Magnetic properties of organolanthanide(II) complexes, from electronic structure and crystal field effect

Eduardo Solís-Cespedes^{1,2}, Dayán Páez-Hernández^{3,4*}

June 4, 2021

¹Escuela de Bioingeniería Médica, Facultad de Medicina, Universidad Católica del Maule.

²Laboratorio de Bioinformática y Química Computacional, Facultad de Medicina, Universidad Católica del Maule

³Center of Applied Nanoscience (CANS), Universidad Andres Bello, República 330, Santiago, Chile.

⁴Departamento de Ciencias Químicas, Universidad Andres Bello, República 275, Santiago, Chile.

Supporting Information

Electronic structure

Table 1: One-electron Condon-Slater F^k (k = 2, 4, 6) and effective spin-orbit coupling parameters obtained from ab-initio ligand field approximation (AILF) for Eu^{2+} free ion and complexes

Molecule	\mathbf{F}^2	\mathbf{F}^4	\mathbf{F}^{6}	ξ
Eu^{2+}	106475	66500	47756	1273
$Eu(CNT)_2 (D_{9h})$	104356 (2%)	65249 (2%)	46838 (1.9%)	1142
$Eu(CNT)_2 (D_{9d})$	104257 (2%)	65198~(1.9%)	46798 (2%)	1141
$EuCp_3^-$ (C_{3v})	$105119 \ (0.8\%)$	65657~(1.3%)	47146 (1.3%)	1264

Table 2: One-electron Condon-Slater F^k (k = 2, 4, 6) and effective spin-orbit coupling parameters obtained from ab-initio ligand field density functional theory approximation (LFDFT) for Eu^{2+} free ion and complexes

Molecule	cule \mathbf{F}^2		\mathbf{F}^{6}	ξ
Eu^{2+}	99062	61472	44032	1293
$Eu(CNT)_2 (D_{9h})$	84459 (14.7%)	52430 (14.7%)	37562 (14.7%)	1204
$Eu(CNT)_2 (D_{9d})$	84470 (14.7%)	52438 (14.7%)	37567 (14.7%)	1204
$\operatorname{EuCp}_3^-(\operatorname{C}_{3v})$	81945 (17.3%)	50885 (17.3%)	36458 (17.3%)	1189

Table 3: Electronic configuration of the SF-states corresponding to the splitting of the 8S manifold in $[Cp_3Eu]^-$ and $[Eu(COT)_2]^{2-}$ model complex

State	$\begin{bmatrix} \operatorname{EuCp}_3 \end{bmatrix} (\operatorname{C}_{3v}) \\ \operatorname{Config} \end{bmatrix}$	%
${}^{8}A_{1}$	$a_1^2 a_2^2 f_0^1 f_{-1}^1 f_{+1}^1 f_{-2}^1 f_{+2}^1 f_{-3}^1 f_{+3}^1 d_0^0$	100%
${}^{8}A_{1}$	$a_1^2 a_2^2 f_0^1 f_{-1}^1 f_{+1}^1 f_{-2}^1 f_{+2}^1 f_{-3}^0 f_{+3}^1 d_0^1$	100%
${}^{8}A_{2}$	$a_1^2 a_2^2 f_0^1 f_{-1}^1 f_{+1}^1 f_{-2}^1 f_{+2}^1 f_{-3}^1 f_{+3}^0 d_0^1$	100%
	$a_{1}^{2}a_{2}^{2}f_{0}^{1}f_{-1}^{1}f_{+1}^{1}f_{-2}^{1}f_{+2}^{0}f_{-3}^{1}f_{+3}^{1}d_{0}^{1}$ $a_{2}^{2}a_{2}^{2}f_{1}^{1}f_{-1}^{1}f_{0}^{0}f_{-1}^{1}f_{-1}^{1}f_{-1}^{1}f_{-1}^{1}f_{-1}^{1}d_{0}^{1}$	87% 13%
⁸ E	$a_{1}^{2}a_{2}^{2}f_{0}^{1}f_{-1}^{1}f_{+1}^{1}f_{-2}^{0}f_{+2}^{1}f_{-3}^{1}f_{+3}^{1}d_{0}^{1}$ $a_{1}^{2}a_{2}^{2}f_{0}^{1}f_{-1}^{1}f_{+1}^{1}f_{-2}^{0}f_{+2}^{1}f_{-3}^{1}f_{+3}^{1}d_{0}^{1}$	87%
	$a_1^2 a_2^2 f_0^1 f_{-1}^0 f_{+1}^1 f_{-2}^1 f_{+2}^1 f_{-3}^1 f_{+3}^1 d_0^1$	13%
	$a_1^2 a_2^2 f_0^1 f_{-1}^1 f_{+1}^0 f_{-2}^1 f_{+2}^1 f_{-3}^1 f_{+3}^1 d_0^1$	42%
	$a_1^2 a_2^2 f_0^1 f_{-1}^0 f_{+1}^1 f_{-2}^1 f_{+2}^1 f_{-3}^1 f_{+3}^1 d_0^1$	46%
	$a_1^2 a_2^2 f_0^1 f_{-1}^1 f_{+1}^1 f_{-2}^1 f_{+2}^0 f_{-3}^1 f_{+3}^1 d_0^1$	6%
^{8}E	$a_1^2 a_2^2 f_0^1 f_{-1}^1 f_{+1}^1 f_{-2}^0 f_{+2}^1 f_{-3}^1 f_{+3}^1 d_0^1$	6%
	$a_1^2 a_2^2 f_0^1 f_{-1}^1 f_{+1}^0 f_{-2}^1 f_{+2}^1 f_{-3}^1 f_{+3}^1 d_0^1$	46%
	$a_1^2 a_2^2 f_0^1 f_{-1}^0 f_{+1}^1 f_{-2}^1 f_{+2}^1 f_{-3}^1 f_{+3}^1 d_0^1$	42%
	$a_1^2 a_2^2 f_0^1 f_{-1}^1 f_{+1}^1 f_{-2}^1 f_{+2}^0 f_{-3}^1 f_{+3}^1 d_0^1$	6%
	$a_1^2 a_2^2 f_0^1 f_{-1}^1 f_{+1}^1 f_{-2}^0 f_{+2}^1 f_{-3}^1 f_{+3}^1 d_0^1$	6%
${}^{8}A_{1}$	$a_1^2 a_2^2 f_0^0 f_{-1}^1 f_{+1}^1 f_{-2}^1 f_{+2}^1 f_{-3}^1 f_{+3}^1 d_0^1$	100%

$Eu(CNT)_2 (D_{9d})$			$Eu(CNT)_2 (D_{9h})$			
State	Config	%	State	Config	%	
$^{8}A_{2u}$	$e_{2u}^2 e_{2u}^2 f_0^1 f_{-1}^1 f_{+1}^1 f_{-2}^1 f_{+2}^1 f_{-3}^1 f_{+3}^1 d_0^0$	100%	${}^{8}A_{2}^{''}$	$e_{2}^{\prime\prime2}e_{2}^{\prime\prime2}f_{0}^{1}f_{-1}^{1}f_{+1}^{1}f_{-2}^{1}f_{+2}^{1}f_{-3}^{1}f_{+3}^{1}d_{0}^{0}$	100%	
	$e_{2u}^2 e_{2u}^2 f_0^1 f_{-1}^1 f_{+1}^1 f_{-2}^0 f_{+2}^1 f_{-3}^1 f_{+3}^1 d_0^1$	76%		$e_2^{\prime\prime 2} e_2^{\prime\prime 2} f_0^1 f_{-1}^1 f_{+1}^1 f_{-2}^1 f_{+2}^0 f_{-3}^1 f_{+3}^1 d_0^1$	78%	
${}^{8}E_{2g}$	$e_{2u}^2 e_{2u}^1 f_0^1 f_{-1}^1 f_{+1}^1 f_{-2}^1 f_{+2}^1 f_{-3}^1 f_{+3}^1 d_0^1$	24%	${}^{8}E_{2}^{'}$	$e_{2}^{\prime\prime 2}e_{2}^{\prime\prime 1}f_{0}^{1}f_{-1}^{1}f_{+1}^{1}f_{-2}^{1}f_{+2}^{1}f_{-3}^{1}f_{+3}^{1}d_{0}^{1}$	22%	
	$e_{2u}^2 e_{2u}^2 f_0^1 f_{-1}^1 f_{+1}^1 f_{-2}^1 f_{+2}^0 f_{-3}^1 f_{+3}^1 d_0^1$	76%		$e_{2}^{''2}e_{2}^{''2}f_{0}^{1}f_{-1}^{1}f_{+1}^{1}f_{-2}^{0}f_{+2}^{1}f_{-3}^{1}f_{+3}^{1}d_{0}^{1}$	78%	
	$e_{2u}^1 e_{2u}^2 f_0^1 f_{-1}^1 f_{+1}^1 f_{-2}^1 f_{+2}^1 f_{-3}^1 f_{+3}^1 d_0^1$	24%		$e_{2}^{''1}e_{2}^{''2}f_{0}^{1}f_{-1}^{1}f_{+1}^{1}f_{-2}^{1}f_{+2}^{1}f_{-3}^{1}f_{+3}^{1}d_{0}^{1}$	22%	
	$e^2 e^2 f^1 f^0 f^1 f^1 f^1 f^1 f^1 d^1$	100%		$e''^{2}e''^{2}f^{1}f^{1}f^{0}f^{1}f^{1}f^{1}f^{1}f^{1}d^{1}$	100%	
${}^{8}E_{1a}$	$c_{2u}c_{2u}J_0J_{-1}J_{+1}J_{-2}J_{+2}J_{-3}J_{+3}u_0$	10070	${}^{8}E_{1}^{''}$	$c_2 \ c_2 \ J_0 J_{-1} J_{+1} J_{-2} J_{+2} J_{-3} J_{+3} u_0$	10070	
-3	$e_{2u}^2 e_{2u}^2 f_0^1 f_{-1}^1 f_{+1}^0 f_{-2}^1 f_{+2}^1 f_{-3}^1 f_{+3}^1 d_0^1$	100%	1	$e_{2}^{\prime\prime2}e_{2}^{\prime\prime2}f_{0}^{1}f_{-1}^{0}f_{+1}^{1}f_{-2}^{1}f_{+2}^{1}f_{-3}^{1}f_{+3}^{1}d_{0}^{1}$	100%	
	$e_{2n}^2 e_{2n}^2 f_0^1 f_{-1}^1 f_{+1}^1 f_{-2}^1 f_{+2}^1 f_{-2}^1 f_{-2}^1 f_{-2}^0 d_0^1$	100%		$e_{2}^{\prime\prime 2}e_{2}^{\prime\prime 2}f_{0}^{1}f_{-1}^{1}f_{+1}^{1}f_{-2}^{1}f_{+2}^{1}f_{-3}^{1}f_{-3}^{0}d_{0}^{1}$	100%	
${}^{8}E_{3g}$	20 20:00 10 11 20 20 00 10 0		${}^{8}E_{3}^{''}$	2 2 0 1 1 1 2 2 2 0 0		
	$e_{2u}^2 e_{2u}^2 f_0^1 f_{-1}^1 f_{+1}^1 f_{-2}^1 f_{+2}^1 f_{-3}^0 f_{+3}^1 d_0^1$	100%		$e_{2}^{''2}e_{2}^{''2}f_{0}^{1}f_{-1}^{1}f_{+1}^{1}f_{-2}^{1}f_{+2}^{1}f_{-3}^{0}f_{+3}^{1}d_{0}^{1}$	100%	
${}^{8}A_{1g}$	$e_{2u}^2 e_{2u}^2 f_0^0 f_{-1}^1 f_{+1}^1 f_{-2}^1 f_{+2}^1 f_{-3}^1 f_{+3}^1 d_0^1$	100%	${}^{8}A_{1}^{'}$	$e_{2}^{\prime\prime2}e_{2}^{\prime\prime2}f_{0}^{0}f_{-1}^{1}f_{+1}^{1}f_{-2}^{1}f_{+2}^{1}f_{-3}^{1}f_{+3}^{1}d_{0}^{1}$	100%	

Table 4: Electronic configuration of the SF-states corresponding to the splitting of the 8S manifold in Eu(CNT)₂ model complex considering two groups of symmetry

Figure 1: Selected natural orbitals and occupation numbers obtained for Sm (II) complexes from spin-orbit calculations

Figure 2: Selected natural orbitals and occupation numbers obtained for Eu (II) complexes from spin-orbit calculations

Figure 3: Selected natural orbitals and occupation numbers obtained for Gd (II) complexes from spin-orbit calculations

Figure 4: Selected natural orbitals and occupation numbers obtained for Tb (II) complexes from spin-orbit calculations

Figure 5: Selected natural orbitals and occupation numbers obtained for Dy (II) complexes from spin-orbit calculations

Figure 6: Selected natural orbitals and occupation numbers obtained for Tm (II) complexes from spin-orbit calculations

Magnetic properties

Figure 7: Calculated molar magnetic susceptibility χT ($cm^3 Kmol^{-1}$) of Eu^{2+} and Gd^{2+} complexes. The energy diagrams for the low-lying states appears insert

State	Config	\mathbf{g}_x	\mathbf{g}_y	\mathbf{g}_z
	${f Eu}({f CNT})_2$			
VD1	$85\% \mid \frac{7}{2}; +\frac{1}{2} > + 15\% \mid \frac{7}{2}; -\frac{1}{2} >$	8.344	7.629	1.993
RD1	$85\% \mid \frac{7}{2}; -\frac{1}{2} > + 15\% \mid \frac{7}{2}; +\frac{1}{2} >$			
KD2	$53\% \mid \frac{7}{2}; +\frac{3}{2} > + 47\% \mid \frac{7}{2}; -\frac{3}{2} >$	0.338	0.377	5.987
	$53\% \mid \frac{7}{2}; -\frac{3}{2} > + 47\% \mid \frac{7}{2}; +\frac{3}{2} >$			
KD3	95% $\frac{7}{2}$; + $\frac{5}{2}$ > + 5% $\frac{7}{2}$; - $\frac{5}{2}$ >	0.004	0.029	9.986
	$95\% \mid \frac{7}{2}; -\frac{5}{2} > + 5\% \mid \frac{7}{2}; +\frac{5}{2} >$			
KD4	$100\% \mid \frac{7}{2}; +\frac{7}{2} >$	0.013	0.013	13.980
	$100\% \mid \frac{1}{2}; -\frac{1}{2} >$			
	$[\mathbf{EuCp}_3]^-$			
KD1	$60\% \mid \frac{7}{2}; -\frac{1}{2} > + 40\% \mid \frac{7}{2}; +\frac{1}{2} >$	8.623	7.338	1.984
	$60\% \mid \frac{7}{2}; +\frac{1}{2} > + 40\% \mid \frac{7}{2}; -\frac{1}{2} >$			
KD2	$63\% \mid \tfrac{7}{2}; -\tfrac{3}{2} > + 37\% \mid \tfrac{7}{2}; +\tfrac{3}{2} >$	0.634	0.650	5.978
	$63\% \mid \frac{7}{2}; + > + 37\% \mid \frac{7}{2}; -\frac{3}{2} >$			
KD3	$80\% \mid \frac{7}{2}; -\frac{5}{2} > + \ 320\% \mid \frac{7}{2}; +\frac{5}{2} >$	0.009	0.010	9.985
	$80\% \mid \frac{7}{2}; +\frac{5}{2} > + \ 320\% \mid \frac{7}{2}; -\frac{5}{2} >$			
KD4	$100\% \mid \frac{7}{2}; +\frac{7}{2} >$	0.000	0.000	13.980
	$100\% \mid \frac{7}{2}; -\frac{7}{2} >$			

Table 5: Composition of the lowest Kramers doublets of Eu^{2+} complexes and their g-factors

State	Config	\mathbf{g}_x	\mathbf{g}_y	\mathbf{g}_z
	${f Tm}({f CNT})_2$			
	$100\% \mid \frac{7}{2}; +\frac{5}{2} >$	0.007	0.007	5.722
KD1	$100\% \mid \frac{7}{2}; -\frac{5}{2} >$			
KD2	$100\% \mid rac{7}{2}; +rac{7}{2} >$	0.007	0.007	7.998
	$100\% \mid rac{7}{2}; -rac{7}{2} >$			
KD3	$98\% \mid \frac{7}{2}; +\frac{3}{2} > + \ 2\% \mid \frac{7}{2}; -\frac{3}{2} >$	0.001	0.001	3.380
0	$98\% \mid \frac{7}{2}; -\frac{3}{2} > + \ 2\% \mid \frac{7}{2}; +\frac{3}{2} >$			
KD4	$88\% \mid \frac{7}{2}; +\frac{1}{2} > + 12\% \mid \frac{7}{2}; -\frac{1}{2} >$	4.563	4.562	1.132
	$88\% \mid \frac{7}{2}; -\frac{1}{2} > + 12\% \mid \frac{7}{2}; +\frac{1}{2} >$			
	$[\mathbf{TmCp}_3]^-$			
KD1	96% $\frac{7}{2}$; + $\frac{7}{2}$ > + 4% $\frac{7}{2}$; - $\frac{5}{2}$ >	1.144	1.149	7.499
	96% $\frac{7}{2}; -\frac{7}{2} > + 4\%$ $\frac{7}{2}; +\frac{5}{2} >$			
KD2	95% $\frac{7}{2}$; $+\frac{5}{2}$ > + 5% $\frac{7}{2}$; $-\frac{7}{2}$ >	0.934	1.283	5.187
RD2	95% $\frac{7}{2}$; $-\frac{5}{2}$ > + 5% $\frac{7}{2}$; $+\frac{7}{2}$ >			
KD3	$50\% \frac{7}{2}; -\frac{1}{2} > + 30\% \frac{7}{2}; -\frac{3}{2} > + 20\% \frac{7}{2}; +\frac{1}{2} >$	4.853	4.163	1.197
	$50\% \frac{7}{2}; +\frac{1}{2} > + 30\% \frac{7}{2}; +\frac{3}{2} > + 20\% \frac{7}{2}; -\frac{1}{2} >$			
KD4	$55\% \frac{7}{2}; +\frac{3}{2} > + 30\% \frac{7}{2}; +\frac{1}{2} > + 15\% \frac{7}{2}; -\frac{3}{2} >$	0.096	0.148	5.367
	$55\% \mid \frac{7}{2}; -\frac{3}{2} > + 30\% \mid \frac{7}{2}; -\frac{1}{2} > + 15\% \mid \frac{7}{2}; +\frac{3}{2} >$			

Table 6: Composition of the lowest Kramers doublets of Tm^{2+} complexes and their g-factors

Crystal Field analysis

The crystal field Hamiltonian fo4 a f complex in a pseudoaxial symmetry $(D_{9h} \text{ or } D_{9d})$ and trigonal (D_{3h}) have, respectively, the form:

$$\hat{H}^{CF}(D_{\infty}) = B_2^0 \hat{C}_2^0 + B_4^0 \hat{C}_4^0 + B_6^0 \hat{C}_6^0$$

$$\hat{H}^{CF}(D_{3h}) = B_2^0 \hat{C}_2^0 + B_4^0 \hat{C}_4^0 + B_6^0 \hat{C}_6^0 + B_6^6 \left(\hat{C}_6^{-6} + \hat{C}_6^6 \right)$$

where B_k^q are the crystal field parameters and C_k^q are the spherical tensor operators. The matrix elements $\langle Jm_J | \hat{H}^{CF} | Jm_{J'} \rangle$ are evaluated by application of the operator equivalent techniques, where the spherical

tensor can be written a a functions of the total angular momentum operator and Stevens coefficients. Both Hamiltoians above can be rewritten as:

$$\hat{H}^{CF}(D_{\infty}) = \alpha_J B_2^0 \hat{O}_2^0 + \beta_J B_4^0 \hat{O}_4^0 + \gamma_J B_6^0 \hat{O}_6^0$$

$$\hat{H}^{CF}(D_{3h}) = \alpha_J B_2^0 \hat{O}_2^0 + \beta_J B_4^0 \hat{O}_4^0 + \gamma_J \left[B_6^0 \hat{O}_6^0 + B_6^6 \left(\hat{O}_6^{-6} + \hat{O}_6^6 \right) \right]$$

where α_J , β_J and γ_J are the Stevens coefficients. Particularly the equivalent operator \hat{O}_k^q for k = 2, 4 have the form:

$$\hat{O}_2^0 = 3J_z^2 - J\left(J+1\right)$$

$$\hat{O}_{4}^{0} = 35J_{z}^{4} - 30J(J+1)J_{z}^{2} + 25J_{z}^{2} - 6J(J+1) + 3J^{2}(J+1)^{2}$$

In the case of Tm^{2+} ion the product $\alpha_J B_2^0 < 0$ require, to get estabilization, that $\hat{O}_2^0 > 0$. This is translated, by the form of the operator, in a ground state with a large value of m_J . On the other hand, when B_4^0 is also large, the introduction of cuadratic term favors intermediate values of m_J .

D_{9d}	D_{9h}	D_{3d}	D_{3h}	C_{3v}	Orbital
A_{2u}	$A_2^{''}$	A_{2u}	$A_2^{''}$	A_1	f_0
E_{1u}	${\rm E_1}^{\prime}$	\mathbf{E}_{u}	$\mathrm{E}^{'}$	Ε	$f_{\pm 1}$
E_{2u}	${\rm E_2}''$	E_{u}	$E^{\prime\prime}$	Ε	$f_{\pm 2}$
E_{3u}	${\rm E_3}'$	$A_{1u} \oplus A_{2u}$	$\mathrm{A_{1}}^{'} \oplus \mathrm{A_{2}}^{'}$	$A_1{\oplus}A_2$	$f_{\pm 3}$
A_{1g}	A_1	A_{1g}	A_1	A_1	d_0
E_{1g}	${\rm E_1}^{''}$	E_{g}^{-}	E''	Ε	$d_{\pm 1}$
E_{2g}	$\mathbf{E_2}'$	E_{g}	$\mathrm{E}^{'}$	Ε	$d_{\pm 2}$

Table 7: Irreducible representations and equivalences between different point groups analyzed in this work