Supporting Information for

Multifunctional MOFs-based Probes for Efficient Detection and Discrimination of Pb²⁺, Fe³⁺ and $Cr_2O_7^{2-}/CrO_4^{2-}$

Fengqin Wang^{a*}, Fengxiao Zhang^b, Zhongrui Zhao^a, Zhenyu Sun^a, Yanyan Pu^b, Yanjun Wang^c, Xiaoqing Wang^c

^aCollege of Chemistry, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong

University, Tianjin, 300387, China

^bCollege of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China

^cCollege of Chemistry Engineering and Technology, Tiangong University, Tianjin, 300387, China

E-mail address: wangfengqin@tiangong.edu.cn Tel: (+86)-22-83955458

Compound	Zn-MOF	Cd-MOF
Chemical formula	$C_{26}H_{22}Zn_2N_2O_{14}S_2$	$C_{52}H_{36}Cd_4N_4O_{24}S_4$
Formula weight	781.32	1678.69
Temperature [K]	113(2)	113(2) K
Wavelength[Å]	0.71073	0.71073 A
Crystal system	Monoclinic	Monoclinic
Space group	P2(1)/c	C2/c
a[Å]	15.878(3)	14.862(4)
b[Å]	7.6402(15)	6.2811(13)
c[Å]	11.509(2)	28.213(6)
Volume [Å ³]	1389.9(5)	2619.8(11)
Z, Calculated density[Mg/m ³]	2, 1.867	2, 2.128
Absorption coefficient[mm ⁻¹]	1.956	1.857
Crystal size[mm ³]	0.20×0.18×0.12	$0.200\times0.180\times0.120$
Theta range for data collection	2.58 to 25.02	1.451 to 27.744
(deg)		
Limiting indices	-18≤=h≤=18, -9≤=k≤=9, -	-19<=h<=19, -8<=k<=8,
	13≤=l≤=13	-36<=l<=36
<i>F</i> (000)	792	1648
	12693/2418	
Reflections collected/unique	[R(int)=0.0434]	11489/3045 [R(int) = 0.0775]
Data/restraints/parameters	2418/18/223	3045/367/319
Goodness-of-fit on F^2	1.036	1.079
Final R indices[$I \ge 2\sigma(I)$]	$R_1 = 0.0442, wR_2 = 0.1085$	R1 = 0.0556, wR2 = 0.1361
R indices (all data)	$R_1 = 0.0486, wR_2 = 0.1116$	R1 = 0.0768, wR2 = 0.1578
Largest diff. peak and hole[e.Å-	1.165 and -0.472	1.321 and -1.455
3]		

Table S1 Crystal data and structure refinement for Zn-MOF and Cd-MOF

Zn-MOF			
Zn(1)-O(1)	1.950(3)	Zn(1)-O(4)#1	1.999(3)
Zn(1)-O(5)#2	2.023(3)	Zn(1)-O(7)	2.084(3)
Zn(1)-O(6)	2.103(3)		
O(1)-Zn(1)-O(4)#1	104.47(12)	O(1)-Zn(1)-O(5)#2	131.24(12)
O(4)#1-Zn(1)-O(7)	86.38(11)	O(5)#2-Zn(1)-O(7)	84.28(11)
O(1)-Zn(1)-O(6)	92.63(12)	O(4)#1-Zn(1)-O(6)	88.22(11)
O(5)#2-Zn(1)-O(6)	95.88(11)	O(7)-Zn(1)-O(6)	173.60(11)
O(4)#1-Zn(1)-O(5)#2	123.67(11)	O(1)-Zn(1)-O(7)	92.04(12)
Cd-MOF			
Cd(1)-O(5)#1	2.171(4)	Cd(1)-O(11)	2.247(4)
Cd(1)-O(2)	2.284(4)	Cd(1)-O(4)#2	2.324(4)
Cd(1)-O(1)#3	2.409(4)	Cd(1)-O(1)	2.488(4)
O(5)#1-Cd(1)-O(11)	98.84(15)	O(5)#1-Cd(1)-O(2)	120.54(15)
O(11)-Cd(1)-O(2)	140.43(14)	O(5)#1-Cd(1)-O(4)#2	96.59(17)
O(11)-Cd(1)-O(4)#2	85.54(15)	O(2)-Cd(1)-O(4)#2	86.28(15)
O(5)#1-Cd(1)-O(1)#3	87.90(16)	O(11)-Cd(1)-O(1)#3	85.12(14)
O(2)-Cd(1)-O(1)#3	99.01(14)	O(4)#2-Cd(1)-O(1)#3	170.16(13)
O(5)#1-Cd(1)-O(1)	162.56(17)	O(11)-Cd(1)-O(1)	88.29(13)
O(2)-Cd(1)-O(1)	55.24(12)	O(4)#2-Cd(1)-O(1)	99.83(15)
O(1)#3-Cd(1)-O(1)	76.81(15)		

Table S2 Selected bond lengths and angles for **Zn-MOF** and **Cd-MOF** (Å, °)

Symmetry transformations used to generate equivalent atoms:

For **Zn-MOF**:

#1 -x, y-1/2, -z+3/2 #2 x+1, -y+1/2, z+1/2 #3 -x, y+1/2, -z+3/2

For Cd-MOF:

#1 x+1/2, -y+1/2, z-1/2 #2 -x+1/2, y+1/2, -z+1/2 #3 -x+1/2, -y+3/2, -z

Table S3 The comparisons between the characteristic emission of Eu^{3+} and the ligand-based emission in $Eu^{3+}@MOFs$

	Eu ³⁺ @Zn-MOF			Eu ³⁺ @Cd-MOF		
Substrates	Quenching efficiency			Quenching efficiency		
	Eu (based on	L (based on	Eu/L	Eu (based	L (based on	Eu/L
	617 nm)	455 nm)		on 617 nm)	461 nm)	
$Cr_2O_7^{2-}$	91.35%	86.63%	1.06	92.50%	94.24%	0.98
CrO ₄ ²⁻	91.98%	75.89%	1.21	95.69%	90.71%	1.06
Fe ³⁺	67.09%	64.71%	1.04	57.00%	48.42%	1.18

Sub	strates	Zn-MOF	Eu ³⁺ @Zn-MOF	Cd-MOF	Eu ³⁺ @Cd-MOF
	K _{sv}	1.11×10^{4}	4.87×10 ³	8.47×10 ³	5.02×10 ³
$Cr_2O_7^{2-}$	LOD (µM)	43	62	71	72
	Ratio of K _{sv}		2.28		1.69
	K _{sv}	1.07×10^{4}	5.01×10 ³	1.96×10 ⁴	7.54×10 ³
CrO ₄ ²⁻	LOD (µM)	45	60	31	47
	Ratio of K _{sv}		2.13		2.60
	K _{sv}	1.69×10 ⁴	1.88×10 ³	1.04×10^{4}	1.63×10 ³
Fe ³⁺	LOD (µM)	28	159	57	221
	Ratio of K _{sv}		8.99		6.40
	K _{sv}	0.80×10 ³	0.08×10	1.88×10 ³	0.02×10 ³
Pb^{2+}	LOD (µM)	600	/	370	/
	Ratio of K _{sv}		10.00		94.00

Table S4 The corresponding comparisons of K_{sv} and LOD for MOFs and Eu³⁺@MOFs

Fig. S2 PXRD patterns of (a) Zn-MOF; (b) Cd-MOF.

Fig. S3 TG curve of (a) Zn-MOF; (b) Cd-MOF in Ar condition.

Element .	<u>Wt</u> % ~	At% •
CK .	35.56 -	60.35 -
NK .	02.88 -	04.19.
OK	16.52 -	21.04 .
SK -	11.73 .	07.46 -
EuL .	19.32 +	02.59 -
ZnK.	14.00 .	04.36
Matrix .	Correction	ZAF +

Element .	<u>Wt</u> % •	At%.
CK.	48.41 .	65.11.
NK -	05.00*	05.77.
OK	24.06 .	24.29 .
SK .	05.67 .	02.86 -
CdL .	05.12*	00.74.
EuL .	11.75 -	01.25 -
Matrix .	Correction.»	ZAF .

Fig. S4 The EDX results of Eu³⁺@Zn-MOF and Eu³⁺@Cd-MOF.

Fig. S5 (a) The XPS spectrum of Eu³⁺@**Zn-MOF**; (b) Eu 3d XPS spectrum of Eu³⁺@ **Zn-MOF**; (c) Eu 4d XPS spectrum of Eu³⁺@ **Zn-MOF**.

Fig. S6 (a) The XPS spectrum of Eu³⁺@Cd-MOF; (b) Eu 3d XPS spectrum of Eu³⁺@ Cd-MOF; (c) Eu 4d XPS spectrum of Eu³⁺@ Cd-MOF.

Fig. S7 The FT-IR spectra and powder X-ray diffraction of $Eu^{3+}@MOFs$ before and after sensitization. (a), (b) $Eu^{3+}@Zn-MOF$; (c), (d) $Eu^{3+}@Cd-MOF$.

Fig. S8 The solid state fluorescence emission spectra of (a) Zn-MOF; (b) Cd-MOF.

Fig. S9 The fluorescence emission spectra of (a) Zn-MOF; (b) Cd-MOF in different solvents at room temperature.

Fig. S10 Fluorescence titration of (a) **Zn-MOF**; (b) **Cd-MOF** dispersed in aqueous solution with the addition of different amount of 10^{-2} M aqueous solution of Pb²⁺.

Fig. S11 Stern–Volmer plots of MOFs for Fe³⁺ and Pb²⁺ in low concentration region (a) **Zn-MOF**, (b) **Cd-MOF** for Fe³⁺; c) **Zn-MOF**, d) **Cd-MOF** for Pb²⁺ respectively and (a1)-(d1) is the corresponding Stern–Volmer plots in full concentration region.

Fig. S12 Competitive binding studies of the different metal ions on (a) **Zn-MOF**; (b) **Cd-MOF** in aqueous solution. Yellow bar represents the quenching efficiency of MOFs with the addition of 2 umol (10^{-2} M, 200μ L) Fe³⁺. Blue bar represents the quenching efficiency of MOFs with the addition of 2 umol (10^{-2} M, 200μ L) Fe³⁺ and 1 umol (10^{-2} M, 100μ L) other metal ions. And the IR of MOFs for Fe³⁺ before and after the fluorescence sensing. (c) **Zn-MOF**; (d) **Cd-MOF**.

Fig. S13 The fluorescence spectra of (a) **Zn-MOF**; (b) **Cd-MOF** with the addition of different concentrations of 10^{-5} M to 10^{-1} M aqueous solution of Fe³⁺. The insert is Stern-Volmer plot of (a) **Zn-MOF**; (b) **Cd-MOF** quenched by Fe³⁺ in aqueous solution.

Fig. S14 Fluorescence titration of (a) **Zn-MOF**; (b) **Cd-MOF** dispersed in aqueous solution with the addition of different amount of 10^{-2} M aqueous solution of CrO_4^{2-} .

Fig. S15 Stern–Volmer plots of MOFs for $Cr_2O_7^{2-}$ and CrO_4^{2-} in low concentration region (a) **Zn-MOF**, (b) **Cd-MOF** for $Cr_2O_7^{2-}$; c) **Zn-MOF**, d) **Cd-MOF** for CrO_4^{2-} respectively and (a1)-(d1) is the corresponding Stern–Volmer plots in full concentration region.

Fig. S16 Competitive binding studies of the different anions (10⁻² M, 100 μ L) on (a) **Zn-MOF**; (b) **Cd-MOF** to Cr₂O₇²⁻ in aqueous solution.

Fig. S17 Competitive binding studies of the different anions (10^{-2} M, 100μ L) on (a) **Zn-MOF**; (b) Cd-MOF to CrO_4^{2-} in aqueous solution.

Fig. S18 The fluorescence spectra of (a) **Zn-MOF**; (b) **Cd-MOF** with the addition of different concentrations of 10^{-5} M to 10^{-1} M aqueous solution of $Cr_2O_7^{2-}$. The insert is Stern-Volmer plot of **Zn-MOF** and **Cd-MOF** quenched by $Cr_2O_7^{2-}$ in aqueous solution.

Fig. S19 The fluorescence spectra of (a) **Zn-MOF**; (b) **Cd-MOF** with the addition of different concentrations of 10^{-5} M to 10^{-1} M aqueous solution of CrO_4^{2-} . The insert is Stern-Volmer plot of **Zn-MOF** and **Cd-MOF** quenched by CrO_4^{2-} in aqueous solution.

Fig. S20 The fluorescence spectra of (a) Eu^{3+} (a) Eu^{3+} (b) Eu^{3+} (c) Eu^{3+} (c) E

Fig. S21 Fluorescence titration of (a) Eu^{3+} (*i*)**Zn-MOF**; (b) Eu^{3+} (*i*)**Cd-MOF** dispersed in aqueous solution with the addition of different amount of 10^{-2} M aqueous solution of Fe³⁺.

Fig. S22 Fluorescence titration of (a) Eu^{3+} (*i*)**Zn-MOF**; (b) Eu^{3+} (*i*)**Cd-MOF** dispersed in aqueous solution with the addition of different amount of 10^{-2} M aqueous solution of $Cr_2O_7^{2-}$.

Fig. S23 Fluorescence titration of (a) Eu^{3+} (*i*) **Zn-MOF**; (b) Eu^{3+} (*i*) **Cd-MOF** dispersed in aqueous solution with the addition of different amount of 10^{-2} M aqueous solution of CrO_4^{2-} .

Fig. S24 The percentage of fluorescence quenching at 617nm and 455nm, 461nm of Eu³⁺@MOFs obtained for different cation and anions (10⁻² M) in aqueous solution at room temperature. (a) $Eu^{3+}@Zn-MOF$; (b) $Eu^{3+}@Cd-MOF$.

Fig. S25 Competitive binding studies of the different anions (10⁻² M, 100 μ L) Eu³⁺@Cd-MOF to CrO₄²⁻ in aqueous solution. And the IR spectra of Eu³⁺@Cd-MOF for CrO₄²⁻ before and after the fluorescence sensing.

Fig. S26 Stern–Volmer plots of Eu³⁺@MOFs for Fe³⁺; Pb²⁺; Cr₂O₇²⁻ and CrO₄²⁻ in low concentration region (a) Eu³⁺@**Zn-MOF**, (b) Eu³⁺@**Cd-MOF** for Fe³⁺, respectively; (c) Eu³⁺@**Zn-MOF**, d) Eu³⁺@**Cd-MOF** for Pb²⁺, respectively; (e) Eu³⁺@**Zn-MOF**, (f) Eu³⁺@**Cd-MOF** for Cr₂O₇²⁻, respectively; (g) Eu³⁺@**Zn-MOF**, (h) Eu³⁺@**Cd-MOF** for CrO₄²⁻ respectively; (a1)-(h1) is the corresponding Stern–Volmer plots in full concentration region.

Fig. S27 The liquid UV-vis spectra of MOFs upon addition of Fe^{3+} , Pb^{2+} , CrO_4^{2-} and $Cr_2O_7^{2-}$ in practical concentration.

Fig. S28 The liquid UV-vis spectra of Eu^{3+} @MOFs upon addition of Fe^{3+} , Pb^{2+} , CrO_4^{2-} and $Cr_2O_7^{2-}$ in practical concentration.