Supporting Information

Noninnocence of deprotonated 1,2-bis((1H-pyrrol-2-yl)methylene) hydrazine bridge in diruthenium frameworks-a function of co-ligands

Maya Kumari, Sudip Kumar Bera and Goutam Kumar Lahiri*

Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076,

India, E-mail: <u>lahiri@chem.iitb.ac.in</u>

Fig. S1 ORTEP of the asymmetric unit of **1a** consisting of two independent molecules. Ellipsoids are drawn at 20% probability level. Hydrogen atoms are omitted for clarity.

Fig. S2 ORTEP of the asymmetric unit of **1b** consisting of two independent molecules. Ellipsoids are drawn at 20% probability level. Hydrogen atoms are omitted for clarity.

Fig. S3 ESI(+) mass spectra of (a) $\{1a+H\}^+$, (b) $\{1b+H\}^+$, (c) $\{[2](ClO_4)_2-ClO_4\}^+$, (d) $\{[3a](ClO_4)_2-ClO_4\}^+$ and (e) $\{[3b](ClO_4)_2-ClO_4\}^+$ in CH₃CN.

Fig. S4 Torsional angle (deg) between the planes for 1a.

Fig. S5 Torsional angle (deg) between the planes for 1b.

Fig. S6 Torsional angle (deg) between the planes for $[2]^{2+}$.

Fig. S7 Torsional angle (deg) between the planes for $[3a]^{2+}$.

Fig. S8 Torsional angle (deg) between the planes for $[\mathbf{3b}]^{2+}.$

Fig. S9 C-H--- π interactions in the crystals of (a) [2](ClO₄)₂, (b) [3a](ClO₄)₂ and (c) [3b] (ClO₄)₂.

Fig. S10 Integrated ¹H NMR spectrum of [**3a**](ClO₄)₂ in (CD₃)₂SO ₃ with TMS ($\delta = 0$ ppm) as an internal standard.

Complex	1a (molecule A)	1b (molecule A)	[2](ClO ₄) ₂ •CH ₂ Cl ₂	[3a](ClO ₄) ₂	[3b](ClO ₄) ₂ •CH ₃ OH
empirical formula	$2(C_{30}H_{36}N_4O_8Ru_2)$	$2(C_{34}H_{45}N_4O_8Ru_2)$	$C_{51}H_{42}Cl_4N_{12}O_8Ru_2$	C ₂₇ H ₂₂ ClN ₈ O ₄ Ru	$C_{53.7}H_{46.7}Cl_2N_{16}O_9Ru_2$
formula weight	1563.57	1676.73	1294.90	659.04	1333.86
crystal system	triclinic	triclinic	triclinic	triclinic	triclinic
space group	<i>P</i> ī	<i>P</i> ī	<i>P</i> ī	<i>P</i> ī	<i>P</i> ī
a (Å)	9.6955(5)	12.6118(9)	13.8250(3)	9.3715(7)	11.3064(2)
<i>b</i> (Å)	19.0317(9)	15.1919(12)	14.1090(3)	12.8604(10)	12.8799(3)
<i>c</i> (Å)	19.4285(6)	22.0273(17)	14.5097(3)	14.0731(10)	20.0088(4)
a (deg)	100.6410(10)	88.880(6)	82.406(2)	65.971(7)	82.3750(18)
β (deg)	91.2890(10)	78.068(6)	87.564(2)	75.515(6)	80.6850(18)
γ (deg)	104.4110(10)	84.835(6)	73.395(2)	85.018(6)	85.8215(18)
$V(\text{\AA}^3)$	3403.6(3)	4112.4(5)	2688.37(10)	1499.7(2)	2846.00(11)
Ζ	2	2	2	2	2
μ (mm ⁻¹)	0.937	0.782	0.826	0.657	0.695
<i>T</i> (K)	150(2)	150(2)	150(2)	150(2)	150(2)
$ ho_{ m calcd}$ (g cm ⁻³)	1.526	1.354	1.600	1.459	1.557
F (000)	1582	1710	1304	666	1350.0
θ range (deg)	2.176 to 25	1.645 to 24.999	2.095, 24.999	1.630 to 31.209	2.382 to 25
data/restraints/ parameters	11114/24/809	14450/0/889	9481/30/785	8746/0/370	10012/79/761
$ \begin{array}{ c c c }\hline R1, wR2 & [I > \\ 2\sigma(I) \end{bmatrix} \end{array} $	0.0668, 0.1743	0.0668, 0.1419	0.0331, 0.0758	0.0487, 0.1201	0.0624, 0.1608
R1, wR2(all data)	0.0823, 0.1872	0.1318, 0.1713	0.0396, 0.0803	0.0650, 0.1302	0.0702, 0.1682
GOF on F^2	1.022	0.947	1.066	1.049	1.042
largest difference in peak/hole, (e $Å^{-3}$)	1.989 / -1.848	0.916 / -0.882	0.575 / -1.074	0.94 / -1.24	2.84/-1.26

Bond (Å)	1a (molecule A)		1b (molecule A)	
	X-ray	DFT	X-ray	DFT
Ru1-N1	2.014(5)	2.031	2.015(6)	2.049
Ru1-N2	2.056(5)	2.099	2.017(6)	2.090
Ru1-O1	2.030(4)	2.085	2.035(5)	2.084
Ru1-O2	2.004(4)	2.045	1.988(5)	2.046
Ru1-O3	2.010(4)	2.075	2.037(5)	2.080
Ru1-O4	2.009(4)	2.042	1.997(5)	2.045
Ru2-N3	2.054(6)	2.100	2.035(6)	2.092
Ru2-N4	2.000(6)	2.030	2.016(6)	2.047
Ru2-O5	2.037(6)	2.075	1.981(5)	2.080
Ru2-O6	1.991(5)	2.042	2.031(5)	2.044
Ru2-O7	2.005(5)	2.083	2.030(5)	2.085
Ru2-O8	2.029(5)	2.046	1.997(5)	2.046
N2-N3	1.423(7)	1.383	1.405(8)	1.382
N2-C5	1.296(8)	1.317	1.307(9)	1.320
N3-C6	1.300(8)	1.317	1.311(8)	1.320
C4-C5	1.417(9)	1.409	1.380(10)	1.402
C6-C7	1.425(9)	1.409	1.397(10)	1.320
Ru1…Ru2	4.935	5.004	4.934	4.975

Table S2 Selected bond distances (Å)

Bond distances (Å)	1a (molecule B)		1b (molecule B)	
	X-ray	DFT	X-ray	DFT
Ru3-N5	1.980(6)	2.001	2.007(6)	2.039
Ru3-N6	2.050(5)	2.199	2.024(6)	2.076
Ru4-N7	2.067(5)	2.105	2.023(6)	2.081
Ru4-N8	1.995(5)	2.005	2.011(6)	2.046
Ru3-O9	2.045(6)	2.085	1.996(5)	2.001
Ru3-O10	1.986(6)	2.002	2.019(5)	2.055
Ru3-O11	2.038(5)	2.120	2.004(5)	2.019
Ru3-O12	2.002(6)	2.080	2.027(5)	2.077
Ru4-O13	2.043(5)	2.071	2.040(5)	2.100
Ru4-O14	1.996(5)	2.002	2.008(5)	2.014
Ru4-O15	2.012(5)	2.093	2.000(5)	2.005
Ru4-O16	1.999(5)	2.000	2.024(5)	2.086
N6-N7	1.405(7)	1.393	1.413(7)	1.389
N5-C34	1.399(9)	1.410	-	-
N5-C38	-	-	1.380(9)	1.410
N6-C35	1.316(8)	1.345	-	_
N6-C39	-	-	1.314(9)	1.398
N7-C36	1.308(8)	1.305	-	-
N7-C40	-	-	1.287(9)	1.297
C34-C35	1.423(9)	1.413	-	-
C36-C37	1.422(9)	1.401	-	_
C38-C39	_	-	1.410(10)	1.419
C40-C41	-	-	1.385(10)	1.401
Ru3…Ru4	5.005	5.215	4.920	4.975

Table S3 Selected bond distances (\AA)

Bond (Å)	[2](Cl0	D ₄) ₂	[3a](Cl	O4)2	[3b](Cl	[3b](ClO ₄) ₂	
	X-ray	DFT	X-ray	DFT	X-ray	DFT	
Ru1-N1	2.051(2)	2.085	2.042(2)	2.074	2.059(5)	2.086	
Ru1-N2	2.119(2)	2.136	2.164(2)	2.147	2.152(4)	2.133	
Ru1-N3	-	-	2.032(2)	2.136	-	-	
Ru1-N5	2.056(2)	2.138	2.061(2)	2.093	2.043(5)	2.120	
Ru1-N6	2.051(2)	2.100	2.013(2)	2.069	-	-	
Ru1-N7	2.058(2)	2.093	-	-	2.048(4)	2.080	
Ru1-N8	2.050(2)	2.098	2.027(2)	2.087	1.981(5)	2.063	
Ru1-N10	-	-	-	-	2.051(4)	2.096	
Ru2-N3	2.120(2)	2.136	-	-	2.123(4)	2.127	
Ru2-N4	2.077(2)	2.085	-	-	2.041(4)	2.075	
Ru2-N9	2.077(2)	2.093	-	-	-	-	
Ru2-N10	2.055(2)	2.098	-	-	-	-	
Ru2-N11	2.058(2)	2.138	-	-	2.052(4)	2.065	
Ru2-N12	2.054(2)	2.100	-	-	-		
Ru2-N13	-	-	-	-	2.052(4)	2.095	
Ru2-N14	-	-	-	-	2.016(4)	2.152	
Ru2-N16	-	-	-	-	2.043(4)	2.089	
N2-N3	1.412(3)	1.395	-	-	1.411(6)	1.394	
N2-N2 ⁱ	-	-	1.400(4)	1.391	-	-	
N3-N4	-	-	1.288(3)	1.298	-	-	
N5-N6	-	-	-	-	1.282(6)	1.283	
N6-N7	-	-	1.286(3)	1.292	-	-	
N8-N9	-	-	-	-	1.279(6)	1.281	
N11-N12	-	-	-	-	1.291(6)	1.279	
N14-N15	-	-	-	-	1.286(6)	1.279	
N2-C5	1.309(3)	1.319	1.310(4)	1.320	1.307(7)	1.319	
N2 ⁱ -C5 ⁱ	-	-	1.439(4)	1.420	-	-	
N3-C6	1.305(4)	1.319	-	-	1.310(7)	1.319	
C4-C5	1.405(4)	1.406	1.402(4)	1.404	1.403(7)	1.403	
C4 ⁱ -C5 ⁱ	-	-	1.386(4)	1.404	-	-	
C6-C7	1.410(4)	1.406	-	-	1.405(7)	1.405	
Ru1…Ru2	5.141	5.497	5.351	5.537	5.201	5.467	

Table S4 Selected bond distances (Å)

Bond angles (deg)	1a (mole	cule A)	1b (molecule A)	
	X-ray	DFT	X-ray	DFT
N1-Ru1-N2	79.00(2)	78.66	79.90(2)	79.03
N1-Ru1-O1	175.57(19)	174.64	97.50(2)	97.91
N1-Ru1-O2	88.24(18)	88.01	93.00(2)	94.05
N1-Ru1-O3	93.03(19)	94.14	174.60(2)	174.06
N1-Ru1-O4	94.7(2)	95.92	87.30(2)	87.69
N2-Ru1-O1	96.71(19)	96.85	177.00(2)	176.93
N2-Ru1-O2	90.23(18)	91.22	89.10(2)	88.52
N2-Ru1-O3	90.67(18)	88.12	94.70(2)	95.84
N2-Ru1-O4	173.00(19)	174.51	90.10(2)	91.42
O1-Ru1-O2	90.91(17)	89.16	92.60(2)	91.39
O1-Ru1-O3	87.87(17)	88.59	87.80(2)	88.74
O1-Ru1-O4	89.60(18)	88.59	88.20(2)	89.44
O2-Ru1-O3	178.57(17)	177.57	87.50(2)	87.21
O2-Ru1-O4	86.64(17)	89.44	179.10(2)	178.20
O3-Ru1-O4	92.60(17)	91.42	92.20(2)	89.78
N3-Ru2-N4	78.90(2)	78.69	78.67(2)	78.96
N3-Ru2-O5	99.10(2)	96.52	88.40(2)	88.27
N3-Ru2-O6	90.30(2)	91.19	176.40(2)	176.93
N3-Ru2-O7	88.40(2)	88.14	96.10(2)	95.94
N3-Ru2-O8	173.30(2)	174. 59	90.00(2)	91.58
N4-Ru2-O5	177.10(2)	174.25	93.00(2)	93.94
N4-Ru2-O6	87.30(2)	87.72	97.50(2)	98.00
N4-Ru2-O7	93.00(2)	94.43	175.20(2)	173.98
N4-Ru2-O8	94.70(2)	95.95	87.80(2)	87.64
O5-Ru2-O6	90.60(3)	91.50	93.50(2)	91.49
O5-Ru2-O7	89.10(3)	89.36	88.10(2)	87.11
O5-Ru2-O8	87.30(2)	88.86	178.00(2)	178.35
O6-Ru2-O7	178.60(2)	177.56	87.00(2)	88.73
O6-Ru2-O8	87.50(2)	88.54	88.20(2)	89.06

Table S5 Selected bond angles (deg)

Bond angles (deg)	1a (molec	1a (molecule B)		1b (molecule B)	
	X-ray	DFT	X-ray	DFT	
N5-Ru3-N6	79.80(2)	78.59	79.40(2)	79.02	
N5-Ru3-O9	175.30(2)	174.03	94.00(2)	93.89	
N5-Ru3-O10	92.20(3)	91.29	96.60(2)	95.78	
N5-Ru3-O11	95.10(2)	93.99	87.80(2)	87.09	
N5-Ru3-O12	88.90(2)	87.98	175.00(2)	174.98	
N6-Ru3-O9	96.90(2)	95.91	89.00(2)	88.69	
N6-Ru3-O10	89.30(2)	90.00	175.90(2)	174.76	
N6-Ru3-O11	174.10(2)	173.01	89.80(2)	87.84	
N6-Ru3-O12	88.90(2)	88.04	95.60(2)	96.01	
O9-Ru3-O10	91.10(3)	90.87	92.50(2)	91.59	
O9-Ru3-O11	88.40(2)	87.99	177.60(2)	176.82	
O9-Ru3-O12	87.80(2)	87.89	86.90(2)	85.91	
O10-Ru3-O11	88.00(3)	87.09	88.80(2)	87.98	
O10-Ru3-O12	177.70(2)	176.71	88.30(2)	87.00	
O11-Ru3-O12	94.00(3)	93.09	91.20(2)	92.00	
N7-Ru4-N8	78.80(2)	77.98	79.00(3)	77.99	
N7-Ru4-O13	99.38(19)	98.99	95.00(2)	95.09	
N7-Ru4-O14	92.46(19)	91.69	90.00(2)	90.10	
N7-Ru4-O15	173.40(2)	173.00	89.00(2)	88.95	
N7-Ru4-O16	87.83(19)	86.78	97.00(2)	96.89	
N8-Ru4-O13	178.10(2)	177.88	173.60(2)	174.69	
N8-Ru4-O14	88.20(2)	87.77	85.40(2)	84.89	
N8-Ru4-O15	94.70(2)	93.89	95.10(2)	95.00	
N8-Ru4-O16	92.70(2)	90.99	97.00(2)	96.09	
O13-Ru4-O14	91.60(2)	92.00	92.40(2)	92.01	
O13-Ru4-O15	87.18(19)	86.45	86.94(19)	87.04	
O13-Ru4-O16	87.50(2)	86.67	88.90(2)	88.89	
O14-Ru4-O15	86.60(2)	87.09	178.85(19)	177.91	
O14-Ru4-O16	179.10(2)	178.78	88.80(2)	89.00	
O15-Ru4-O16	93.20(2)	94.00	92.10(2)	93.01	

Table S6 Selected bond angles (deg)

Table S7 Selected bond angles (deg)

Bond angles (deg)	[2](ClO ₄) ₂		
	X-ray	DFT	
N1-Ru1-N2	77.78(9)	77.14	
N3-Ru2-N4	77.32(9)	77.14	
N1-Ru1-N5	172.96(9)	172.06	
N1-Ru1-N6	94.79(9)	94.72	
N1-Ru1-N7	87.05(9)	88.62	
N1-Ru1-N8	93.52(9)	91.75	
N2-Ru1-N5	98.99(9)	96.25	
N2-Ru1-N6	85.45(9)	88.72	
N2-Ru1-N7	100.69(9)	103.12	
N2-Ru1-N8	171.30(9)	167.71	
N5-Ru1-N6	78.64(9)	77.99	
N5-Ru1-N7	99.75(9)	99.19	
N5-Ru1-N8	89.64(9)	88.59	
N6-Ru1-N7	173.84(9)	174.52	
N6-Ru1-N8	95.23(9)	97.54	
N7-Ru1-N8	78.77(10)	77.37	
N3-Ru2-N9	101.69(9)	103.13	
N3-Ru2-N10	89.66(9)	88.73	
N3-Ru2-N11	96.04(9)	96.24	
N3-Ru2-N12	170.79(9)	167.71	
N4-Ru2-N9	173.15(9)	172.06	
N4-Ru2-N10	94.92(9)	94.72	
N4-Ru2-N11	88.47(9)	88.62	
N4-Ru2-N12	94.89(9)	91.75	
N9-Ru2-N10	78.26(9)	77.37	
N9-Ru2-N11	98.38(9)	97.55	
N9-Ru2-N12	86.62(9)	88.58	
N10-Ru2-N11	173.89(9)	174.52	
N10-Ru2-N12	95.97(9)	99.19	
N11-Ru2-N12	78.66(9)	77.99	

 Table S8 Selected bond angles (deg)

Bond angles (deg)	[3a](ClO ₄) ₂		
	X-ray	DFT	
N1-Ru1-N2	76.77(9)	77.13	
N1-Ru1-N3	166.77(9)	168.12	
N1-Ru1-N5	93.36(10)	93.51	
N1-Ru1-N6	91.06(10)	93.89	
N1-Ru1-N8	89.67(10)	86.98	
N2-Ru1-N3	108.25(9)	105.01	
N2-Ru1-N5	83.11(9)	86.93	
N2-Ru1-N6	165.01(10)	167.29	
N3-Ru1-N5	75.46(10)	75.07	
N3-Ru1-N6	85.54(10)	85.62	
N3-Ru1-N8	101.91(10)	104.35	
N5-Ru1-N6	106.63(10)	102.77	
N5-Ru1-N8	175.59(9)	178.63	
N6-Ru1-N8	76.49(10)	75.92	

Table S9 Selected bond angles (deg)

Bond angles (deg)	[3b](ClO ₄) ₂		
	X-ray	DFT	
N1-Ru1-N2	77.44(17)	77.05	
N3-Ru2-N4	77.78(16)	77.16	
N1-Ru1-N5	169.22(17)	166.39	
N1-Ru1-N7	93.80(18)	91.58	
N1-Ru1-N8	90.81(19)	89.20	
N1-Ru1-N10	87.33(17)	86.93	
N2-Ru1-N5	97.05(17)	97.40	
N2-Ru1-N7	87.26(17)	87.43	
N2-Ru1-N8	167.54(18)	163.87	
N2-Ru1-N10	98.45(16)	94.39	
N5-Ru1-N7	76.54(19)	75.63	
N5-Ru1-N8	95.21(18)	97.80	
N5-Ru1-N10	102.75(17)	106.02	
N7-Ru1-N8	97.76(18)	101.52	
N7-Ru1-N10	174.29(18)	177.33	
N8-Ru1-N10	76.62(17)	76.25	
N3-Ru2-N11	98.11(16)	99.83	
N3-Ru2-N13	88.09(16)	87.56	
N3-Ru2-N14	165.46(17)	166.95	
N3-Ru2-N16	93.47(17)	94.19	
N4-Ru2-N11	166.15(17)	166.98	
N4-Ru2-N13	90.56(17)	91.87	
N4-Ru2-N14	91.12(17)	93.46	
N4-Ru2-N16	88.50(17)	86.58	
N11-Ru2-N13	76.01(18)	75.28	
N11-Ru2-N14	94.81(17)	91.28	
N11-Ru2-N16	105.04(17)	106.33	
N13-Ru2-N14	101.54(17)	101.97	
N13-Ru2-N16	177.97(17)	177.34	
N14-Ru2-N16	76.68(17)	75.98	

Interaction C-Hπ (Å)	[2](ClO ₄) ₂	[3a](ClO ₄) ₂	[3b](ClO ₄) ₂
С8Н49	2.836	-	-
С9Н49	2.744	-	-
С49Н40	2.893	-	-
С39Н10	2.792	-	-
C3H11	-	2.655	-
С7Н13	-	2.766	-
С1Н30	-	-	2.759
С2Н30	-	-	2.758
С3Н30	-	-	2.752
C4H30	-	-	2.727

Table S10 Intermolecular C-H--- π interactions

Complex		ΔE (HE-LE) ^a			
	S = 0	S = 1/2	S = 1	<i>S</i> = 3/2	-
1b ⁺	-	-2330.6658737	-	-2330.6648219	$\begin{array}{c} 0.0010518 \ \text{Hartrees} \\ 290.84341583 \ \text{cm}^{-1} \end{array}$
1b ⁰	-2330.8396338	-	-2330.8593586	-	0.0197248 Hartrees 4329.0931818 cm ⁻¹
1b ⁻	-	-2330.9293102	-	-2330.8663904	0.0629198 Hartrees 13809.299825 cm ⁻¹
24+	-2773.213059	-	-2773.2084285	-	0.0046305 Hartrees 1016.277274 cm ⁻¹
2^0	-2774.3493344	-	-2774.3626048	-	0.0132704 Hartrees 2912.51613 cm ⁻¹
$3a^0$	-3148.084729	-	-3148.1016969	-	0.019224 Hartrees 4219.18029 cm ⁻¹
3b ⁰	-3148.0802045	-	-3148.0981333	-	0.0179255 Hartrees 3934.19248 cm-1

Table S11 Energies of DFT (B3LYP/LanL2DZ/6-31G*) calculated optimised structures

 a HE = Spin state in higher in energy and LE = Spin state in lower in energy.

Complex	МО	Fragments	% Contribution
1b ⁺ (<i>S</i> =1/2)	β-LUMO	Ru/acac/L	69/22/09
1b $(C-1)$	SOMO	L/Ru /acac	85/12/03
10 (3=1)	β-LUMO	Ru/acac/L	68/20/12
1b ⁻ (<i>S</i> =1/2)	НОМО	Ru/L/acac	55/36/09
2 ⁴⁺ (<i>S</i> =0)	LUMO	L/Ru/bpy	66/30/04
3^{3+} (S-1/2)	SOMO	L/Ru/bpy	84/13/03
$2^{-1}(3=1/2)$	β-LUMO	L/Ru/bpy	84/14/02
2^{2+} (S-0)	НОМО	L/Ru/bpy	83/14/03
2 (3–0)	LUMO	bpy/Ru/L	90/07/03
$2^{+}(S-1/2)$	SOMO	bpy/Ru/L	94/05/01
2(3-1/2)	β-LUMO	bpy/Ru/L	93/06/01
2 ⁰ (<i>S</i> =1)	SOMO	bpy/Ru/L	94/05/01
3a ³⁺ (<i>S</i> =1/2)	LUMO	L/Ru/pap	90/08/02
$3n^{2+}(S-0)$	НОМО	L/Ru/pap	92/06/02
Ja (5–0)	LUMO	pap/Ru/L	83/14/02
3a ⁺ (<i>S</i> =1/2)	SOMO	pap/Ru/L	89/09/02
	β-LUMO	pap/Ru/L	87/11/02
3a ⁰ (<i>S</i> =1)	SOMO	pap/Ru/L	90/08/02
3b ³⁺ (<i>S</i> =1/2)	LUMO	L/Ru/pap	88/09/03
$3b^{2+}(S-0)$	НОМО	L/Ru/pap	87/08/05
30 (3-0)	LUMO	pap/Ru/L	88/09/03
3b ⁺ (<i>S</i> =1/2)	SOMO	pap/Ru/L	89/09/02
	β-LUMO	pap/Ru/L	86/12/02
3b ⁰ (<i>S</i> =1)	SOMO	pap/Ru/L	90/08/02

Table S12 DFT calculated selected MO compositions

МО	Energy (eV)	% Composition		
		Ru	L ⁻	acac ⁻
		α-ΜΟ		
LUMO+5	-3.324	07	28	65
LUMO+4	-3.401	07	20	73
LUMO+3	-3.426	03	02	95
LUMO+2	-3.627	05	09	86
LUMO+1	-4.156	05	92	03
LUMO	-6.583	13	84	03
SOMO	-7.894	38	41	21
HOMO-1	-8.176	36	48	16
HOMO-2	-8.283	32	13	55
HOMO-3	-8.350	36	22	42
HOMO-4	-8.501	20	42	38
HOMO-5	-8.720	11	28	61
		β-ΜΟ		
LUMO+5	-3.399	05	04	91
LUMO+4	-3.473	06	39	55
LUMO+3	-3.625	05	38	57
LUMO+2	-4.291	06	91	03
LUMO+1	-5.642	67	11	22
LUMO	-5.648	69	09	22
НОМО	-7.809	41	46	13
HOMO-1	-7.954	51	24	25
HOMO-2	-8.163	26	46	28
HOMO-3	-8.462	45	14	41
HOMO-4	-8.622	37	15	48
HOMO-5	-8.729	34	28	38

Table S13 DFT calculated MO composition for $\mathbf{1b}^+$ in S = 1/2 state

	α-Μ0)	
SOMO	HOMO-1	HOMO-2	HOMO-3
LUMO	LUMO+1	LUMO+2	LUMO+3
	β-Μ0)	
НОМО	HOMO-1	HOMO-2	HOMO-3
LUMO	LUMO+1	LUMO+2	LUMO+3

МО	Energy (eV)	% Composition		
		Ru	L ⁻	acac ⁻
		α-ΜΟ		
LUMO+5	-0.133	23	61	16
LUMO+4	-0.552	03	07	90
LUMO+3	-0.707	05	05	90
LUMO+2	-0.767	03	03	94
LUMO+1	-0.902	06	57	37
LUMO	-0.944	03	32	65
SOMO1	-4.324	12	85	03
SOMO2	-4.951	42	45	13
HOMO-2	-5.051	35	56	09
HOMO-3	-5.216	27	55	18
HOMO-4	-5.481	37	07	56
HOMO-5	-5.561	34	23	43
		β-ΜΟ		
LUMO+5	-0.651	07	05	88
LUMO+4	-0.735	03	02	95
LUMO+3	-0.868	07	45	48
LUMO+2	-0.908	04	44	52
LUMO+1	-2.506	65	16	19
LUMO	-2.625	68	12	20
НОМО	-4.304	21	72	07
HOMO-1	-4.763	49	35	16
HOMO-2	-4.901	37	46	17
НОМО-3	-5.268	19	67	14
HOMO-4	- 5.476	67	14	19
HOMO-5	-5.556	64	13	23

Table S14 DFT calculated MO composition for **1b** in S = 1 state

МО	Energy (eV)	% Composition		
		Ru	L ⁻	acac ⁻
		α-MO		
LUMO+5	3.008	13	74	13
LUMO+4	2.556	05	08	87
LUMO+3	2.365	05	05	90
LUMO+2	2.302	05	02	93
LUMO+1	2.053	08	79	13
LUMO	1.876	04	11	85
SOMO	-1.222	36	55	09
HOMO-1	-1.308	60	22	18
HOMO-2	-1.573	54	23	23
HOMO-3	-1.718	61	23	16
HOMO-4	-1.898	62	17	21
HOMO-5	-2.100	52	23	25
		β-ΜΟ		
LUMO+5	2.578	07	09	85
LUMO+4	2.379	05	06	89
LUMO+3	2.324	06	02	92
LUMO+2	2.109	09	81	10
LUMO+1	1.896	05	09	86
LUMO	0.133	59	23	17
HOMO	-0.536	69	11	21
HOMO-1	-1.176	55	32	14
HOMO-2	-1.448	51	34	15
HOMO-3	-1.661	58	23	19
HOMO-4	-1.850	52	32	16
HOMO-5	-2.150	70	13	17

Table S15 DFT calculated MO composition for $\mathbf{1b}^-$ in S = 1/2 state

МО	Energy (eV)	% Composition		
		Ru	L ⁻	bpy
LUMO+5	-11.047	05	01	94
LUMO+4	-11.055	05	01	94
LUMO+3	-11.307	06	03	91
LUMO+2	-11.314	05	02	93
LUMO+1	-11.713	03	92	05
LUMO	-14.213	30	66	04
НОМО	-15.133	71	18	11
HOMO-1	-15.218	63	25	12
HOMO-2	-15.460	78	08	14
HOMO-3	-15.466	74	07	19
HOMO-4	-15.559	73	07	20
HOMO-5	-15.773	63	19	18

Table S16 DFT calculated MO composition for 2^{4+} in S = 0 state

НОМО	HOMO-1	HOMO-2	HOMO-3
LUMO	LUMO+1	LUMO+2	LUMO+3

МО	Energy (eV)	% Composition		
		Ru	L^-	bpy
		α-MO		
LUMO+5	-7.967	06	04	90
LUMO+4	-8.641	07	22	71
LUMO+3	-8.661	06	01	93
LUMO+2	-8.684	04	62	34
LUMO+1	-8.847	05	01	94
LUMO	-8.848	05	09	86
SOMO	-12.156	45	50	05
HOMO-1	-12.224	69	21	10
HOMO-2	-12.263	55	36	09
HOMO-3	-12.514	80	05	15
HOMO-4	-12.619	80	06	14
HOMO-5	-12.632	82	05	13
		β-ΜΟ		
LUMO+5	-8.538	05	85	10
LUMO+4	-8.653	06	02	92
LUMO+3	-8.659	06	01	93
LUMO+2	-8.837	06	04	90
LUMO+1	-8.844	05	01	94
LUMO	-10.809	14	84	02
НОМО	-12.127	70	20	10
HOMO-1	-12.176	67	23	10
HOMO-2	-12.386	70	19	11
HOMO-3	-12.482	79	06	15
HOMO-4	-12.569	79	08	13
HOMO-5	-12.708	76	09	15

Table S17 DFT calculated MO composition for 2^{3+} in S = 1/2 state

	α-Ν	10	
SOMO	HOMO-1	HOMO-2	HOMO-3
	and the second sec		
LUMO	LUMO+1	LUMO+2	LUMO+3
	β-Ν	10	
НОМО	HOMO-1	HOMO-2	HOMO-3
		and a second sec	
LUMO	LUMO+1	LUMO+2	LUMO+3

Energy (eV)	% Composition		
	Ru	L ⁻	bpy
-5.733	03	03	94
-5.923	06	02	92
-6.366	07	01	91
-6.379	08	01	91
-6.571	05	01	94
-6.708	07	03	90
-8.754	14	83	03
-9.337	54	36	10
-9.360	51	39	10
-9.649	37	54	09
-9.865	78	05	17
-9.983	77	08	15
	Energy (eV) -5.733 -5.923 -6.366 -6.379 -6.571 -6.708 -8.754 -9.337 -9.360 -9.649 -9.865 -9.983	Energy (eV)Ru -5.733 03 -5.923 06 -6.366 07 -6.379 08 -6.571 05 -6.708 07 -8.754 14 -9.337 54 -9.649 37 -9.865 78 -9.983 77	Energy (eV)% CompositionRu L^- -5.73303-5.9230602-6.3660701-6.379080801-6.571050703-8.754141483-9.3375436051-9.64937545780505-9.9837708

Table S18 DFT calculated MO composition for 2^{2+} in S = 0 state

НОМО	HOMO-1	HOMO-2	HOMO-3
LUMO	LUMO+1	LUMO+2	LUMO+3

МО	Energy (eV)		% Composition	
		Ru	L ⁻	bpy
		α-ΜΟ		
LUMO+5	-3.004	07	63	30
LUMO+4	-3.154	05	02	93
LUMO+3	-3.191	05	16	79
LUMO+2	-4.003	09	02	89
LUMO+1	-4.065	08	01	91
LUMO	-4.202	05	01	94
SOMO	-4.561	04	01	95
HOMO-1	-6.277	11	87	02
HOMO-2	-6.871	62	29	09
HOMO-3	-6.886	60	30	10
HOMO-4	-7.254	64	22	14
HOMO-5	-7.280	79	09	12
		β-ΜΟ		
LUMO+5	-3.130	05	02	93
LUMO+4	-3.173	05	19	76
LUMO+3	-3.714	07	02	90
LUMO+2	-3.732	06	01	93
LUMO+1	-3.879	06	01	93
LUMO	-3.884	06	01	93
НОМО	-6.277	11	87	02
HOMO-1	-6.861	62	28	09
HOMO-2	-6.873	61	29	10
HOMO-3	-7.245	64	25	12
HOMO-4	-7.278	81	05	14
HOMO-5	-7.362	80	07	13

Table S19 DFT calculated MO composition for 2^+ in S = 1/2 state

МО	Energy (eV)		% Composition	
		Ru	L ⁻	bpy
		α-ΜΟ		
LUMO+5	-0.493	08	02	90
LUMO+4	-0.637	06	35	59
LUMO+3	-0.702	07	02	91
LUMO+2	-0.787	06	47	47
LUMO+1	-1.691	10	02	88
LUMO	-1.721	09	01	90
SOMO1	-2.343	05	01	94
SOMO2	-2.351	04	01	95
HOMO-2	-3.973	15	83	02
HOMO-3	-4.454	67	23	10
HOMO-4	-4.476	64	26	10
HOMO-5	-4.777	76	07	17
		β-ΜΟ		
LUMO+5	-0.650	07	02	91
LUMO+4	-0.768	06	57	37
LUMO+3	-1.177	07	01	92
LUMO+2	-1.189	07	01	92
LUMO+1	-1.246	06	02	92
LUMO	-1.259	05	02	93
НОМО	-3.972	15	83	02
HOMO-1	-4.431	68	22	10
HOMO-2	-4.444	66	24	10
HOMO-3	-4.771	79	09	12
HOMO-4	-4.801	75	09	16
HOMO-5	-4.877	79	08	13

Table S20 DFT calculated MO composition for 2^0 in S = 1 state

МО	Energy (eV)		% Composition	
	_	Ru	L ⁻	pap
		α-ΜΟ		
LUMO+5	-8.081	06	26	68
LUMO+4	-9.082	04	92	04
LUMO+3	-9.676	12	02	86
LUMO+2	-9.691	11	02	87
LUMO+1	-9.838	09	03	88
LUMO	-9.885	10	03	87
SOMO	-12.594	38	53	09
HOMO-1	-12.705	60	21	19
HOMO-2	-12.766	45	42	13
HOMO-3	-13.009	28	06	66
HOMO-4	-13.035	08	09	83
HOMO-5	-13.169	05	00	95
		β-ΜΟ		
LUMO+5	-8.936	04	92	04
LUMO+4	-9.675	13	02	85
LUMO+3	-9.690	11	02	87
LUMO+2	-9.836	09	03	88
LUMO+1	-9.882	10	03	87
LUMO	-11.187	08	90	02
НОМО	-12.640	62	21	17
HOMO-1	-12.672	60	22	18
HOMO-2	-12.960	46	18	36
HOMO-3	-13.010	20	08	72
HOMO-4	-13.113	12	38	50
HOMO-5	-13.169	03	01	96

Table S21 DFT calculated MO composition for $3a^{3+}$ in S = 1/2 state

МО	Energy (eV)		% Composition	
		Ru	L ⁻	pap
LUMO+5	-5.941	05	02	93
LUMO+4	-6.113	04	61	35
LUMO+3	-7.394	17	03	80
LUMO+2	-7.477	13	03	84
LUMO+1	-7.534	12	02	86
LUMO	-7.543	14	02	84
НОМО	-9.261	06	92	02
HOMO-1	-10.001	42	44	14
HOMO-2	-10.008	42	43	15
HOMO-3	-10.414	11	83	06
HOMO-4	-10.867	53	14	33
HOMO-5	-10.877	60	10	30

Table S22 DFT calculated MO composition for $3a^{2+}$ in S = 0 state

НОМО	HOMO-1	HOMO-2	HOMO-3
LUMO	LUMO+1	LUMO+2	LUMO+3

МО	Energy (eV)		% Composition	
		Ru	L ⁻	pap
		α-MO		
LUMO+5	-3.340	03	01	96
LUMO+4	-3.346	05	02	93
LUMO+3	-3.471	05	87	08
LUMO+2	-5.006	19	02	79
LUMO+1	-5.037	18	02	80
LUMO	-5.317	08	03	89
SOMO	-5.716	09	02	89
HOMO-1	-6.705	06	91	03
HOMO-2	-7.457	53	36	11
HOMO-3	-7.466	52	36	12
HOMO-4	-7.909	28	65	07
HOMO-5	-8.098	60	20	20
		β-ΜΟ		
LUMO+5	-3.326	05	02	93
LUMO+4	-3.468	05	88	07
LUMO+3	-4.597	11	03	86
LUMO+2	-4.649	11	02	87
LUMO+1	-4.924	11	02	87
LUMO	-4.931	11	02	87
НОМО	-6.705	06	91	02
HOMO-1	-7.451	53	36	11
HOMO-2	-7.455	53	35	12
HOMO-3	-7.899	32	60	08
HOMO-4	-8.086	56	23	22
HOMO-5	-8.096	65	11	24

Table S23 DFT calculated MO composition for $3a^+$ in S = 1/2 state

МО	Energy (eV)		% Composition	
		Ru	L ⁻	pap
		α-ΜΟ		
LUMO+5	-0.854	04	02	94
LUMO+4	-0.923	05	02	93
LUMO+3	-0.924	04	01	95
LUMO+2	-1.158	05	89	06
LUMO+1	-2.607	23	02	75
LUMO	-2.662	22	02	76
SOMO1	-3.540	08	03	90
SOMO2	-3.564	08	02	90
HOMO-2	-4.410	08	89	03
HOMO-3	-5.049	61	27	12
HOMO-4	-5.061	59	29	12
HOMO-5	-5.520	61	26	13
		β-ΜΟ		
LUMO+5	-0.852	06	01	93
LUMO+4	-1.151	05	89	06
LUMO+3	-2.022	11	03	86
LUMO+2	-2.072	10	03	87
LUMO+1	-2.195	10	02	87
LUMO	-2.202	10	02	87
НОМО	-4.411	08	89	03
HOMO-1	-5.039	60	28	12
HOMO-2	-5.040	59	28	13
HOMO-3	-5.481	66	20	14
HOMO-4	-5.610	67	11	22
HOMO-5	-5.689	30	53	17

Table S24 DFT calculated MO composition for $3a^0$ in S = 1 state

	α-	MO	
SOMO1	SOMO2	HOMO-2	HOMO-3
LUMO	LUMO+1	LUMO+2	LUMO+3
	β-	MO	
НОМО	HOMO-1	HOMO-2	HOMO-3
LUMO	LUMO+1	LUMO+2	LUMO+3

МО	Energy (eV)		% Composition	
		Ru	L ⁻	pap
		α-ΜΟ		
LUMO+5	-8.282	18	62	20
LUMO+4	-9.120	05	88	07
LUMO+3	-9.716	13	02	85
LUMO+2	-9.737	12	03	85
LUMO+1	-9.927	08	02	90
LUMO	-9.973	08	04	88
SOMO	-12.722	33	60	07
HOMO-1	-12.827	60	22	18
HOMO-2	-12.856	51	32	17
HOMO-3	-13.004	26	07	67
HOMO-4	-13.089	10	11	79
HOMO-5	-13.149	01	00	99
		β-ΜΟ		
LUMO+5	-8.986	04	70	06
LUMO+4	-9.714	14	02	84
LUMO+3	-9.735	12	03	85
LUMO+2	-9.923	09	02	89
LUMO+1	-9.965	09	03	88
LUMO	-11.306	09	88	03
НОМО	-12.755	59	25	15
HOMO-1	-12.799	59	23	18
HOMO-2	-12.908	47	26	27
HOMO-3	-13.038	15	07	77
HOMO-4	-13.137	14	12	73
HOMO-5	-13.150	03	02	94

Table S25 DFT calculated MO composition for $3b^{3+}$ in S = 1/2 state

МО	Energy (eV)		% Composition	
	_	Ru	L ⁻	pap
LUMO+5	-6.051	03	10	87
LUMO+4	-6.086	06	70	24
LUMO+3	-7.306	19	03	78
LUMO+2	-7.390	19	03	78
LUMO+1	-7.639	08	02	90
LUMO	-7.776	09	03	88
НОМО	-9.426	08	87	05
HOMO-1	-10.069	41	49	09
HOMO-2	-10.127	47	41	12
HOMO-3	-10.316	19	68	13
HOMO-4	-10.864	69	09	22
HOMO-5	-10.922	64	07	29

Table S26 DFT calculated MO composition for $3b^{2+}$ in S = 0 state

НОМО	HOMO-1	HOMO-2	HOMO-3
LUMO	LUMO+1	LUMO+2	LUMO+3

МО	Energy (eV)		% Composition	
		Ru	L ⁻	pap
		α-ΜΟ		
LUMO+5	-3.308	04	02	94
LUMO+4	-3.383	05	04	91
LUMO+3	-3.490	05	84	11
LUMO+2	-4.983	19	02	79
LUMO+1	-5.028	18	02	80
LUMO	-5.321	08	02	90
SOMO	-5.754	09	02	89
HOMO-1	-6.784	07	90	03
HOMO-2	-7.515	52	38	10
HOMO-3	-7.546	52	38	10
HOMO-4	-7.831	30	58	12
HOMO-5	-8.108	69	07	24
		β-ΜΟ		
LUMO+5	-3.358	05	04	91
LUMO+4	-3.477	06	83	11
LUMO+3	-4.636	12	02	86
LUMO+2	-4.683	11	02	87
LUMO+1	-4.860	11	02	87
LUMO	-4.926	12	02	86
НОМО	-6.781	07	90	03
HOMO-1	-7.500	53	37	10
HOMO-2	-7.541	53	37	10
НОМО-3	-7.810	34	54	12
HOMO-4	-8.099	65	09	26
HOMO-5	-8.141	66	09	25

Table S27 DFT calculated MO composition for $3b^+$ in S = 1/2 state

МО	Energy (eV)		% Composition	
		Ru	L	pap
		α-MO		
LUMO+5	-0.834	04	01	95
LUMO+4	-0.888	05	01	94
LUMO+3	-0.903	05	02	93
LUMO+2	-1.142	06	86	08
LUMO+1	-2.585	24	02	74
LUMO	-2.626	22	03	75
SOMO1	-3.528	08	02	90
SOMO2	-3.573	09	02	89
HOMO-2	-4.454	10	87	03
HOMO-3	-5.079	62	28	10
HOMO-4	-5.117	58	31	11
HOMO-5	-5.416	46	37	17
		β-ΜΟ		
LUMO+5	-0.821	05	02	93
LUMO+4	-1.122	06	85	09
LUMO+3	-2.064	11	02	87
LUMO+2	-2.092	12	02	86
LUMO+1	-2.119	10	03	87
LUMO	-2.140	09	03	88
НОМО	-4.452	10	87	03
HOMO-1	-5.066	61	29	10
HOMO-2	-5.079	60	30	10
HOMO-3	-5.375	55	29	16
HOMO-4	-5.591	61	15	24
HOMO-5	-5.598	66	09	25

Table S28 DFT calculated MO composition for $3b^0$ in S = 1 state

α-ΜΟ			
SOMO1	SOMO2	HOMO-2	HOMO-3
LUMO	LUMO+1	LUMO+2	LUMO+3
β-ΜΟ			
НОМО	HOMO-1	HOMO-2	HOMO-3
LUMO	LUMO+1	LUMO+2	LUMO+3