Supplementary information

Spin Crossover in Iron(II) Hoffmann Clathrates Analogues with 1,2,3-triazole

Iryna S. Kuzevanova,^{a,b} Olesia I. Kucheriv,^{a,c} Volodymyr M. Hiiuk,^{a,c} Dina D. Naumova,^a Sergiu Shova,^{*d} Sergii I. Shylin,^e Volodymyr O. Kotsyubynsky,^f Aurelian Rotaru,^g Igor O. Fritsky^{a,c} and II'ya A. Gural'skiy^{* a,c}

^{a.}Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska St. 64, Kyiv 01601, Ukraine. E-mail: illia.guralskyi@univ.kiev.ua;

^{b.}Department of General and Inorganic Chemistry, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Pr. 37, Kyiv 03056, Ukraine;

^{c.}UkrOrgSyntez Ltd., Chervonotkatska St. 67, Kyiv 02094, Ukraine.

^{d.}Department of Inorganic Polymers, Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41-A, Iasi 700487, Romania;

^e Ångström Laboratory, Department of Chemistry, Uppsala University, 75120 Uppsala, Sweden;

^{f.}Department of Material Science and New Technology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk 76018, Ukraine;

^{g.} Faculty of Electrical Engineering and Computer Science & MANSiD Research Center, Stefan cel Mare University, Universitatii St. 13, Suceava 720229, Romania.

Figure S1. The view of crystal packing in **Pt-trz** showing hydrogen disorder. H(N) atoms are disordered by two positions with 0.5 occupancy each.

Figure S2. Demonstration of four possible environments of Fe^{II}, realized due to hydrogen disorder.

Pt-trz

Cooling

Heating

Pd-trz

Cooling

Heating

Figure S3. Images of **Pt-trz** and **Pd-trz** obtained during temperature dependent optical measurements, which show thermochromic effect upon SCO.

Figure S4. IR spectrum of Pt-trz measured in Nujol (IR bands of Nujol are marked as light grey).

Figure S5. IR spectrum of Pd-trz measured in Nujol (IR bands of Nujol are marked as light grey).

Table S1. Spin transition and crystallographic characteristics of selected Fe ^{II} Hofmann clathrat	е
analogues.	

2D complexes of general formula [Fe(L) ₂ M(CN) ₄]										
			M = Pt				M = Pd			
L	Space	Tr.	Т↓	T↑	ΔT	Space	Tr.	Т↓	Т↑	ΔT
	group					group				
				Azir	nes					
Pyridine ¹	Сттт	ic	208	216	8	Сттт	ic	208	213	5
Pyridazine* ²	Сттт	С	269	283	14	Cmmm	С	247	260	13
Pyrimidine *3	Сттт	С	227	247	20	Сттт	с	198	213	15
	Azoles									
Proptrz* ⁴	ΡĪ	С	257	307	50	ΡĪ	с	220	285	65
Thiome*5						ΡĪ	С	184	204	20
Trz-py·3H ₂ O ⁶	C2/c	50%	152	154	2					

Tr. – transition, c – complete, ic – incomplete, * - only temperatures for dehydrated forms are given, proptrz - (E)-3-phenyl-N-(4H-1,2,4-triazol-4-yl)prop-2-yn-1- imine, thiome - 4-[(E)-2- (5-methyl-2-thienyl)vinyl]-1,2,4-triazole, trz-py - 4-(2-pyridyl)-1,2,4,4H-triazole

Table S2. Spin transition temperatures for powder samples of **1** and **2**, obtained in different experiments.

	Magnetic		DSC		Optical	
	measurements				measurements	
	Т↓	Т↑	Т↓	Т↑	Т↓	Т↑
Pt-trz	(1) 194	(1) 210	189	(1) 212	185	212
	(2) 200	(2) 222		(2) 222		
Pd-trz	202	(1) 212	198	(1) 215	193	218
		(2) 220		(2) 222		

Table S3. Summary of spin transition temperatures for single crystals of **Pt-trz** at different scan rates extracted from optical measurements.

Rate (K min ⁻¹)	Т↓ (К)	Т↑ (К)
0.5	199.3	227.4
1	198.6	226.4
5	199.1	228.2
10	197.7	224.7

Table S4. Crystal data and structure refinement for Pt-trz at 170 K.

Empirical formula	$C_8H_6FeN_{10}Pt$
Formula weight	493.17
Temperature/K	169.9(2)
Crystal system	orthorhombic
Space group	Imma
a/Å	13.8736(9)
b/Å	7.1949(4)
c/Å	12.8934(15)
α/°	90
β/°	90
γ/°	90
Volume/ų	1287.01(19)
Z	4
$\rho_{calc}g/cm^3$	2.545
µ/mm⁻¹	11.991
F(000)	912.0
Crystal size/mm ³	$0.2 \times 0.2 \times 0.08$
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/	24.312 to 58.1
Index ranges	-17 ≤ h ≤ 17, -9 ≤ k ≤ 6, -8 ≤ l ≤ 17
Reflections collected	1729
Independent reflections	840 [$R_{int} = 0.0335$, $R_{sigma} = 0.0580$]
Data/restraints/parameters	840/0/57
Goodness-of-fit on F ²	1.114
Final R indexes [I>=2σ (I)]	$R_1 = 0.0415$, $wR_2 = 0.0882$
Final R indexes [all data]	$R_1 = 0.0512$, $wR_2 = 0.0937$
Largest diff. peak/hole / e Å ⁻³	5.57/-2.67

Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for Pt-trz (LS). U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	X	у	Z	U(eq)
Pt1	5000	2500	6971.2(5)	11.4(2)

7500	7500	7500	10.3(5)
7962(6)	7500	6052(7)	11.3(18)
6567(4)	5600(9)	7151(5)	10.9(13)
8884(6)	7500	5781(8)	21(2)
6003(5)	4477(10)	7027(6)	11.5(14)
8966(7)	7500	4769(8)	22(2)
7455(9)	7500	5151(9)	25(3)
8071(9)	7500	4339(10)	25(3)
	7500 7962(6) 6567(4) 8884(6) 6003(5) 8966(7) 7455(9) 8071(9)	750075007962(6)75006567(4)5600(9)8884(6)75006003(5)4477(10)8966(7)75007455(9)75008071(9)7500	7500750075007962(6)75006052(7)6567(4)5600(9)7151(5)8884(6)75005781(8)6003(5)4477(10)7027(6)8966(7)75004769(8)7455(9)75005151(9)8071(9)75004339(10)

Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for Pt-trz (LS). The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U_{12}
Pt1	7.7(3)	4.1(3)	22.5(4)	0	0	0
Fe1	8.2(9)	5.1(10)	17.5(12)	0	-0.3(9)	0
N2	10(4)	7(4)	17(5)	0	-7(4)	0
N1	9(3)	9(3)	15(3)	1(3)	4(2)	3(2)
N3	14(4)	29(6)	18(6)	0	6(4)	0
C1	6(3)	11(3)	18(4)	5(3)	-3(3)	4(3)
N4	21(5)	26(6)	20(6)	0	5(4)	0
C2	27(6)	24(7)	22(7)	0	-3(6)	0
C3	32(6)	26(7)	17(7)	0	1(5)	0

Bond Lengths for Pt-trz (LS).								
Atom	n Atom	Length/Å	Atom	Atom	Length/Å			
Pt1	C1 ¹	1.991(7)	Fe1	N1 ⁴	1.936(6)			
Pt1	C1	1.991(7)	Fe1	N1 ⁶	1.936(6)			
Pt1	C1 ²	1.991(7)	N2	N3	1.326(12)			
Pt1	C1 ³	1.991(7)	N2	C2	1.358(14)			
Fe1	N2 ⁴	1.974(9)	N1	C1	1.136(10)			
Fe1	N2	1.974(9)	N3	N4	1.311(13)			
Fe1	N1 ⁵	1.936(6)	N4	C3	1.360(15)			
Fe1	N1	1.936(6)	C2	C3	1.351(16)			

¹1-X,1/2-Y,+Z; ²+X,1/2-Y,+Z; ³1-X,+Y,+Z; ⁴3/2-X,3/2-Y,3/2-Z; ⁵3/2-X,+Y,3/2-Z; ⁶+X,3/2-Y,+Z

Bond Angles for Pt-trz (LS).								
Aton	n Aton	n Atom	Angle/°	Aton	n Aton	n Atom	Angle/°	
C1 ¹	Pt1	C1 ²	91.2(4)	N1 ⁴	Fe1	N1 ⁵	90.2(3)	
C1 ³	Pt1	C1	91.2(4)	N1	Fe1	N1 ⁵	89.8(3)	
$C1^1$	Pt1	C1 ³	88.7(4)	$N1^4$	Fe1	N1 ⁶	89.8(3)	

Pt1	C1	88.7(4)	N1	Fe1	N1 ⁴	180.0
Pt1	C1 ³	175.8(4)	N1 ⁵	Fe1	N1 ⁶	180.0(3)
Pt1	C1	175.8(4)	N1	Fe1	N1 ⁶	90.2(3)
Fe1	N2	180.0	N3	N2	Fe1	124.2(7)
Fe1	N2 ⁴	90.2(2)	N3	N2	C2	106.0(9)
Fe1	N2	89.8(2)	C2	N2	Fe1	129.9(7)
Fe1	N2 ⁴	90.2(2)	C1	N1	Fe1	174.6(6)
Fe1	N2	89.8(2)	N4	N3	N2	110.3(9)
Fe1	N2 ⁴	89.8(2)	N1	C1	Pt1	174.0(7)
Fe1	N2 ⁴	89.8(2)	N3	N4	C3	109.0(10)
Fe1	N2	90.2(2)	C3	C2	N2	109.5(10)
Fe1	N2	90.2(2)	C2	C3	N4	105.2(11)
	Pt1 Pt1 Fe1 Fe1 Fe1 Fe1 Fe1 Fe1 Fe1 Fe1	Pt1 C1 Pt1 C1 Pt1 C1 Fe1 N2 Fe1 N2 ⁴ Fe1 N2 Fe1 N2	Pt1C1 $88.7(4)$ Pt1C13 $175.8(4)$ Pt1C1 $175.8(4)$ Fe1N2 180.0 Fe1N24 $90.2(2)$ Fe1N2 $89.8(2)$ Fe1N24 $90.2(2)$ Fe1N24 $89.8(2)$ Fe1N24 $89.8(2)$ Fe1N24 $89.8(2)$ Fe1N24 $89.8(2)$ Fe1N2 $90.2(2)$ Fe1N2 $90.2(2)$ Fe1N2 $90.2(2)$	Pt1C1 $88.7(4)$ N1Pt1C13 $175.8(4)$ N15Pt1C1 $175.8(4)$ N1Fe1N2 180.0 N3Fe1N24 $90.2(2)$ N3Fe1N24 $90.2(2)$ C1Fe1N24 $89.8(2)$ N4Fe1N24 $89.8(2)$ N1Fe1N24 $89.8(2)$ N1Fe1N24 $89.8(2)$ N3Fe1N2 $90.2(2)$ C3Fe1N2 $90.2(2)$ C2	Pt1C1 $88.7(4)$ N1Fe1Pt1C13 $175.8(4)$ N15Fe1Pt1C1 $175.8(4)$ N1Fe1Fe1N2 180.0 N3N2Fe1N24 $90.2(2)$ N3N2Fe1N24 $90.2(2)$ C1N1Fe1N24 $89.8(2)$ N4N3Fe1N24 $89.8(2)$ N1C1Fe1N24 $89.8(2)$ N3N4Fe1N24 $90.2(2)$ C3C2Fe1N2 $90.2(2)$ C3C2Fe1N2 $90.2(2)$ C2C3	Pt1C188.7(4)N1Fe1N14Pt1C13175.8(4)N15Fe1N16Pt1C1175.8(4)N1Fe1N16Fe1N2180.0N3N2Fe1Fe1N2490.2(2)N3N2C2Fe1N2490.2(2)C1N1Fe1Fe1N2490.2(2)C1N1Fe1Fe1N2489.8(2)N4N3N2Fe1N2489.8(2)N1C1Pt1Fe1N2489.8(2)N3N4C3Fe1N290.2(2)C3C2N2Fe1N290.2(2)C3N4S

¹1-X,1/2-Y,+Z; ²1-X,+Y,+Z; ³+X,1/2-Y,+Z; ⁴3/2-X,3/2-Y,3/2-Z; ⁵+X,3/2-Y,+Z; ⁶3/2-X,+Y,3/2-Z

Hydrogen Bonds for Pt-trz (LS).									
D	н	Α	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°			
Ν3	H1A	N31	0.86	2.50	3.097(18)	127.4			
N4	H1B	$N4^1$	0.86	2.17	2.868(19)	137.9			

¹2-X,3/2-Y,+Z

Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for Pttrz (LS).

X	у	Z	U(eq)
9359.38	7500	6208.92	25
9500.67	7500	4430.29	26
6785.93	7500	5099.96	29
7916.05	7500	3637.01	30
	x 9359.38 9500.67 6785.93 7916.05	x y 9359.38 7500 9500.67 7500 6785.93 7500 7916.05 7500	xyz9359.3875006208.929500.6775004430.296785.9375005099.967916.0575003637.01

Atomic	Occu	pancy	for	Pt-trz.
--------	------	-------	-----	---------

Atom	Occupancy
H1A	0.5
H1B	0.5

Table S5. Crystal data and structure refinement for Pt-trz at 255 K.

Empirical formula	$C_8H_6N_{10}FePt\\$
Formula weight	493.17

Temperature/K	255.00(10)
Crystal system	orthorhombic
Space group	Imma
a/Å	14.3717(6)
b/Å	7.4268(3)
c/Å	13.1817(13)
α/°	90
β/°	90
γ/°	90
Volume/ų	1406.96(16)
Z	4
$\rho_{calc}g/cm^3$	2.328
µ/mm⁻¹	10.969
F(000)	912.0
Crystal size/mm ³	$0.2 \times 0.2 \times 0.08$
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	4.192 to 58.49
Index ranges	$-18 \le h \le 12, -5 \le k \le 9, -10 \le l \le 17$
Reflections collected	2112
Independent reflections	940 [R _{int} = 0.0272, R _{sigma} = 0.0453]
Data/restraints/parameters	940/0/57
Goodness-of-fit on F ²	1.062
Final R indexes [I>=2σ (I)]	$R_1 = 0.0351$, $wR_2 = 0.0742$
Final R indexes [all data]	$R_1 = 0.0449$, $wR_2 = 0.0789$
Largest diff. peak/hole / e Å $^{\text{-}3}$	3.62/-2.04

Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic Displacement Parameters
$(Å^2 \times 10^3)$ for Pt-trz (HS). U _{eq} is defined as 1/3 of of the trace of the orthogonalised U _{IJ} tensor

X	У	Z	U(eq)
5000	2500	1952.1(4)	16.85(17)
7500	7500	2500	17.4(4)
6949(5)	7500	4056(6)	25.8(17)
6520(4)	5474(7)	2073(4)	26.7(13)
6073(5)	7500	4338(7)	33(2)
5972(4)	4396(8)	1991(5)	18.7(12)
5999(7)	7500	5324(7)	44(2)
6864(8)	7500	5706(9)	43(3)
7439(7)	7500	4912(8)	40(3)
	x 5000 7500 6949(5) 6520(4) 6073(5) 5972(4) 5999(7) 6864(8) 7439(7)	y 5000 2500 7500 7500 6949(5) 7500 6520(4) 5474(7) 6073(5) 7500 5972(4) 4396(8) 5999(7) 7500 6864(8) 7500 7439(7) 7500	xyz500025001952.1(4)7500750025006949(5)75004056(6)6520(4)5474(7)2073(4)6073(5)75004338(7)5972(4)4396(8)1991(5)5999(7)75005324(7)6864(8)75005706(9)7439(7)75004912(8)

Anisotropic Displacement Parameters (Å ² ×10 ³) for Pt-trz (HS). The Anisotropic displacement							
factor expo	onent takes the	form: -2π ² [h ² a*	^{*2} U ₁₁ +2hka*b*l	U12+].			
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂	

Pt1	10.3(2)	8.2(2)	32.0(3)	0	0	0
Fe1	12.3(8)	8.7(7)	31.2(11)	0	-0.9(8)	0
N2	23(4)	23(4)	31(4)	0	-2(4)	0
N1	24(3)	18(3)	38(3)	-1(2)	-1(3)	-4(2)
N3	16(4)	49(5)	35(5)	0	5(4)	0
C1	16(3)	15(3)	25(3)	3(3)	-3(3)	1(2)
N4	40(5)	66(7)	25(5)	0	9(4)	0
C3	40(6)	52(7)	36(6)	0	-4(6)	0
C2	28(5)	57(7)	35(6)	0	-1(5)	0

Bond Lengths for Pt-trz (HS).

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Pt1	C1	1.984(6)	Fe1	N1 ⁴	2.136(5)
Pt1	C1 ¹	1.984(6)	Fe1	N1 ⁶	2.136(5)
Pt1	C1 ²	1.984(6)	N2	N3	1.313(10)
Pt1	C1 ³	1.984(6)	N2	C2	1.330(12)
Fe1	N2	2.199(8)	N1	C1	1.129(8)
Fe1	N2 ⁴	2.199(8)	N3	N4	1.303(11)
Fe1	N1 ⁵	2.136(5)	N4	C3	1.342(14)
Fe1	N1	2.136(5)	C3	C2	1.333(15)

¹+X,1/2-Y,+Z; ²1-X,+Y,+Z; ³1-X,1/2-Y,+Z; ⁴3/2-X,3/2-Y,1/2-Z; ⁵3/2-X,+Y,1/2-Z; ⁶+X,3/2-Y,+Z

			· · ·				
Atom	n Aton	n Atom	Angle/°	Aton	n Aton	n Atom	Angle/°
C1	Pt1	C11	177.0(4)	N1 ⁴	Fe1	N1 ⁵	90.4(3)
C1 ²	Pt1	C1 ³	177.0(4)	N1	Fe1	N1 ⁵	89.6(3)
C1	Pt1	C1 ²	89.5(3)	N1 ⁴	Fe1	N1 ⁶	89.6(3)
$C1^1$	Pt1	C1 ³	89.5(3)	N1	Fe1	N1 ⁴	180.0
$C1^1$	Pt1	C1 ²	90.4(3)	N1 ⁵	Fe1	N1 ⁶	180.0(3)
C1	Pt1	C1 ³	90.4(3)	N1	Fe1	N1 ⁶	90.4(3)
N2	Fe1	N2 ⁴	180.0	N3	N2	Fe1	127.6(6)
N1 ⁵	Fe1	N2	90.5(2)	N3	N2	C2	105.5(8)
N1	Fe1	N2 ⁴	89.5(2)	C2	N2	Fe1	126.9(6)
N1	Fe1	N2	90.5(2)	C1	N1	Fe1	170.0(6)
N1 ⁵	Fe1	N2 ⁴	89.5(2)	N4	N3	N2	111.1(9)
N1 ⁴	Fe1	N2	89.5(2)	N1	C1	Pt1	176.0(6)
N1 ⁶	Fe1	N2	89.5(2)	N3	N4	C3	107.4(9)
N1 ⁶	Fe1	N2 ⁴	90.5(2)	C2	C3	N4	106.2(10)
N1 ⁴	Fe1	N2 ⁴	90.5(2)	N2	C2	C3	109.8(9)

Bond Angles for Pt-trz (HS).

¹1-X,1/2-Y,+Z; ²1-X,+Y,+Z; ³+X,1/2-Y,+Z; ⁴3/2-X,3/2-Y,1/2-Z; ⁵+X,3/2-Y,+Z; ⁶3/2-X,+Y,1/2-Z

Hydrogen Bonds for Pt-trz (HS).									
D	Н	Α	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°			
Ν3	H1A	$N3^1$	0.86	2.48	3.084(15)	128.2			
N4	H1B	$N4^1$	0.86	2.19	2.872(19)	136.5			

¹1-X,3/2-Y,+Z

Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for Pttrz (HS).

Atom	X	У	Z	U(eq)
H1A	5608.44	7500	3926.94	40
H1B	5489.64	7500	5665.85	52
H3	7029.75	7500	6388.34	51
H2	8085.08	7500	4951.39	48
Atomic	Occupancy for Pt-ti	z (HS).		
Atom	Occupancy			
H1A	0.5			

H1B

0.5

- 1 V. Niel, J. M. Martinez-Agudo, M. Carmen Muñoz, A. B. Gaspar and J. A. Real, *Inorg. Chem.*, 2001, **40**, 3838–3839.
- I. A. Gural'skiy, S. I. Shylin, V. Ksenofontov and W. Tremel, *Eur. J. Inorg. Chem.*, 2019, 2019, 4532–4537.
- C. Bartual-Murgui, V. Rubio-Giménez, M. Meneses-Sánchez, F. J. Valverde-Muñoz, S. Tatay, C. Martí-Gastaldo, M. C. Muñoz and J. A. Real, ACS Appl. Mater. Interfaces, 2020, 12, 29461–29472.
- K. A. Zenere, S. G. Duyker, E. Trzop, E. Collet, B. Chan, P. W. Doheny, C. J. Kepert and S.
 M. Neville, *Chem. Sci.*, 2018, **9**, 5623–5629.
- 5 N. F. Sciortino, F. Ragon, K. A. Zenere, P. D. Southon, G. J. Halder, K. W. Chapman, L. Piñeiro-López, J. A. Real, C. J. Kepert and S. M. Neville, *Inorg. Chem.*, 2016, **55**, 10490–10498.
- 6 E. Milin, V. Patinec, S. Triki, E.-E. Bendeif, S. Pillet, M. Marchivie, G. Chastanet and K. Boukheddaden, *Inorg. Chem.*, 2016, **55**, 11652–11661.