Two mixed valence diruthenium (II,III) isomeric complexes show different anticancer properties

Elisabetta Barresi,^{a†} Iogann Tolbatov,^{b†} Tiziano Marzo,^{a,c*} Elisa Zappelli,^a Alessandro Marrone,^d Nazzareno Re,^{d*} Claudia Martini,^a Alessandro Pratesi,^e Sabrina Taliani,^{a*} Federico Da Settimo^a and Diego La Mendola^a

^aDepartment of Pharmacy, University of Pisa. Via Bonanno Pisano, 6, 56126, Pisa, Italy. E-mail: tiziano.marzo@unipi.it; sabrina.taliani@unipi.it

^bInstitut de Chimie Moleculaire de l'Université de Bourgogne (ICMUB), Université de Bourgogne Franche-Comté (UBFC), avenue Alain Savary 9, Dijon, France

^cCISUP-Centro per l'Integrazione della Strumentazione Scientifica dell'Università di Pisa, University of Pisa, Italy

^dDipartimento di Farmacia, Università degli Studi "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, I-66100 Chieti, Italy. E-mail: <u>nre@unich.it</u>

^eDepartment of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi, 13, 56124 Pisa, Italy

+ Equal contribution.

Computational studies	.2
Spectrum for solution behavior of [Ru ₂ (EB776) ₄ Cl]	.5
ESI-MS experiments on [Ru ₂ (EB106) ₄ Cl] and [Ru ₂ (EB776) ₄ Cl] in presence of lysozyme and HSA experiments	.6Cellular

Table S1. Boltzmann populations for the most representative conformations of $[Ru_2(EB106)_4Cl]$ and $[Ru_2(EB776)_4Cl]$. Distances from closest points on hydrophilic surface to carboxylate oxygens.

Complexes	Conformers	Population, %	Distances from closest points of hydrophilic regions to carboxylate oxygens	
			Within 2.5 A	Within 3.0 A
[Ru ₂ (EB106) ₄ Cl]	1	86	-	2.73
	2	6	-	2.75
	3	6	-	2.82, 2.99
[Ru2(EB776)4CI]	1	24	2.03, 2.14, 2.41	2.58
	2	16	2.19	2.68, 2.76
	3	16	2.48	2.53
	4	11	2.47	2.69
	5	9	2.44	2.61, 2.83
	6	7	2.27	2.66, 2.80
	7	5	-	2.63, 2.91
	8	5	2.39	2.8
	9	3	2.14, 2.35	2.52, 2.96

Fig. S1. Analyzed conformers of complex $[Ru_2(EB106)_4CI]$ and their hydrophilic fragments.

Fig. S2. Analyzed conformers of complex [Ru₂(EB776)₄Cl] and their hydrophilic fragments.

Solution behavior of [Ru₂(EB776)₄Cl]

Fig. S3. Time dependent UV-Vis spectral profiles of $[Ru_2(EB776)_4CI]$, 10^{-5} M in 10 mM phosphate buffer in presence of 40 % DMSO (pH = 7.4) followed for 72 h.

ESI-MS experiments on [Ru₂(EB106)₄Cl] and [Ru₂(EB776)₄Cl] in presence of lysozyme and HSA

ESI-MS interactions experiments were carried out at different protein to complex ratio (10:1 and 5:1) after 72 h incubation. Figures S4-S7 show the incubation with Human Serum Albumin (HSA) while figures S8-S11 incubation with lysozyme. 66 KDa=HSA; 14.3 KDa Lysozyme. No adducts formation was detected. Experiments were carried out following the protocol reported in ref. 20 of main manuscript (*Barresi et al., Dalton Trans., 49, 2020, 14520-14527*), i.e. using a TripleTOF® 5600+ mass spectrometer (Sciex, Framingham, MA, U.S.A.), equipped with a DuoSpray® interface operating with an ESI probe in positive polarity.

HSA_[Ru₂(EB106)₄Cl] _10:1_5x10-7M_AmAc2mM_72h_

Fig. S4.

HSA_[Ru₂(EB106)₄Cl]_5:1_5x10-7M_AmAc2mM_72h_

Fig. S5.

Fig. S6.

Fig. S8.

Lys_ [Ru₂(EB106)₄Cl]_5:1_10-7M_AmAc2mM_72h_

Lys_[Ru₂(EB776)₄Cl]_10:1_10-7M_AmAc2mM_72h_

Fig. S10.

Lys_[Ru₂(EB776)₄Cl]_5:1_10-7M_AmAc2mM_72h_

Fig. S12. Evaluation of in vitro anti-proliferative effect: U87MG cells were treated with increasing concentrations of the EB106, EB776 and $[Ru_2(EB776)_4Cl]$ compounds; after 72 h of treatment cellular viability was measured by MTS assay. Data were expressed as percentage of compound-treated viable cells respect to control viable cells. Curves were generated using a sigmoidal dose-response curve model (GraphPad Prism 5 software) from which the IC₅₀ values were derived. Data represent the mean ± SEM of three different experiments. Each experiment was performed in triplicate.