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S1 Synthesis
All precursors and solvents were bought from commercial suppliers and used without any further 

purification.

MOF Synthesis

1 mmol H2X-bdc (for weights see table below), Zn(NO3)2∙6H2O (1mmol, 298 mg) and dabco (0.7 mmol, 

112 mg) were put in a scintillation vial and 20 mL of DMF were added. The mixture was sonicated for 

10 minutes and afterwards placed in an isothermal oven at 120 °C for 24h. Afterwards, the reaction 

mixture was cooled to room temperature and the mixture was transferred into centrifugation tubes. After 

centrifugation (8700 rpm, 3 min) the DMF was removed and replaced with fresh DMF. The DMF was 

replaced twice with fresh DMF and three times with dichloromethane. Afterwards the samples were 

dried in vacuo at 120 °C and transferred into a glovebox until further manipulation. In order to achieve 

higher yields of material for co-adsorption measurements, several batches of the same material were 

combined.

Zn2(bdc)2(dabco) – Yield: 28.4% (162.5 mg, 0.284 mmol)

Zn2(DM-bdc)2(dabco) – Yield: 25.3% (158.9 mg, 0.253 mmol)

Zn2(TM-bdc)2(dabco) – Yield: 28.5% (195.0 mg, 0.285 mmol)

Table S1: Summary of the used amount of dicarboxylate linkers (H2R-bdc)

MOF m H2X-bdc

Zn2(bdc)2(dabco) 166.13 mg

Zn2(DM-bdc)2(dabco) 194.18 mg

Zn2(TM-bdc)2(dabco) 222.24 mg



S2 Powder X-ray Diffraction Patterns

Figure S1: Powder X-ray diffraction patterns of activated Zn2(bdc)2(dabco) (DMOF, black), Zn2(DM-
bdc)2(dabco) (DMOF-DM, red) and Zn2(TM-bdc)2(dabco) (DMOF-TM, blue) compared to simulated patterns. 



S3 IR Spectroscopy

Figure S2: IR spectra of activated Zn2(bdc)2(dabco) (DMOF, black), Zn2(DM-bdc)2(dabco) (DMOF-DM, red) 
and Zn2(TM-bdc)2(dabco) (DMOF-TM, blue).

The IR spectra feature all the expected signals of the Zn2(R-bdc)2(dabco) MOFs. In the range from 

~2940 - 2880 cm-1 the sp3-CH3 and -CH2- stretching vibration can be observed which originates from 

the dabco building block and from the CH3 groups located on the DM-bdc2- and TM-bdc2- linkers. The 

prominent feature at ~1600  cm-1 is attributed to the CO stretching vibrations of the carboxylate anion 

and the features in the range of 1600 cm-1 - 1500 are commonly associated with the stretching vibrations 

of aromatic compounds. 



S4 N2 Sorption Isotherms

Figure S3: Nitrogen adsorption isotherms of Zn2(bdc)2(dabco) (DMOF) (black squares), Zn2(DM-bdc)2(dabco) 
(DMOF-DM) (red circles) and Zn2(TM-bdc)2(dabco) (DMOF-TM) (blue triangles) measured at 77 K. Filled and 
open symbols represent adsorption and desorption respectively. Lines are a guide to the eye only.

The initial synthesis for DMOF was reported in 2004 by the group of Kimoon Kim and a BET surface 

area below the value in this study was reported (1450 m2g-1 vs 1779.9 m2g-1 in this study).1 In a follow 

up study by the Kim lab a variety of differently substituted DMOF analogues was presented, among 

them also DMOF-TM, which featured a BET surface area of 920 m2g-1, which is in a similar range as 

the materials surface area in this study.2 DMOF-DM was reported first by the group of Krista Walton 

in 2013 and a BET surface area of 1115 m2g-1 was reported, which is in good agreement with the BET 

surface area for this material reported in here (1133 m2g-1).3



S5 Thermogravimetric Analysis

Figure S4: TGA curves of DMOF (black), DMOF-DM (red) and DMOF-TM (black) measured under N2 
atmosphere with a heating ramp of 10 K min-1.



S6 Scanning Electron Microscopy

Figure S5: Scanning Electron Micrographs of Zn2(bdc)2(dabco) (DMOF, (a)), Zn2(DM-bdc)2(dabco) (DMOF-
DM, (b)) and Zn2(TM-bdc)2(dabco) (DMOF-TM (c)).

For all three samples we observe a polydisperse size distribution. For DMOF (a) we observed crystallites 

in the range from 5-25 μm after activation. In the case of DMOF-DM (b) there are some larger 

crystallites in the range of 50 μm, but mostly smaller crystallites in the few micron to submicron regime 

are observed. In comparison to DMOF the edges are less sharp and pronounced in this sample. In the 

case of DMOF-TM a very wide range of crystallite sizes is observed with larger crystals in the range of 

25 μm, which are decorated with submicron crystals.



S7 Calculation of Isosteric Heats of Adsorption
The binding energy of C2H6 and C2H4 to the adsorption sites (isosteric heat of adsorption, Qst) within 

the MOFs are determined via the Clausius Clapeyron expression, as follows: 

𝑄𝑠𝑡 = 𝑅𝑇2 (∂𝑙𝑛𝑝
∂𝑇 𝑞)

Calculations of Qst were accomplished using the pure component dual site Langmuir Freundlich 

isotherm fits:

𝑉𝑎𝑑𝑠 =  
𝑉𝑚𝑎𝑥, 1 ∙ 𝑘1 ∙ 𝑝

𝜈1

1 + 𝑘1 ∙ 𝑝
𝜈1

+
𝑉𝑚𝑎𝑥, 2 ∙ 𝑘2 ∙ 𝑝

𝜈2

1 + 𝑘2 ∙ 𝑝
𝜈2

with Vmax = adsorption capacity at saturation, k = Langmuir-Freundlich constant, p = pressure of the 

adsorbate and v = dimensionless exponent. The fit parameters and the C2H6 and C2H8 isotherms 

measured at 288, 298 and 308 K are shown in Figures S6-S13. In the case of DMOF-DM, due to the 

slight stepped shape of the adsorption isotherm, it was not possible to obtain a reasonable fit with a dual 

site Langmuir Freundlich isotherm over the whole pressure range, hence we conducted a single site 

Langmuir Freundlich fit for the low pressure region and a dual site Langmuir Freundlich fit for the high 

pressure region of the isotherm.

Figure S6: Dual site Langmuir Freundlich fits for ethane adsorption isotherms on DMOF measured at 288 K (blue 
squares), 298 K (black circles) and 308 K (red triangles) displayed in linear form (top left) and with a logarithmic 
x-axis(top right). Parameters of the dual site Langmuir Freundlich fit can be found at the bottom.



Figure S7: Dual site Langmuir Freundlich fits for ethylene adsorption isotherms on DMOF measured at 288 K 
(blue squares), 298 K (black circles) and 308 K (red triangles) displayed in linear form (top left) and with a 
logarithmic x-axis(top right). Parameters of the dual site Langmuir Freundlich fit can be found at the bottom.

Figure S8: Dual site Langmuir Freundlich fits for ethane adsorption isotherms on DMOF-DM measured at 288 
K (blue squares), 298 K (black circles) and 308 K (red triangles) displayed in linear form (top left) and with a 
logarithmic x-axis(top right). Parameters of the dual site Langmuir Freundlich fit can be found at the bottom.



Figure S9: Single site Langmuir Freundlich fits for ethane adsorption isotherms on DMOF measured at 288 K 
(blue squares), 298 K (black circles) and 308 K (red triangles) displayed in linear form (top left) and with a 
logarithmic x-axis(top right). Parameters of the dual site Langmuir Freundlich fit can be found at the bottom.

Figure S10: Dual site Langmuir Freundlich fits for ethane adsorption isotherms on DMOF-DM measured at 288 
K (blue squares), 298 K (black circles) and 308 K (red triangles) displayed in linear form (top left) and with a 
logarithmic x-axis(top right). Parameters of the dual site Langmuir Freundlich Fit can be found at the bottom.



 

Figure S11: Single site Langmuir Freundlich fits for the low pressure region of the ethylene adsorption isotherms 
on DMOF-DM measured at 288 K (blue squares), 298 K (black circles) and 308 K (red triangles) displayed in 
linear form (top left) and with a logarithmic x-axis(top right). Parameters of the single site Langmuir Freundlich 
fit can be found at the bottom.

Figure S12: Dual site Langmuir Freundlich fits for ethane adsorption isotherms on DMOF-TM measured at 288 
K (blue squares), 298 K (black circles) and 308 K (red triangles) displayed in linear form (top left) and with a 
logarithmic x-axis(top right). Parameters of the dual site Langmuir Freundlich fit can be found at the bottom.



Figure S13: Dual site Langmuir Freundlich fits for ethylene adsorption isotherms on DMOF-TM measured at 
288 K (blue squares), 298 K (black circles) and 308 K (red triangles) displayed in linear form (top left) and with a 
logarithmic x-axis(top right). Parameters of the dual site Langmuir Freundlich fit can be found at the bottom.



S8 Calculation of Ideal Adsorbed Solution Theory 
Selectivities

The ideal adsorbed solution theory (IAST), invented by Myer and Prausnitz in 1965,4 is a widely used 

method to assess the sorption selectivity in a binary mixture based on their single-component isotherms. 

For its calculation, the fits of the single site Langmuir isotherms at 298 were used (see previous section). 

The adsorption selectivity Sads is defined by the following equation: 

𝑆𝑎𝑑𝑠 =
𝑞1 𝑞2

𝑝1 𝑝2

with qi = molar loadings of species i in the adsorbed phase and pi = bulk gas pressure of species i.



S9 Transformation of High Pressure Isotherms
The high pressure isotherms were converted from excess absorption to absolute absorption according 
to the following equation:

 𝑛𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 = 𝑛𝑒𝑥𝑐𝑒𝑠𝑠 + 𝑉𝑔 ∙ 𝜌𝑔

with

𝑉𝑔 = 𝑃𝑜𝑟𝑒 𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑛𝑡

𝜌𝑔 = 𝐵𝑢𝑙𝑘 𝑚𝑜𝑙𝑎𝑟 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑎𝑑𝑠𝑜𝑟𝑏𝑎𝑡𝑒

The pressure dependent molar densities of the adsorbates were obtained from optimized equations of 
state, which can be found on the homepage of the National Institute of Standards and technology 
(https://webbook.nist.gov/chemistry/fluid/). The equation of state used to describe the pressure 
dependent density for ethane was developed by Friend and coworkers5 and the equation of state used 
to describe the behavior of ethane was developed by Smukala and coworkers.6

Figure S14: Isothermal properties of ethane and ethylene determined through optimized equations of state from 
the National Institute of Standards and Technology. 

The Curves obtained through the equations of state were fit with a 5th order polynomial equation. The 
fits were used to calculate densities for all measurement pressures:

𝜌 = 𝐴0 + 𝐴1 ∙ 𝑝 + 𝐴2 ∙ 𝑝2 + 𝐴3 ∙ 𝑝3 + 𝐴4 ∙ 𝑝4 + 𝐴5 ∙ 𝑝5

Ethane Ethene
Coefficient Value Value

A0 -1.808∙10-4 -1.21∙10-5

A1 4.060∙10-4 4.04∙10-4

A2 2.285∙10-8 2.23∙10-8

A3 1.261∙10-11 2.72∙10-12

A4 -3.888∙10-15 -1.10∙10-16

A5 9.928∙10-19 1.03∙10-19

The pore volumes of the materials were determined from optimized 0 K crystal structures using the 
iRASPA package.7 

https://webbook.nist.gov/chemistry/fluid/


Table S2: Pore volumes of DMOF, DMOF-DM and DMOF-TM.

Material Pore Volume

Zn2(bdc)2(dabco) (DMOF) 0.79220 cm3 g-1

Zn2(DM-bdc)2(dabco) (DMOF-DM) 0.62357 cm3 g-1

Zn2(TM-bdc)2(dabco) (DMOF-TM) 0.43965 cm3 g-1

Below a comparison between the excess and absolute adsorption can be found

Figure S15: Comparison of the excess (empty symbols) and the absolute (filled symbols) adsorption isotherms 
for DMOF (Zn2(bdc)2(dabco)), DMOF-DM (Zn2(DM-bdc)2(dabco)) and DMOF-TM (Zn2(TM-bdc)2(dabco)) 
measured at 298 K. Data from ethane and ethylene adsorption experiments are shown as blue circles and green 
triangles, respectively. Lines connecting the measurement points are a guide to the eye only.



S10 Dual Site Langmuir Freundlich Fits of High 
Pressure Isotherms

Figure S16: Dual Site Langmuir Freundlich Fits of the ethane (blue circles) and ethylene (green triangles) high 
pressure adsorption isotherms of DMOF.



Figure S17: Dual Site Langmuir Freundlich Fits of the ethane (blue circles) and ethylene (green triangles) high 
pressure adsorption isotherms of DMOF-DM.



Figure S18: Dual Site Langmuir Freundlich Fits of the ethane (blue circles) and ethylene (green triangles) high 
pressure adsorption isotherms of DMOF-TM.



S11 Additional Computational Data

Figure S19: Interaction energies of ethane (blue) and ethylene (orange) with DMOF, DMOF-DM and DMOF-
TM derived through molecular simulations.



S12 Tabulated Co-adsorption Data
Below the tabulated results from the coadsorption measurements are displayed. Herein, pe is the 

equilibration pressure, qn and pn are the molar fractions of the respective gases in the gas phase and in 

the adsorbed phase, and S is the adsorption selectivity.

Table S3: Tabulated measurement data of coadsorption measurements conducted at 298 K on DMOF with a 
C2H6:C2H4 ratio of 10:90.

DMOF 10:90

# pe / kPa q(C2H6) q(C2H4) p(C2H6) p(C2H4) Vads, total / cm3g-1 S(C2H6/C2H4)
1 77.06 8.74% 91.26% 10.81% 89.19% 21.90 0.79
2 151.73 13.07% 86.93% 10.52% 89.48% 37.71 1.28
3 232.91 13.86% 86.14% 10.21% 89.79% 47.77 1.42
4 348.18 13.09% 86.91% 9.40% 90.60% 55.87 1.45
5 442.17 13.23% 86.77% 9.77% 90.23% 60.22 1.41
6 534.29 12.71% 87.29% 9.38% 90.62% 63.33 1.41
7 630.87 14.30% 85.70% 9.80% 90.20% 65.94 1.54
8 725.16 14.16% 85.84% 9.80% 90.20% 68.07 1.52
9 820.13 14.50% 85.50% 9.81% 90.19% 69.80 1.56
10 915.75 14.16% 85.84% 9.85% 90.15% 71.41 1.51

Table S4: Tabulated measurement data of coadsorption measurements conducted at 298 K on DMOF with a 
C2H6:C2H4 ratio of 50:50.

DMOF 50:50 

# pe / kPa q(C2H6) q(C2H4) p(C2H6) p(C2H4) Vads, total / cm3g-1 S(C2H6/C2H4)
1 157.03 59.10% 40.90% 50.90% 49.10% 42.58 1.39
2 331.23 60.93% 39.07% 51.36% 48.64% 56.79 1.48
3 536.14 57.94% 42.06% 49.30% 50.70% 64.04 1.42
4 725.76 58.68% 41.32% 49.40% 50.60% 68.09 1.45
5 915.70 59.32% 40.68% 49.54% 50.46% 71.08 1.49
6 1107.76 60.22% 39.78% 49.55% 50.45% 73.44 1.54
7 1299.19 58.74% 41.26% 49.68% 50.32% 75.41 1.44
8 1491.96 60.57% 39.43% 49.69% 50.31% 76.73 1.56
9 1684.58 60.26% 39.74% 49.74% 50.26% 78.23 1.53



Table S5: Tabulated measurement data of coadsorption measurements conducted at 298 K on DMOF-DM with 
a C2H6:C2H4 ratio of 10:90.

DMOF-DM 10:90 

# pe / kPa q(C2H6) q(C2H4) p(C2H6) p(C2H4) Vads, total / cm3g-1 S(C2H6/C2H4)
1 56.76 9.25% 90.75% 11.34% 88.66% 43.16 0.79
2 128.01 12.63% 87.37% 10.04% 89.96% 62.63 1.30
3 229.03 13.12% 86.88% 8.89% 91.11% 74.77 1.55
4 321.99 13.93% 86.07% 9.27% 90.73% 81.04 1.59
5 413.52 13.66% 86.34% 9.06% 90.94% 84.93 1.59
6 508.12 14.09% 85.91% 9.50% 90.50% 87.81 1.56
7 603.58 14.70% 85.30% 9.51% 90.49% 90.01 1.64
8 698.14 15.01% 84.99% 9.56% 90.44% 91.71 1.67
9 793.41 14.95% 85.05% 9.59% 90.41% 93.08 1.66

10 888.78 15.23% 84.77% 9.64% 90.36% 94.33 1.68

Table S6: Tabulated measurement data of coadsorption measurements conducted at 298 K on DMOF-DM with 
a C2H6:C2H4 ratio of 50:50.

DMOF-DM 50:50 

# pe / kPa q(C2H6) q(C2H4) p(C2H6) p(C2H4) Vads, total / cm3g-1 S(C2H6/C2H4)
1 129.40 59.71% 40.29% 49.13% 50.87% 69.05 1.53
2 301.39 63.00% 37.00% 50.15% 49.85% 83.33 1.69
3 508.01 61.13% 38.87% 48.40% 51.60% 89.14 1.68
4 699.37 62.04% 37.96% 48.67% 51.33% 92.20 1.72
5 889.53 62.44% 37.56% 49.01% 50.99% 94.22 1.73
6 1082.06 62.55% 37.45% 49.18% 50.82% 95.69 1.73
7 1275.17 63.12% 36.88% 49.27% 50.73% 96.85 1.76
8 1469.65 62.78% 37.22% 49.37% 50.63% 97.70 1.73
9 1664.06 63.23% 36.77% 49.42% 50.58% 98.47 1.76

Table S7: Tabulated measurement data of coadsorption measurements conducted at 298 K on DMOF with a 
C2H6:C2H4 ratio of 10:90.

DMOF-TM 10:90

# pe / kPa q(C2H6) q(C2H4) p(C2H6) p(C2H4) Vads, total / cm3g-1 S(C2H6/C2H4)
1 25.30 11.03% 88.97% 9.74% 90.26% 72.21 1.15
2 83.09 13.40% 86.60% 8.13% 91.87% 107.13 1.75
3 185.58 13.46% 86.54% 7.57% 92.43% 119.18 1.90
4 279.40 14.24% 85.76% 7.98% 92.02% 122.65 1.92
5 373.39 14.66% 85.34% 8.26% 91.74% 124.56 1.91
6 470.60 15.51% 84.49% 8.82% 91.18% 125.97 1.90
7 566.69 16.01% 83.99% 8.91% 91.09% 127.86 1.95
8 662.48 16.38% 83.62% 9.00% 91.00% 128.56 1.98
9 758.48 16.75% 83.25% 9.10% 90.90% 129.08 2.01

10 853.50 16.74% 83.26% 9.22% 90.78% 129.54 1.98



Table S8: Tabulated measurement data of coadsorption measurements conducted at 298 K on DMOF with a 
C2H6:C2H4 ratio of 10:90.

Zn2(TM-bdc)2(dabco) 50:50

# pe q(C2H6) q(C2H4) p(C2H6) p(C2H4) Vads, total / cm3g-1 S(C2H6/C2H4)
1 91.42 57.57% 42.43% 41.77% 58.23% 116.13 1.89E+00
2 267.19 63.32% 36.68% 46.65% 53.35% 124.63 1.97E+00
3 445.79 65.07% 34.93% 49.05% 50.95% 126.80 1.94E+00
4 632.63 65.85% 34.15% 49.75% 50.25% 127.86 1.95E+00
5 814.71 66.69% 33.31% 50.49% 49.51% 128.47 1.96E+00
6 1000.60 66.99% 33.01% 50.86% 49.14% 128.87 1.96E+00
7 1243.97 65.29% 34.71% 48.77% 51.23% 129.36 1.98E+00
8 1440.03 65.42% 34.58% 48.91% 51.09% 129.59 1.98E+00
9 1637.93 65.38% 34.62% 48.99% 51.01% 129.86 1.97E+00



S13 Comparison with Literature Values
The table underneath summarizes some key data of other ethane selective materials

Table S9: Summary of relevant data for a range of different ethane selective MOFs

MOF T / °C Qst, (C2H6) 
/ kJ mol-1

Qst, (C2H4) / 
kJ mol-1

nads(C2H6) 100 kPa / 
cm3 g-1

nads(C2H6) 100 kPa/ 
mmol g-1

q C2H6, mixed 
/ mmol g-1

q C2H4, mixed 
/ mmol g-1

Selectivity 
/ C2H6/C2H4

Ref

IRMOF-8 25 52.5 50 92 4.2 2.16 1.25 1.7 8

MAF-49 43 61 48 38.8 1.71 1.21 0.44 2.7 8

MIL-142A 25 27.2 26.2 85.1 3.84 2.1 1.39 1.51 9

Ni2(bdc)2(dabco) 25 21.5 18.3 112 5.13 2.48 1.38 1.8 10

PCN-245 25 22.8 21 73.2 3.31 1.8 1 1.8 11

ZIF-4 20 NA NA 51.5 2.3 1.56 0.73 2.15 12

PCN-250 25 23.2 21.1 116.7 5.21 2.96 1.6 1.85 13

ZIF-7 25 NA NA 41.1 2 1.2 0.8 1.5 14

ZIF-8 22 17.2 16.1 45.4 2.54 1.26 0.7 1.8 15

Cu(Qc)2 25 30 25.4 41.5 1.85 1.65 0.48 3.45 16

Fe2O2dobdc 25 66.8 36.5 74.3 3.29 2.53 0.57 4.4 17

MUF-15 20 29.2 28.2 105.1 4.67 3.13 1.6 1.96 18

Ni2(TM-
bdc)2(dabco) 25 39 NA 121.8 5.44 NA NA 1.98a 19

CPM-733 25 23.4 22.5 159.6 7.13 4.01 NA 1.75 20

ZJU-120 23 27.6 NA 110.0 4.91 3.51 NA 2.74 21

LIFM-63 25 25.8 NA 67.2 3.0 NA NA 1.56 22

Zn(atz)(ipa) 25 45.8 40.0 40.5 1.81 NA NA 1.7 23

TJT-100 25 29 25 82 3.66 2.05 NA 1.2b 24

Azole-Th-1 25 28.6 26.1 100.8 4.5 2.3c 1.4c 1.46 25

NPU-3 25 18.7 17.8 74.59 3.33 NA NA 3.25 26

UiO-66-2CF3 25 14.5 NA 19.712 0.88 NA NA 2.54 27

DMOF-TM 25 31.5 30.2 118.94 5.31 2.98d 2.2d 1.88 This 
Work

a – 1:15 C2H6/C2H4; 
b – 1:99 C2H6/C2H4; c – estimated from a Figure in ref21; d – from coadsorption experiments a 91 kPa.



S14 Heats of Adsorption of Ni2(TM-bdc)2(dabco)

Figure S20: Comparison of the heats of adsorption of Ni2(TM-bdc)2(dabco) published by Ma and coworker in ref16 and heats 
of adsorption calculated from the fitting parameters published by Ma and coworkers.



S15 Adsorbate Properties

Table S10: Summary of the kinetic diameter, polarizability and quadrupole moment of CH4, C2H6, C2H4 and 
C2H2.28

Adsorbates Sum Formula Kinetic Diameter Polarizability Quadrupole Moment
Ethane C2H6 4.443 Å 44.3-44.7 × 1025/cm3 0.65 × 1026/esu cm2

Ethylene C2H4 4.163 Å 42.52 × 1025/cm3 1.5 × 1026/esu cm2
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