## **Supplementary Information**

## Discriminatory behavior of a rhodamine 6G decorated mesoporous silica based multiple cation sensor towards Cu<sup>2+</sup> and Hg<sup>2+</sup> vis-à-vis Al<sup>3+</sup>, Cr<sup>3+</sup> and Fe<sup>3+</sup>: Selective removal of Cu<sup>2+</sup> and Hg<sup>2+</sup> from aqueous medium

Debdas Singha,<sup>a</sup> Ananya Pal,<sup>a</sup> Hiroshi Uyama,<sup>b</sup> Partha Roy,<sup>c</sup> Mahasweta Nandi<sup>\*,a</sup>

<sup>a</sup>Integrated Science Education and Research Centre, Siksha Bhavana, Visva-Bharati University, Santiniketan 731 235, India Email: mahasweta.nandi@visva-bharati.ac.in <sup>b</sup>Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan <sup>c</sup>Department of Chemistry, Jadavpur University, Kolkata 700032, India



Scheme S1. Syntheses of L1 and L2



Fig. S1. FT-IR spectra of (a) mesoporous silica (MS), (b) 3-APTES-FMS, (c) CHO-FMS and (d) R6FMS.



Fig. S2. Thermogravimetric analysis of (a) mesoporous silica (MS), (b) 3-APTES-FMS, (c) CHO-FMS and (d) R6FMS.



Fig. S3. Solid state <sup>29</sup>Si MAS NMR spectra of (a) mesoporous silica (MS), (b) 3-APTES-FMS, (c) CHO-FMS and (d) R6FMS.



**Fig. S4.** Absorption spectra of **R6FMS** in the presence of 800  $\mu$ M of different metal ions (for Cu<sup>2+</sup>: 500  $\mu$ M) in ethanol at 298 K (l = 1 cm).



**Fig. S5.** Absorption spectra of **R6FMS** in the presence of (0-800  $\mu$ M) (a) Cr<sup>3+</sup> and (b) Fe<sup>3+</sup> in ethanol at 298 K (l = 1 cm).



**Fig. S6.** Absorption spectra of **R6FMS** in the presence 800  $\mu$ M concentration of different metal ions in 10 mM HEPES buffer in water/acetonitrile = 14:1 (v/v) (pH 7.2) at 298 K (l = 1 cm).



Fig. S7. Fluorescence spectra of R6FMS in the presence 800  $\mu$ M of different metal ions in ethanol at 298 K.



Fig. S8. Fluorescence spectra of R6FMS in the presence of different concentrations of (a)  $Cr^{3+}$  (0-800  $\mu$ M) and (b) Fe<sup>3+</sup> (0-800  $\mu$ M) in ethanol at 298 K.



**Fig. S9.** Fluorescence spectra of **R6FMS** in the presence of 800  $\mu$ M of all metal ions in 10 mM HEPES buffer in water/acetonitrile = 14:1 (v/v) (pH 7.2) at 298 K.



Fig. S10. Excited state fluorescence decay behavior of (a) R6FMS and its complex with (b)  $Al^{3+}$ , (c)  $Cr^{3+}$ , (d)  $Fe^{3+}$  and (e)  $Cu^{2+}$  ions in ethanol at 298 K.



**Fig. S11.** Excited state fluorescence decay behavior of (a) **R6FMS** and its complex with (a)  $Cu^{2+}$  and (c)  $Hg^{2+}$  ions in 10 mM HEPES buffer in water/acetonitrile = 14:1 (v/v) (pH 7.2) at 298 K.



Fig. S12. Determination of Sb1 of the blank, R6FMS in ethanol at 298 K.



**Fig. S13.** Linear dynamic plot of F.I. (at 552 nm) *vs.*  $[Al^{3+}]$  in ethanol for the determination of S (slope).



**Fig. S14.** Linear dynamic plot of F.I. (at 552 nm) *vs.*  $[Cr^{3+}]$  in ethanol for the determination of S (slope).



**Fig. S15.** Linear dynamic plot of F.I. (at 552 nm) *vs.*  $[Fe^{3+}]$  in ethanol for the determination of S (slope).



Fig. S16. Linear dynamic plot of F.I. (at 552 nm) vs.  $[Cu^{2+}]$  in ethanol for the determination of S (slope).



**Fig. S17.** Determination of Sb1 of the blank, **R6FMS** in water/acetonitrile (14:1, v/v) (pH 7.2, HEPES buffer) at 298 K.



**Fig. S18.** Linear dynamic plot of F.I. (at 552 nm) *vs.* [Cu<sup>2+</sup>] for the determination of S (slope) in water/acetonitrile (14:1, v/v) (pH 7.2, HEPES buffer).



**Fig. S19.** Linear dynamic plot of F.I. (at 552 nm) *vs.* [Hg<sup>2+</sup>] for the determination of S (slope) in water/acetonitrile (14:1, v/v) (pH 7.2, HEPES buffer).



Fig. S20. Absorbance of R6FMS in the presence of Al<sup>3+</sup> and Hg<sup>2+</sup> with different complexing agents.
(a) Reversibility test of Al<sup>3+</sup> binding with R6FMS in the presence F<sup>-</sup> ion in ethanol indicating reversible binding nature of aluminum, (b) Reversibility test of Hg<sup>2+</sup> binding with R6FMS in the presence of Na<sub>2</sub>-EDTA in water/acetonitrile (14:1, v/v) (pH 7.2, HEPES buffer) and (c) Reversibility test of Hg<sup>2+</sup> binding with R6FMS in the presence of Na<sub>2</sub>S in water/acetonitrile (14:1, v/v) (pH 7.2, HEPES buffer). Both the tests (b and c) indicate that the binding of Hg<sup>2+</sup> with the probe is not reversible.



**Fig. S21.** Solid state <sup>29</sup>Si MAS NMR spectra of (a) **R6FMS**, (b) Al<sup>3+</sup>-**R6FMS** in ethanol, (c) Hg<sup>2+</sup>-**R6FMS** in ethanol and (d) Hg<sup>2+</sup>-**R6FMS** in HEPES buffer in water/acetonitrile.



**Fig. S22.** (A) Change of color of **R6FMS** in the presence of Al<sup>3+</sup> in ethanol before and after filtration and (B) Absorption spectra of **R6FMS** in the presence of Al<sup>3+</sup> ion in ethanol before and after filtration.



**Fig. S23.** (a) Area selected for EDS spectrum and corresponding EDS patterns showing elemental mapping in Cu<sup>2+</sup>-**R6FMS** of (b) Carbon (cyan), (c) Oxygen (red), (d) Silicon (magenta), (e) Copper (green) and (f) Gold (yellow).



**Fig. S24.** EDS sum spectrum of Cu<sup>2+</sup>-**R6FMS** showing the presence of the different elements on the sample surface.



**Fig. S25.** (a) Area selected for EDS spectrum and corresponding EDS patterns showing elemental mapping in Cu<sup>2+</sup>-**R6FMS** of (b) Carbon (cyan), (c) Oxygen (red), (d) Silicon (magenta), (e) Mercury (green) and (f) Gold (yellow) and (g) EDS sum spectrum of Hg<sup>2+</sup>-**R6FMS** showing the presence of the different elements on the sample surface.



**Fig. S26.** EDS sum spectrum of Hg<sup>2+</sup>-**R6FMS** showing the presence of the different elements on the sample surface.

| No. | Formula                                              | Solubility in water | Solubility in ethanol | Purchased |
|-----|------------------------------------------------------|---------------------|-----------------------|-----------|
|     |                                                      | (g/L)               | (g/L)                 | from      |
| 1.  | NaCl                                                 | 360                 | 0.65                  | Merck     |
| 2.  | $MgCl_2$                                             | 543                 | 74                    | Merck     |
| 3.  | Al(NO <sub>3</sub> ) <sub>3</sub> .9H <sub>2</sub> O | 739                 | 86.3                  | Merck     |
| 4.  | KCl                                                  | 339.7               | 0.0029                | Merck     |
| 5.  | CaCl <sub>2</sub>                                    | 811                 | 258                   | Merck     |
| 6.  | CrCl <sub>3</sub> .6H <sub>2</sub> O                 | 585                 |                       | Merck     |
| 7.  | MnCl <sub>2</sub> .4H <sub>2</sub> O                 | 739                 | 74                    | Merck     |
| 8.  | FeCl <sub>3</sub>                                    | 912                 | 830                   | Merck     |
| 9.  | CoCl <sub>2</sub> .6H <sub>2</sub> O                 | 529                 | 86                    | Merck     |
| 10. | NiCl <sub>2</sub> .6H <sub>2</sub> O                 | 675                 | 8                     | Merck     |
| 11. | CuCl <sub>2</sub> .2H <sub>2</sub> O                 | 757                 | 530                   | Merck     |
| 12. | $ZnCl_2$                                             | 4320                | 4300                  | Merck     |
| 13. | NaAsO <sub>2</sub>                                   | 1560                |                       | Merck     |
| 14. | CdCl <sub>2</sub>                                    | 1196                | 14.8                  | Merck     |
| 15. | HgCl <sub>2</sub>                                    | 69                  | 40                    | Merck     |
| 16. | $Pb(NO_3)_2$                                         | 597                 | 87.7                  | Merck     |

Table S1. Solubility of different metal salts in water and ethanol at 25°C

## Speciation of metal ions

Literature study suggests the following species may exist under the experimental conditions in aqueous medium

| Al <sup>3+</sup> | $\rightarrow$ | $[Al(OH)(H_2O)_5]^{2+}$ and/or $[Al(OH)_2(H_2O)_4]^+$ |
|------------------|---------------|-------------------------------------------------------|
| Cr <sup>3+</sup> | $\rightarrow$ | $Cr(OH)^{2+}$ , $Cr(OH)_3$                            |

 $\mathbf{Fe}^{\mathbf{3}+} \rightarrow [\mathrm{Fe}(\mathrm{OH}_2)_4\mathrm{Cl}_2]^+$ 

 $Cu^{2+} \rightarrow CuCl^+$ 

 $Hg^{2+} \rightarrow HgOHCl(aq)$ 

## References

- 1. G. Berthon, Coord. Chem. Rev., 1996, 149, 241-280.
- 2. R. Rakhunde, L. Deshpande and H. D. Juneja, Crit. Rev. Env. Sci. Tec., 2012, 42, 776-810.
- 3. S. A. Cotton, J Coord. Chem., 2018, 71, 3415-3443.
- 4. K. J. Powell, P. L. Brown, R. H. Byrne, T. Gajda, G. Hefter, S. Sjöberg and H. Wanner, *Pure Appl. Chem.*, 2007, **79**, 895-950.
- 5. K. J. Powell1, P. L. Brown, R. H. Byrne, T. Gajda, G. Hefter, S. Sjöberg and H. Wanner, *Pure Appl. Chem.*, 2005, **77**, 739-800.