a comparison of the optimized geometries of the *bis*-Ag(I) σ -coordinated complex (a) and bis-Ag(I) π -coordinated complex. It can be observed that the Ag···Ag distance is longer for the latter complexation

mode. The theoretical absorption values are also indicated, showing that the value for the *bis*-Ag(I) σ -coordinated complex is in disagreement with the experimental value.

Figure S18. Optimized geometries of the *bis*-Ag(I) σ -coordinated complex (a) and bis-Ag(I) π -coordinated Ag(I) complex at the B3LYP/def2-TXVP level of theory.

7.3 References

- (1) M. E. Casida, C. Jamoroski, K. C. Casida and D. R. Salahub, J. Chem. Phys., 1998, 108, 4439–4449.
- (2) R. E. Stratmann, G. E. Scuseria and M. J. Frisch, J. Chem. Phys., 1998, 109, 8218–8224.
- (3) S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104–154119.

(4) (a) A. D. Becke, *Phys. Rev. A.*, **1988**, *38*, 3098–3100; (b) C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B.*, **1988**, *37*, 785–789

- (5) M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem., 2003, 24, 669–681.
- (6) M. Cossi, V. Barone, J. Chem. Phys., 2001, 115, 4708–4717.
- (7) V. Barone, M. Cossi, J. Phys. Chem. A, **1998**, 102, 1995–2001.
- (8) F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, 7, 3297-305
- (9) D. Andrae, U. Haeussermann, M. Dolg, H. Stoll and H. Preuss, *Theor. Chim. Acta*, 1990, 77, 123–141.
- (10) GaussView, Version 6, Dennington, Roy; Keith, Todd A.; Millam, John M. Semichem Inc., Shawnee Mission, KS, 2016.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. a. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,

H. Nakai, T. Vreven, K. Throssell, J. a. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, 2016, Gaussian 16, Revision A.07, Gaussian, Inc., Wallingford CT, 2016.

6.4 X-ray coordinates

H2SQ1

Center	Atomi	c A	Atomic	Coordinates (Angstroms	
Number	Num	iber	Type	X Y	Z
1	1	0	2.955076	-1.433091	0.000127
2	6	0	3.725617	-0.672598	0.000090
3	6	0	5.723107	1.284510	-0.000031
4	6	0	3.389232	0.683469	0.000042
5	6	0	5.059227	-1.039354	0.000064
6	6	0	6.070102	-0.070818	-0.000010
7	6	0	4.392528	1.657104	-0.000004
8	1	0	5.324394	-2.087761	0.000108
9	1	0	4.129443	2.708131	-0.000008
10	1	0	6.498017	2.038540	-0.000071
11	6	0	0.924689	0.420382	0.000043
12	6	0	-0.432922	0.964361	0.000009
13	8	0	-0.875623	2.101253	0.000049
14	6	0	0.432854	-0.964278	-0.000033
15	6	0	-0.924667	-0.420328	0.000018
16	8	0	0.875525	-2.101214	-0.000028
17	7	0	-2.055111	-1.119373	0.000021
18	1	0	-1.910991	-2.123783	0.000015
19	6	0	-3.389201	-0.683422	0.000007
20	6	0	-6.070065	0.070778	-0.000021
21	6	0	-3.725636	0.672657	-0.000019
22	6	0	-4.392464	-1.657115	0.000022
23	6	0	-5.723058	-1.284531	0.000008
24	6	0	-5.059245	1.039367	-0.000033
25	1	0	-2.955067	1.433115	-0.000020
26	1	0	-4.129377	-2.708133	0.000044
27	1	0	-6.497989	-2.038542	0.000019
28	1	0	-5.324501	2.087753	-0.000054
29	6	0	-7.443500	0.460459	-0.000038
30	7	0	-8.552986	0.773214	-0.000052
31	6	0	7.443501	-0.460577	-0.000068
32	7	0	8.552977	-0.773370	-0.000110
33	7	0	2.055152	1.119420	0.000044
34	1	0	1.910970	2.123820	0.000082

HSQ1

Center Number	Aton Nu	nic mber	Atomic Type	Coordinat X Y	es (Angstroms) Z Z
1	1	0	2.910223	-1.396455	0.001391
2	6	0	3.696855	-0.652223	0.000887
3	6	0	5.740285	1.252671	-0.000665
4	6	0	3.362691	0.720093	0.000069
5	6	0	5.018524	-1.053704	0.000915
6	6	0	6.060354	-0.112861	0.000144
7	6	0	4.419556	1.652377	-0.000666
8	1	0	5.258959	-2.109525	0.001567

9	1	0	4.158851	2.702577	-0.001262		
10	1	0	6.535012	1.987755	-0.001258		
11	6	0	1.001904	0.571237	-0.000075		
12	6	0	-0.424848	1.071831	-0.000083		
13	8	0	-0.940047	2.181559	0.000247		
14	6	0	0.456665	-0.845708	-0.000535		
15	6	0	-0.870065	-0.308613	-0.000291		
16	8	0	0.881041	-2.003725	-0.000735		
17	7	0	-2.011791	-1.061702	-0.000325		
18	1	0	-1.822271	-2.056649	-0.000537		
19	6	0	-3.329241	-0.677458	-0.000165		
20	6	0	-6.052166	0.019365	0.000140		
21	6	0	-3.714999	0.676775	0.000095		
22	6	0	-4.328774	-1.670665	-0.000265		
23	6	0	-5.663577	-1.329065	-0.000117		
24	6	0	-5.053933	1.007720	0.000245		
25	1	0	-2.955786	1.451555	0.000197		
26	1	0	-4.041822	-2.715930	-0.000461		
27	1	0	-6.419852	-2.103152	-0.000198		
28	1	0	-5.341775	2.051062	0.000449		
29	6	0	-7.430162	0.372014	0.000293		
30	7	0	-8.551275	0.652740	0.000418		
31	6	0	7.420143	-0.535812	0.000216		
32	7	0	8.524531	-0.876114	0.000290		
33	7	0	2.086425	1.259110	0.000070		
Ag(HSQ1)							

Center Number	Aton Nu	nic A nber	tomic Type	Coordinate X Y	s (Angstroms) Z
1	8	0	0 465063	-2 899116	0.000457
2	7	Ő	-2 409291	-1 753867	0.000230
3	8	Ő	-1 041998	1 395661	-0.000280
4	7	Ő	1 786047	0.338236	0.000435
5	6	Ő	0.095215	-1 742684	0.000468
6	6	ŏ	-1.226714	-1.113357	0.000287
7	6	0	0.693469	-0.359284	0.000314
8	6	Õ	-0.666807	0.201189	0.000162
9	6	0	3.382550	-1.544888	-0.002618
10	6	0	4.148589	0.743270	0.003202
11	6	0	-3.709542	-1.248358	0.000185
12	6	0	-6.353525	-0.345421	0.000164
13	6	0	-5.289525	0.564051	0.000090
14	6	0	-3.978378	0.124546	0.000094
15	6	0	-6.077851	-1.717939	0.000250
16	6	0	-7.702273	0.119832	0.000159
17	6	0	3.088350	-0.171604	0.000349
18	7	0	-8.792330	0.495893	0.000159
19	6	0	5.462714	0.317060	0.003163
20	6	0	-4.770787	-2.162705	0.000268
21	6	0	4.696772	-1.973301	-0.002664
22	6	0	5.751564	-1.051773	0.000190
23	7	0	8.201547	-1.861043	-0.000072
24	6	0	7.106062	-1.501154	0.000046
25	1	0	6.270099	1.036587	0.005410
26	1	0	-3.170465	0.843298	0.000026
27	1	0	3.928248	1.804473	0.005567
28	1	0	-4.566645	-3.226823	0.000350
29	1	0	4.914728	-3.032868	-0.004942
30	1	0	2.585775	-2.276567	-0.004614
31	1	0	-5.496508	1.625664	0.000031
32	1	0	-6.892242	-2.429383	0.000316
33	1	0	-2.318701	-2.762323	0.000267
34	47	0	1.062980	2.491195	-0.000718

Ag(DMF)(HSQ1)

Center Number	Aton Nu	nic At mber	omic Type	Coordinates X Y	s (Angstroms) Z
1	8	0	-0.908369	-3.659553	0.015023
2	7	0	2.041325	-2.818386	0.017021
3	8	0	1.049496	0.450336	0.032883
4	7	0	-1.943105	-0.335347	0.014318
5	6	0	-0.432502	-2.537742	0.018008
6	6	0	0.937404	-2.056229	0.020595
7	6	0	-0.893843	-1.103546	0.020871
8	6	0	0.528569	-0.670532	0.027116
9	6	0	-3.637205	-2.143194	0.017634
10	6	0	-4.291324	0.175796	-0.023585
11	6	0	3.384411	-2.478539	0.005663
12	6	0	6.112427	-1.862502	-0.020467
13	6	0	5.157808	-0.844022	-0.016542
14	6	0	3.803902	-1.135761	-0.003406
15	6	0	5.690023	-3.196753	-0.011336
16	6	0	7.516945	-1.539793	-0.034207
17	6	0	-3.273260	-0.787470	0.003152
18	7	0	8.616040	-1.279217	-0.045361
19	6	0	-5.623797	-0.185919	-0.037025
20	6	0	4.342470	-3.497007	0.001287
21	6	0	-4.970452	-2.507868	0.004459
22	6	0	-5.981330	-1.538029	-0.023191
23	7	0	-8.469389	-2.228724	-0.048644
24	6	0	-7.351647	-1.920661	-0.037161
25	1	0	-6.394189	0.573744	-0.058693
26	1	0	3.073233	-0.339400	-0.000708
27	1	0	-4.023068	1.226155	-0.034916
28	1	0	4.024664	-4.531655	0.008404
29	1	0	-5.238063	-3.555512	0.015236
30	1	0	-2.880164	-2.915904	0.037385
31	1	Õ	5,477829	0.188616	-0.022822
32	1	Õ	6.422902	-3.994054	-0.013670
33	1	Õ	1.831153	-3.823126	0.014000
34	47	0	-1.360535	1.749342	0.017139
35	6	0	0.875569	3.681346	0.024367
36	8	Õ	-0.368125	3.690938	0.012712
37	7	ŏ	1.623668	4.787921	-0.004208
38	1	Õ	1 437017	2,744652	0.058697
39	6	ŏ	1 025263	6 112656	-0.056216
40	1	Ő	1 334770	6 693339	0.815872
41	1	Ő	1 356221	6 633409	-0.957914
42	1	ŏ	-0.056099	6 020821	-0.066120
43	6	õ	3 074974	4 710074	0.010187
44	1	0	3 486130	5 168609	-0.892012
45	1	Ő	3 471322	5 237222	0.880856
46	1	0	3 391271	3 670673	0.052806
		·····			

$Ag(H_2O)(HSQ1)$

Center Number	Atom Nun	ic A nber	tomic Type	Coordinate X Y	es (Angstroms) Z
1	1	0	-3.278280	0.706840	-0.039094
2	6	0	-4.071905	-0.027537	-0.023683
3	6	0	-6.123360	-1.922597	0.014751
4	6	0	-3.767512	-1.392914	0.001848
5	6	0	-5.393491	0.378324	-0.029052
6	6	0	-6.434297	-0.557818	-0.009605
7	6	0	-4.805358	-2.333892	0.020412
8	1	0	-5.628637	1.433938	-0.049680
9	1	0	-4.574137	-3.392241	0.039844
10	1	0	-6.919302	-2.654508	0.029434
11	6	0	-1.285945	-1.198770	0.007312
12	6	0	0.030771	-1.815957	0.005422
13	8	0	0.392956	-2.978546	0.005644

14	6	0	-0.742757	0.129548	0.010410
15	6	0	0.629698	-0.434947	0.005263
16	8	0	-1.173154	1.297074	0.016734
17	7	0	1.763025	0.210702	0.001202
18	6	0	3.037696	-0.377828	-0.001406
19	6	0	5.654611	-1.400338	-0.005789
20	6	0	3.260843	-1.763722	0.014139
21	6	0	4.149050	0.475870	-0.019468
22	6	0	5.438618	-0.018570	-0.021871
23	6	0	4.550827	-2.261468	0.011867
24	1	0	2.429349	-2.454667	0.026738
25	1	0	3.991095	1.548854	-0.032937
26	1	0	6.282041	0.658165	-0.036342
27	1	0	4.709762	-3.331438	0.023912
28	6	0	6.982877	-1.921921	-0.007051
29	6	0	-7.794067	-0.126412	-0.014280
30	7	0	-8.892735	0.223963	-0.017266
31	7	0	-2.455527	-1.863201	0.008370
32	1	0	-2.338426	-2.869544	0.012101
33	7	0	8.057529	-2.340051	-0.007693
34	47	0	1.400397	2.355145	-0.002490
35	8	0	-0.262126	3.906755	-0.046062
36	1	0	-0.450105	4.496740	0.692625
37	1	0	-0.907283	3.169562	-0.007721

$Ag(H_2O)_2(HSQ1)$

Center	Atomic		Atomic	Coordinates (Angstroms)		
Number	Numb	er	Type	X Y	Ž	
1	1	0	-3.236445	0.462618	-0.266824	
2	6	0	-4.032871	-0.260220	-0.159389	
3	6	0	-6.094654	-2.124080	0.105506	
4	6	0	-3.735395	-1.615637	0.021351	
5	6	0	-5.351696	0.152119	-0.202952	
6	6	0	-6.397909	-0.768658	-0.070677	
7	6	0	-4.779222	-2.541196	0.151221	
8	1	0	-5.579660	1.199906	-0.345385	
9	1	0	-4.554464	-3.591819	0.291081	
10	1	0	-6.894894	-2.844282	0.207395	
11	6	0	-1.256057	-1.424137	0.039961	
12	6	0	0.066016	-2.034043	0.053579	
13	8	0	0.436972	-3.192377	0.092162	
14	6	0	-0.717416	-0.096985	0.002447	
15	6	0	0.653779	-0.645932	0.005307	
16	8	0	-1.131993	1.075653	-0.030004	
17	7	0	1.769775	0.025435	-0.023765	
18	6	0	3.053914	-0.547943	-0.016681	
19	6	0	5.679911	-1.547197	-0.008061	
20	6	0	3.289894	-1.931636	-0.001416	
21	6	0	4.157209	0.316098	-0.027367	
22	6	0	5.451128	-0.167688	-0.022747	
23	6	0	4.584016	-2.418345	0.002813	
24	1	0	2.465897	-2.631413	0.009323	
25	1	0	3.990557	1.387140	-0.037081	
26	1	0	6.288315	0.516870	-0.030344	
27	1	0	4.752261	-3.486884	0.014634	
28	6	0	7.012829	-2.056938	-0.004293	
29	6	0	-7.755080	-0.331540	-0.115642	
30	7	0	-8.851653	0.023631	-0.150540	
31	7	0	-2.425949	-2.089213	0.071201	
32	1	0	-2.311299	-3.093857	0.130660	
33	7	0	8.091065	-2.465739	-0.001461	
34	47	0	1.431700	2.163231	-0.070016	
35	8	0	-1.677047	3.671649	0.479733	
36	1	0	-2.127170	3.829723	1.315178	
37	1	0	-1.627426	2.699196	0.357672	
38	8	0	0.833898	4.276773	0.012008	

39	1	0	0.941802	4.818375	-0.777172
40	1	0	-0.145023	4.213911	0.204586

Ag₂(SQ1)

Center	Atom	nic A	tomic	Coordinate	s (Angstroms)
Number	Nui	nber	Туре	X Y	Z
1	8	0	1.058773	1.379472	-1.475391
2	7	0	-1.974821	1.116939	-0.613035
3	8	0	-1.058773	-1.379472	1.475391
4	7	0	1.974821	-1.116939	0.613035
5	6	0	0.495209	0.628425	-0.642480
6	6	0	-0.908718	0.444039	-0.286179
7	6	0	0.908718	-0.444039	0.286179
8	6	0	-0.495209	-0.628425	0.642480
9	6	0	3.675118	0.643979	0.808652
10	6	0	4.262688	-1.606122	0.109873
11	6	0	-3.246202	0.690040	-0.483374
12	6	0	-5.990621	-0.090643	-0.297058
13	6	0	-5.026735	-1.013904	-0.717285
14	6	0	-3.675118	-0.643979	-0.808652
15	6	0	-5.581065	1.226545	-0.009848
16	6	0	-7.355201	-0.476312	-0.181391
17	6	0	3.246202	-0.690040	0.483374
18	7	0	-8.459281	-0.796432	-0.078467
19	6	0	5.581065	-1.226545	0.009848
20	6	0	-4.262688	1.606122	-0.109873
21	6	0	5.026735	1.013904	0.717285
22	6	0	5.990621	0.090643	0.297058
23	7	0	8.459281	0.796432	0.078467
24	6	0	7.355201	0.476312	0.181391
25	1	0	6.325753	-1.950573	-0.294379
26	1	0	-2.975589	-1.294127	-1.323148
27	1	0	3.967024	-2.625162	-0.099492
28	1	0	-3.967024	2.625162	0.099492
29	1	0	5.333866	2.001081	1.038940
30	1	0	2.975589	1.294127	1.323148
31	1	0	-5.333866	-2.001081	-1.038940
32	1	0	-6.325753	1.950573	0.294379
33	47	0	3.225855	1.628297	-1.269584
34	47	0	-3.225855	-1.628297	1.269584