Alternative ball-milling synthesis of vanadium-substituted polyoxometalates as catalysts for the aerobic cleavage of C-C and C-O bonds

Louay Al-Hussaini ${ }^{\text {a,b }}$, S. Valange ${ }^{\text {c }}$, M.E. Gálvez ${ }^{\text {b,* }}$ and F. Launay ${ }^{\text {a,* }}$
(a) Sorbonne Université, CNRS, UMR 7197, Laboratoire de Réactivité de Surface (LRS), F-75005 Paris, France
franck.launay@sorbonne-universite.fr
(b) Sorbonne Université, CNRS, UMR 7190, Institut Jean le Rond d’Alembert, F-75005 Paris, France elena.galvez parruca@sorbonne-universite.fr
(c) Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, ENSI Poitiers, B1, 1 rue Marcel Doré, F-86073 Poitiers Cedex 9, France

CONTENT

1. Further information on the protocols and results of the elemental analysis S2
Table S1. Weight engaged and elemental analyses (from ICP) of the different V_{x} prepared S2
2. XRD profiles and Rietveld refinement (Case of $\mathbf{V}_{\mathbf{3}}$ materials) S2
Figure S1. XRD profiles of V_{3}-HT vs. JCPDS 00-043-0317 $\left(\mathrm{H}_{3} \mathrm{PMo}_{12} \mathrm{O}_{40}\right.$. $\left.13 \mathrm{H}_{2} \mathrm{O}\right)$ S2
Table S2. Refinement results of $\mathrm{V}_{3}-\mathrm{HT}$ and $\mathrm{V}_{3}-\mathrm{BM}_{50}-1_{\mathrm{Bm}}-1.5 \mathrm{H}_{\mathrm{HT}} v s$. reference $\mathrm{H}_{3} \mathrm{PMo}_{12} \mathrm{O}_{40} .13 \mathrm{H}_{2} \mathrm{O}$ S2
3. TGA analysis (Principle for the determination of $n /$ Case of $\mathbf{V}_{\mathbf{x}}-\mathbf{B M}_{50} \mathbf{- 1}_{\mathrm{BM}}{ }^{-}$ S3
1.5_{HT} materials)
Figure S2. TGA-DSC profiles of $\mathrm{V}_{\mathrm{x}}-\mathrm{BM}_{50}-1_{\mathrm{BM}}-1.5_{\mathrm{HT}}$ catalysts vs V_{3} - HT S3
Table S3. Values of T_{1} and T_{2} for $\mathrm{V}_{\mathrm{x}}-\mathrm{HT}$ and $\mathrm{V}_{\mathrm{x}}-\mathrm{BM}_{50}-1_{\mathrm{BM}}-1.5_{\mathrm{HT}}$ materials measured by TGA S4
4. Liquid ${ }^{31} \mathrm{P}$ NMR (Principle of quantification) S4
Table S4. Isomers proportions in PMoV_{2} catalysts S4
Figure S3. NMR profile of $\mathrm{V}_{2}-\mathrm{BM}_{50}-1_{\text {BM }}-1.5 \mathrm{HT}$, peaks of V_{2} isomers S5
5. Liquid ${ }^{\mathbf{3 1}} \mathbf{P}$ NMR (Case of $\mathrm{V}_{\mathbf{2}}$ materials) S5
Figure S4. ${ }^{31} \mathrm{P}$ NMR spectra of $\mathrm{V}_{2}-\mathrm{BM}_{20}-1-1.5_{\mathrm{HT}} v s . \mathrm{V}_{2}-\mathrm{BM}_{50}-1_{\mathrm{BM}}-1.5_{\mathrm{HT}}$ material in $\mathrm{D}_{2} \mathrm{O}-\mathrm{H}_{2} \mathrm{O} 50-50$ S5
6. XRD profiles (Case of $\mathbf{V}_{\mathbf{2}}-\mathrm{BM}_{\mathbf{2 0}}-\mathrm{t}_{\mathbf{B M}}-\mathrm{t}_{\mathrm{HT}}$ materials) S6
Figure S5. Influence of the milling (tBM) and attack duration (tHT) on XRD profiles of $\mathrm{V}_{2}-\mathrm{BM}_{20}-\mathrm{t}_{\mathrm{BM}}{ }^{-}$ S6
t_{HT} materials vs. $\mathrm{V}_{2}-\mathrm{BM}_{50}-1_{\mathrm{BM}}-1.5_{\mathrm{HT}}$
7. Liquid ${ }^{31} \mathbf{P}$ NMR (Case of $\mathbf{V}_{\mathbf{2}}-\mathrm{BM}_{\mathbf{2 0}}-\mathrm{t}_{\mathrm{BM}}-\mathrm{t}_{\mathrm{HT}}$) S6
Figure S6. ${ }^{31} \mathrm{P}$ NMR spectra of $\mathrm{V}_{2}-\mathrm{BM}_{20}-\mathrm{t}_{\mathrm{BM}}-\mathrm{t}_{\mathrm{HT}}$ and $\mathrm{V}_{2}-\mathrm{BM}_{50}-1_{\mathrm{BM}}-1.5 \mathrm{HT}$ materials in $\mathrm{D}_{2} \mathrm{O}-\mathrm{H}_{2} \mathrm{O} 50-50$ S6
8. TGA analysis (Case of $\mathbf{V}_{\mathbf{2}} \mathrm{BM}_{\mathbf{2 0}}-\mathrm{t}_{\mathrm{BM}}-\mathbf{t}_{\mathrm{HT}}$ materials) S7
Figure S7. TGA-DSC profiles of $\mathrm{V}_{2}-\mathrm{BM}_{20}-\mathrm{t}_{\mathrm{BM}}-\mathrm{t}_{\mathrm{HT}}$ catalysts vs. $\mathrm{V}_{2}-\mathrm{BM}_{50}-1-1.5_{\mathrm{HT}}\left(\mathrm{V}_{2}-\mathrm{BM}_{50}\right.$ reference $)$ S7
9. Energy consumption: detailed calculation (HT vs BM) S7
Table S5. Calculation of the energy consumption of $\mathrm{V}_{3}-\mathrm{HT}$ and $\mathrm{V}_{\mathrm{x}}-\mathrm{BM}_{50}-1_{\mathrm{BM}}-1.5_{\mathrm{HT}}$ synthesis S8procedures
Table S6. Calculation of the energy consumption of $\mathrm{V}_{2}-\mathrm{BM}_{20}-\mathrm{t}_{\mathrm{BM}}-\mathrm{t}_{\mathrm{HT}}$ synthesis procedures S8
10. XRD of ball-milled oxides S9
Figure S8. XRD profiles of the mixed oxides ($\mathrm{x}_{\mathrm{th}}=2$). (The (110) signal was used for Debye-Scherrer S9
calculations)
Table S7. Crystallite size of BM mixed oxides vs. a hand mixture of oxides
11. Synthesis of $\underline{K} \quad$ S9
12. HPLC analysis and calibration curves $(\lambda=220 \mathrm{~nm})$

Figure S9. Chromatogramm of the reaction mixture for $\underline{K} \mathbf{1}_{H H}$ cleavage in the presence of $\mathrm{V}_{3}-\mathrm{BM}_{50^{-}} \quad$ S10 $1_{\mathrm{BM}}-1.5_{\mathrm{HT}}$
Figure S10. HPLC calibration curves of the products and reactants S11
13. References

1. Further information on the protocols and results of the elemental analysis

Table S1. Weight engaged and elemental analyses (from ICP) of the different V_{x} prepared

	V_{x}	$\mathbf{M o O}{ }_{3}(\mathrm{~g})$	$\mathrm{V}_{2} \mathrm{O}_{5}(\mathrm{~g})$	$\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{~g})$	$\begin{gathered} \mathrm{V} \\ (\% \mathrm{wt} .) \end{gathered}$	$\begin{gathered} \text { Mo } \\ (\% \mathbf{w t .}) \end{gathered}$	$\begin{gathered} P \\ (\% \mathrm{wt} .) \end{gathered}$
HT	V_{3}-HT	3.93	0.92	0.39 (85 wt.\%)	7.06	46.2	2.01
BM_{50}	$\mathrm{V}_{3}-\mathrm{BM}_{50}-1_{\text {вм }}-1.5 \mathrm{H}_{\text {HT }}$	1.12	0.24	0.24 (28.5 wt.\%)	8.02	49.9	1.80
	$\mathrm{V}_{2}-\mathrm{BM}_{50}-1_{\mathrm{BM}}-1.5 \mathrm{HT}$	1.21	0.15	0.26 (28.5 wt.\%)	5.23	53.2	1.74
BM_{20}	$\mathrm{V}_{2}-\mathrm{BM}_{20}{ }^{\prime}-1_{\text {ВМ }}-1.5_{\mathrm{HT}}$	3.02	0.38	$\begin{gathered} 0.07(85 \mathrm{wt} . \%)^{\mathrm{a}} \\ +0.04 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \end{gathered}$	6.23	54.5	1.69
	$\mathrm{V}_{2}-\mathrm{BM}_{20}-1_{\mathrm{BM}}-3_{\mathrm{HT}}$				7.13	56.4	1.21
	$\mathrm{V}_{2}-\mathrm{BM}_{20}-2_{\mathrm{BM}}-1.5_{\mathrm{HT}}$				5.82	53.7	1.67
	$\mathrm{V}_{2}-\mathrm{BM}_{20}-2_{\text {вM }}-3_{\mathrm{HT}}$				7.03	56.3	1.51
	$\mathrm{V}_{2}-\mathrm{BM}_{20}-4_{\mathrm{BM}}-1.5_{\mathrm{HT}}$				6.96	55.8	1.33
	$\mathrm{V}_{2}-\mathrm{BM}_{20}-4_{\mathrm{BM}}-3_{\mathrm{HT}}$				7.01	56.0	1.38
	V_{2}-wBM ${ }_{50}$-1-1.5 ${ }^{\text {b }}$	1.21	0.19	$\begin{gathered} 0.06\left(85 \mathrm{wt}^{2} \%\right) \\ +50 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \\ \hline \end{gathered}$	n. d.	n. d.	n. d.

${ }^{\mathrm{a}} 1.70 \mathrm{~g}$ of mixed oxide was used. ${ }^{\mathrm{b}}$ One-pot synthesis with the introduction of $\mathrm{MoO}_{3}, \mathrm{~V}_{2} \mathrm{O}_{5}$ and $\mathrm{H}_{3} \mathrm{PO}_{4}$ together.

2. XRD profiles and Rietveld refinement (Case of $\mathbf{V}_{\mathbf{3}}$ materials)

Figure S1. XRD profiles of V_{3}-HT vs. JCPDS 00-043-0317 $\left(\mathrm{H}_{3} \mathrm{PMo}_{12} \mathrm{O}_{40} .13 \mathrm{H}_{2} \mathrm{O}\right)$ (Conditions detailed in the experimental section of the manuscript)

Table S2. Refinement results of $\mathrm{V}_{3}-\mathrm{HT}$ and $\mathrm{V}_{3}-\mathrm{BM}_{50}-1_{\mathrm{BM}}-1.5 \mathrm{HT}$ vs. reference $\mathrm{H}_{3} \mathrm{PMo}_{12} \mathrm{O}_{40} .13 \mathrm{H}_{2} \mathrm{O}$

	Cell parameters							$\mathbf{R}_{\mathbf{P}}$
$\mathbf{C h i}_{2}$								
	\mathbf{a}	\mathbf{b}	\mathbf{c}	$\boldsymbol{\alpha}$	$\boldsymbol{\beta}$	$\boldsymbol{\gamma}$		
$\mathrm{V}_{3}-\mathrm{BM}_{50}-1_{\mathrm{BM}}-1.5 \mathrm{HT}$	14.028	14.189	13.586	112.58	109.71	60.53	10	2.4
$\mathrm{~V}_{3}$-HT	14.219	14.410	13.616	112.54	110.13	60.13	15	13
Reference	14.100	14.130	13.550	112.10	109.80	60.70	-	-
$\mathrm{H}_{3} \mathrm{PMo}_{12} \mathrm{O}_{40} .13 \mathrm{H}_{2} \mathrm{O}$								

3. TGA analysis (Principle for the determination of $\mathbf{n} /$ Case of $\mathbf{V}_{\mathbf{x}}$-BM materials)

The TGA profiles of $\mathrm{V}_{\mathrm{x}}\left(\mathrm{H}_{3+\mathrm{x}} \mathrm{PMo}_{12-\mathrm{x}} \mathrm{V}_{\mathrm{x}} \mathrm{O}_{40}, \mathrm{nH}_{2} \mathrm{O}\right)$ catalysts all exhibited two characteristic weight losses corresponding to n equivalents of hydration water (completed at $\left.\mathrm{T}=\mathrm{T}_{1}\right)^{\mathrm{R} 1}$ and to the loss of $0.5^{*}(3+\mathrm{x})$ equivalents of constitutional water (for $\left.\mathrm{T}_{1}<\mathrm{T}<\mathrm{T}_{2}\right)^{\mathrm{R} 2}$.

Figure S2. TGA-DSC profiles of $\mathrm{V}_{\mathrm{x}}-\mathrm{BM}_{50}-1_{\mathrm{BM}}-1.5_{\mathrm{HT}}\left(\mathrm{V}_{\mathrm{x}}-\mathrm{BM}_{50}\right)$ catalysts vs $\mathrm{V}_{3}-\mathrm{HT}$
(Conditions detailed in the experimental section of the manuscript)

Even if $\mathrm{x}_{\mathrm{exp}}$ can be calculated by TGA-DSC, ICP was preferred because, especially for V_{3}, the evaporation of hydration and of constitutive water are overlapped ${ }^{R 3}$. The equation used for $\mathrm{x}_{\mathrm{exp}}$ calculation is:

$$
x_{\exp }=\frac{12}{1+\frac{M_{V} w_{M o}}{M_{M o} w_{V}}}
$$

where $w_{M o}$ and w_{V} are the weigth proportions of Mo and V.

The hydration index n can be obtained from the first weight loss, $\Delta m_{1} \%$, since it is related to n
as follows:

$$
\Delta m_{1} \%=100 M_{H_{2}} o \frac{n}{M_{V_{x}}}=100 M_{H_{2}} o \frac{n}{M_{V_{x, d}}+n M_{H_{2} O}}
$$

where $V_{x, d}$ corresponds to the dehydrated form of $V_{x} . M_{V_{x, d}}$, the molecular weight of $V_{x, d}$ can be obtained by :

$$
M_{V_{x, d}}=M_{P M o}{ }_{12}-43.992 x
$$

where PMo_{12} is the phosphomolybdic acid $\left(\mathrm{H}_{3} \mathrm{PMo}_{12} \mathrm{O}_{40}\right)$.

Table S3. Values of T_{1} and T_{2} for $\mathrm{V}_{\mathrm{x}}-\mathrm{HT}$ and $\mathrm{V}_{x}-\mathrm{BM}_{50}-1_{\mathrm{BM}}-1.5_{\mathrm{HT}}$ materials measured by TGA

$\mathbf{x}_{\mathbf{t h}}$	\mathbf{r}	$\mathbf{t}_{\mathbf{B M}}(\mathbf{h})$	$\mathbf{t}_{\mathbf{H T}}(\mathbf{h})$	$\mathbf{N a m e}$	$\mathbf{T}_{\mathbf{1}}\left({ }^{\circ} \mathbf{C}\right)$	$\mathbf{T}_{\mathbf{2}}\left({ }^{\circ} \mathbf{C}\right)$
3	-	0	6.5	$\mathrm{~V}_{3}-\mathrm{HT}$	222.1	420.6
2	50	1	1.5	$\mathrm{~V}_{2}-\mathrm{BM}_{50}-1_{\mathrm{BM}}-1.55_{\mathrm{HT}}$	218.7	429.1
3		1	1.5	$\mathrm{~V}_{3}-\mathrm{BM}_{50}-1_{\mathrm{BM}}-1.5_{\mathrm{HT}}$	215.8	416.4
		1	1.5	$\mathrm{~V}_{2}-\mathrm{BM}_{20}-1_{\mathrm{BM}}-1.5_{\mathrm{HT}}$	222.6	428.4
			3	$\mathrm{~V}_{2}-\mathrm{BM}_{20}-1_{\mathrm{BM}}-3_{\mathrm{HT}}$	214.7	428.4
2	20	2	1.5	$\mathrm{~V}_{2}-\mathrm{BM}_{20}-2_{\mathrm{BM}}-1.5_{\mathrm{HT}}$	232.9	430.9
			3	$\mathrm{~V}_{2}-\mathrm{BM}_{20}-2_{\mathrm{BM}}-3_{\mathrm{HT}}$	214.0	428.3
		4	1.5	$\mathrm{~V}_{2}-\mathrm{BM}_{20}-4_{\mathrm{BM}}-1.5 \mathrm{HT}$	213.7	428.0
			3	$\mathrm{~V}_{2}-\mathrm{BM}_{20}-4_{\mathrm{BM}}-3_{\mathrm{HT}}$	211.2	427.4

4. Liquid ${ }^{31} \mathbf{P}$ NMR (Principle of quantification)

In the conditions used, the ${ }^{31} \mathrm{P}$ NMR integration of the signals is quantitative (see details and hypotheses the manuscript). The yield of $\mathrm{V}_{\mathrm{x}}\left(\eta_{V_{x}}\right)$ was calculated as shown below:

$$
\eta_{V_{x}}=100 \frac{I_{V_{x}}}{I_{V_{x}}+I_{H_{3} P O_{4}}}
$$

where ${ }^{I_{x}}$ and $I_{H_{3} \mathrm{PO}_{4}}$ are the integrations of V_{x} and of unreacted $\mathrm{H}_{3} \mathrm{PO}_{4}$ signals.

Table S4. Isomers proportions in PMoV_{2} catalysts

	Isomer ${ }^{\text {a }}$				
	Chemical shift (ppm) ${ }^{b}$	-4.21	-4.03	-3.94	-3.77
	Localization of \mathbf{V} atoms	Vicinal on the same triad	Vicinal on different triads	Not vicinal	n. d.
$\begin{gathered} \text { Proportions } \\ \text { (\%) } \end{gathered}$	$\mathrm{V}_{2}-\mathrm{BM}_{50}-1_{\text {ВM }}-1.5_{\text {HT }}$	58.5	12.6	16.3	12.7
	$\mathrm{V}_{2}-\mathrm{BM}_{20}{ }^{\prime}-1_{\mathrm{BM}}-1.5_{\mathrm{HT}}$	47.9	17.1	24.0	11.0
	$\mathrm{V}_{2}-\mathrm{BM}_{20}-1_{\mathrm{BM}}-3_{\mathrm{HT}}$	42.2	18.7	27.0	12.1
	$\mathrm{V}_{2}-\mathrm{BM}_{20}-2_{\text {BM }}-1.5_{\mathrm{HT}}$	49.1	14.3	23.3	13.3
	$\mathrm{V}_{2}-\mathrm{BM}_{20}-2_{\text {ВM }}-3_{\mathrm{HT}}$	46.0	19.1	20.6	14.2
	$\mathrm{V}_{2}-\mathrm{BM}_{20}-4_{\mathrm{BM}}-1.5_{\text {HT }}$	45.2	14.7	25.5	14.6

$\mathrm{PMoV}_{2} 30 \mathrm{mg}$ in $\mathrm{H}_{2} \mathrm{O}-\mathrm{D}_{2} \mathrm{O} 1: 1500 \mu \mathrm{~L}+7.5 \mu \mathrm{~L}$ dioxane, $400 \mathrm{MHz}, 16$ scans, relaxation delay: $32 \mathrm{~s} ; \mathrm{n} . \mathrm{d} .=$ not defined ${ }^{a} \alpha$ and β-isomer structures were taken from Refs R4 and R5 ($\beta-4,10$ and $\beta-4,11$ are two examples of β isomer), ${ }^{b}$ See Fig. S3.

Figure S3. NMR profile of $\mathrm{V}_{2}-\mathrm{BM}_{50}-1_{\mathrm{BM}}-1.5_{\mathrm{HT}}$, peaks of V_{2} isomers

5. Liquid ${ }^{\mathbf{3 1}} \mathbf{P}$ NMR (Case of $\mathbf{V}_{\mathbf{2}}$ materials)

Figure S4. ${ }^{31} \mathrm{P}$ NMR spectra of $\mathrm{V}_{2}-\mathrm{BM}_{20}-1-1.5_{\mathrm{HT}} v s$. $\mathrm{V}_{2}-\mathrm{BM}_{50}-1-1.5_{\mathrm{HT}}\left(\mathrm{V}_{2}-\mathrm{BM}_{50}\right)$ material in $\mathrm{D}_{2} \mathrm{O}-\mathrm{H}_{2} \mathrm{O}$ 50-50

6. XRD profiles (Case of $\mathrm{V}_{2}-\mathrm{BM}_{20}-\mathrm{t}_{\mathrm{BM}}-\mathrm{t}_{\mathrm{HT}}$ materials)

Figure S5. Influence of the milling (t_{BM}) and attack duration (t_{HT}) on XRD profiles of $V_{2}-B M_{20}-t_{B M}-t_{H T}$ materials vs. $V_{2}-B M_{50}-1-1.5_{H T}\left(\mathrm{~V}_{2}-\mathrm{BM}_{50}\right)$

7. Liquid ${ }^{31} \mathbf{P}$ NMR (Case of $\mathbf{V}_{2}-\mathrm{BM}_{20}-\mathrm{t}_{\mathrm{BM}}-\mathrm{t}_{\mathrm{HT}}$)

Figure S6. ${ }^{31} \mathrm{P}$ NMR spectra of $V_{2}-B M_{20}-t_{B M}-t_{H T}$ materials $v s . V_{2}-B M_{50}-1-1.5_{H T}\left(\mathrm{~V}_{2}-\mathrm{BM}_{50}\right)$ in $\mathrm{D}_{2} \mathrm{O}-\mathrm{H}_{2} \mathrm{O} 50-$

8. TGA analysis (Case of $\mathrm{V}_{2} \mathrm{BM}_{20}-\mathrm{t}_{\mathrm{BM}} \mathbf{t}_{\mathrm{HT}}$ materials)

Figure S7. TGA-DSC profiles of $V_{2}-B M_{20}-t_{B M}-t_{H T}$ materials $v s . V_{2}-B M_{50}-1-1.5_{H T}\left(\mathrm{~V}_{2}-\mathrm{BM}_{50}\right.$ reference $)$

9. Energy consumption: detailed calculation (HT vs BM)

The electric power required for the electronic device is much lower than the required power for the milling and the attack steps. So, it can be neglected. Therefore, the equation of the global energy consumption is:

$$
E_{t o t}=E_{B M}+E_{H T}+E_{c}=P_{B M} t_{B M}+P_{H T} t_{H T}+P_{c} t_{c}
$$

where $E_{B M}, H_{H T}$ and E_{c} are respectively the contribution of the milling, of the attack steps and of the cooling systems to the total energy consumption.

The power required for the reflux condenser (noted P_{c}) during the attack was estimated using the Bernoulli equation:

$$
\rho g z=\frac{P_{c}}{Q}
$$

where $\rho=10^{3} \mathrm{~kg} \mathrm{~m}^{-3}, g=9.81 \mathrm{~m} \mathrm{~s}^{-2}, z=20 \mathrm{~cm}$ (height of the condenser), $Q \approx 150 \mathrm{~L} / \mathrm{h}$ In these conditions: $\mathrm{P}_{\mathrm{c}}=8.4 .10^{-2} \mathrm{~W}$.

The maximal power of the heater used is $\mathrm{P}_{\mathrm{th}, \max }=825 \mathrm{~W}$ and the maximal temperature noted $\mathrm{T}_{\max }$ is $300^{\circ} \mathrm{C}$. Supposing the starting temperature is $20^{\circ} \mathrm{C}$, as the energy is proportional to the
rise of the temperature, the average power noted P_{HT} required for the thermal heating until a
temperature T is given by the equation: $P_{H T}=\left(\frac{T-20}{T_{\max }-20}\right) P_{\max }$
For T $=100^{\circ} \mathrm{C},{ }^{\prime} P_{H T}=236 W \Rightarrow P_{c} \ll P_{H T}$ and therefore, for $\mathbf{V}_{\mathbf{H T}}$ solids, $E_{t} \approx P_{B M} t_{H T}$
In the case of V_{BM} materials, the ball-milling step (with a range of rotation speed, $100<\omega<$ 1100 rpm) has also to be considered. The maximal power (for $\omega_{\max }=1100 \mathrm{rpm}$) is $\mathrm{P}_{\mathrm{BM}, \max }=$ 1100 W . As the combined weight of the sample and of the ball represent less than 10% of the autoclave, it can be asserted that it almost does not have any influence on the energy consumption. Therefore, the power needed for the milling procedure is proportional to the square of the rotation speed of the autoclave ${ }^{\mathrm{R} 6}$ and can be calculated by the formula:

$$
P_{B M}=\left(\frac{\omega}{\omega_{\max }}\right)^{2} P_{B M, \max }
$$

Also, the power required for the cooling system ($\mathrm{P}_{\mathrm{c}}{ }^{\prime}$) can be estimated to 5-20 $\mathrm{W}^{\text {R6 } 6}$. So, likewise the hydrothermal procedure, $P_{c}+P_{c}{ }^{\prime} \ll P_{B M}+P_{H T}$ and $E_{t} \approx P_{B M} t_{H T}+P_{B M} t_{H T}$

The values for the energy consumption required by the preparation of all the materials prepared are given in Tables $\mathrm{S} 6\left(\mathrm{~V}_{3}-\mathrm{HT}\right.$ and $\left.\mathrm{V}_{\mathrm{x}}-\mathrm{BM}_{50}\right)$ and $\mathrm{S} 7\left(\mathrm{~V}_{2}-\mathrm{BM}_{20}\right)$.

Table S5. Calculation of the energy consumption of $\mathrm{V}_{3}-\mathrm{HT}$ and $\mathrm{V}_{\mathrm{x}}-\mathrm{BM}_{50}-1_{\mathrm{BM}}-1.5_{\mathrm{Ht}}$ synthesis procedures

Table S6. Calculation of the energy consumption of $\mathrm{V}_{2}-\mathrm{BM}_{20}-\mathrm{t}_{\mathrm{BM}}-\mathrm{t}_{\mathrm{HT}}$ synthesis procedures

Procedure	Ball-milling, $\mathbf{r}=20$					
Milling duration (h)	1	1	2	2	4	4
Energy consumption during the milling step (kW.h)	0.45	0.45	0.89	0.89	1.78	1.78
Attack duration (h)	1.5	3	1.5	3	1.5	3
Temperature (${ }^{\circ} \mathrm{C}$)	100	80	80	80	80	80
Energy consumption by heating (kW.h)	0.35	0.53	0.27	0.53	0.27	0.53
Global energy consumption (kW.h)	0.80	0.98	1.16	1.52	2.05	2.31
Global energy consumption (kW.h mol${ }^{-1}$)	198	240	287	357	508	563

Maximum anhydrous $\mathrm{PMoV}_{\mathrm{x}} 6.950 \mathrm{~g}$, yield 92-97\%

10. XRD of ball-milled oxides

Figure S8. XRD profiles of the mixed oxides $\left(\mathrm{x}_{\mathrm{th}}=2\right)$. (The (110) signal was used for Debye-Scherrer calculations)

Herein, the aim is to compare the crystallite size of the mixtures before and after milling and we do not seek to calculate them accurately. So, the Scherrer equation will be used:

$$
\tau=\frac{K \lambda_{C u}}{L_{F W H M} \cos (\theta)}
$$

where $K=0.888$ is the shape factor, $\lambda_{C u}=1.5408 \AA$ is the X-Ray wavelength, $L_{F W H M}$ is the full width at half maximum of the considered peak (here (110)) and 2θ is the position of the peak.

Table S7. Crystallite size of BM mixed oxides $v s$. a hand mixture of oxides

Entry	Oxide	\mathbf{r}	$\mathbf{t}_{\mathbf{B M}}$ (\mathbf{h})	$\mathbf{L}_{\mathbf{F W H M}}\left({ }^{\circ}\right)$	Position of the peak (110) (${ }^{\circ}$)	Crystallite size $\mathbf{(\AA)}$
1	$\mathrm{~V}_{2 \text { hand mix }}$	-	-	0.1434	23.31	15.6
2	$\mathrm{~V}_{2}-\mathrm{BM}_{50}$	50	1	0.9486	23.08	2.8
3	$\mathrm{~V}_{2}-\mathrm{BM}_{20}-1_{\text {mix }}$	20	1	1.4469	23.49	1.4
4	$\mathrm{~V}_{2}-\mathrm{BM}_{20}-2_{\text {mix }}$	20	2	1.3897	23.80	1.3
$\mathbf{5}$	$\mathbf{V}_{\mathbf{2}}-\mathbf{B M}_{\mathbf{2 0} 0} \mathbf{4}_{\text {mix }}$	$\mathbf{2 0}$	$\mathbf{4}$	$\mathbf{1 . 1 6 9 3}$	$\mathbf{2 3 . 4 9}$	$\mathbf{1 . 7}$

11. Synthesis of K

The procedure was inspired by NICHOLS et $a l^{R 7}$. Hence, 2-bromoacetophenone (16.85 $\mathrm{g}, 84 \mathrm{mmol})$ and an excess of phenol $(9.56 \mathrm{~g}, 101 \mathrm{mmol})$ were dissolved in 200 mL of acetone, then 20 g of $\mathrm{K}_{2} \mathrm{CO}_{3}$ were added to the solution. The mixture may take a pink coloration due to the formation of phenolate that disappears with time. Reflux is needed during 6 h to get $\underline{\mathbf{K}}$. Initially pale yellow, the coloration became yellow and then orange. The reaction was monitored by TLC using cyclohexane/diethylether $80 / 20$ as the eluent. After filtration and acetone evaporation, \mathbf{K} was recrystallized in a minimum amount of absolute ethanol. $\underline{\mathbf{K}}$ was then recovered by filtration and dried by pressing. The formation of the ether bond was checked by FT-IR by the presence of a band at $1240 \mathrm{~cm}^{-1}$. K was characterized more deeply by ${ }^{1} \mathrm{H}$ NMR according to Ref R7.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 300 \mathrm{MHz}\right): 8.05(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{~m}, 1 \mathrm{H}), 7.54(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{~m}$, $3 \mathrm{H}), 5.31$ ($\mathrm{s}, 2 \mathrm{H}$).

This above-mentioned procedure was repeated several times at different scales affording yields of K of c.a. 80%.

12. HPLC analysis and calibration curves $(\lambda=220 \mathrm{~nm})$

Figure S9. Chromatogramm of the reaction mixture for \mathbf{K} cleavage in the presence of $V_{3}-B M_{50}{ }^{-1} 1_{B M}-1.5_{H T}$ (Conditions detailed in the experimental section of the manuscript and in Table 4, entry 2)

The substrate and the targeted cleavage products were calibrated at 210 and 220 nm .

Figure S10. HPLC calibration curves of the products and reactants
(Conditions detailed in the experimental section of the manuscript)

13. References

[R1] D. Barats-Damatov, L. J. W. Shimon, Y. Feldman, T. Bendikov, R. Neumann, Solid-State Crystal-to-Crystal Phase Transitions and Reversible Structure-Temperature Behavior of Phosphovanadomolybdic Acid, $\mathrm{H}_{5} \mathrm{PV}_{2} \mathrm{Mo}_{10} \mathrm{O}_{40}$, Inorg. Chem. 2015, 54, 628-634.
[R2] T. Okuhara, N. Mizuno, M. Misono, Catalytic Chemistry of Heteropoly Compounds, $A d v$. Catal. 1996, 41, 113-252.
[R3] P. Villabrille, G. Romanelli, L. Gassa, P. Vázquez, C. Cáceres, Synthesis and characterization of Fe - and Cu -doped molybdovanadophosphoric acids and their application in catalytic oxidation, Appl. Catal. A: Gen. 2007, 324, 69-76.
[R4] R. Neumann, A. M. Khenkin, Molecular oxygen and oxidation catalysis by
phosphovanadomolybdates, Chem. Commun. 2006, 2529-2538.
[R5] L. Pettersson, Equilibria of Polyoxometalates in Aqueous Solution, Mol. Eng. 1993, 3, 2942.
[R6] L. Hao, Y. Lu, H. Sato, H. Asanuma, J. Luo, Analysis on energy transfer during mechanical coating and ball milling-Supported by electric power measurement in planetary ball mill, Intern. J. Mineral Process. 2013, 121, 51-58.
[R7] J. M. Nichols, L. M. Bishop, R. G. Bergman, J. A. Ellman, Catalytic C-O Bond Cleavage of 2-Aryloxy-1-arylethanols and Its Application to the Depolymerization of Lignin-Related Polymers, J. Am. Chem. Soc. 2010, 132, 12554-12555.

