Supporting Information

Hydrothermal Control of the lithium-rich Li₂MnO₃ phase in lithium manganese oxide nanocomposites and their application as precursors

for lithium adsorbents

Ruth Pulido^{a,b*}, Nelson Naveas^{a,b}, Teófilo Graber^b, Raúl J. Martin-Palma^a, Fernando

- Agulló-Rueda^c, Iván Brito^d, Carlos Morales^a, Leonardo Soriano^a, Laura Pascual^e, Carlo Marini^f, Jacobo Hernández-Montelongo^g, Miguel Manso Silván^{ah}
- ^aDepartamento de Física Aplicada and Instituto Universitario de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
- ^bDepartamento de Ingeniería Química y Procesos de Minerales, Universidad de Antofagasta, Avenida Angamos 601, Antofagasta, Chile.

^cInstituto de Ciencia de Materiales de Madrid (ICMM), CSIC, 28049 Madrid, Spain.

^dDepartamento de Química, Universidad de Antofagasta, Avda. Universidad de Antofagasta 02800, 1240000, Antofagasta, Chile.

^eInstituto de Catálisis y Petroleoquímica, CSIC, 28049 Madrid, Spain.

^fCELLS–ALBA Synchrotron, 08290 Cerdanyola del Valles, Spain.

^gDepartamento de Ciencias Matemáticas y Físicas, UC Temuco, 4813302 Temuco, Chile.

^hCentro de Microanálisis de Materiales, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.

*To whom correspondence should be addressed:

e-mail address: ruth.pulido@estudiante.uam.es

Figure S1 Schematic representation of the hydrothermal synthesis of Li_2MnO_3 · $Li_{1.12}Mn_{1.7}O_4$ nanocomposites.

Figure S2 High-resolution XPS spectra of C 1s from the LMO nanocomposites. The peak fitting analysis of C 1s core-level showed the typical C-C (284.60 eV) and C-O (286 eV) components. Moreover, around 288 and 291 eV, other two contributions can be assigned to C=O and CO₃-like, related to the adsorbed atmospheric carbon and further formation of Li₂CO₃, respectively ^{1–4}

Figure S3 Simulated XRD patterns of adsorbent precursor materials in pure phase. Layered-LMO (a) and spinel-LMO (b).

Table S1

Structural parameters of LMC	nanocomposites	determined by	Rietveld r	refinement of
XRD data.				

Nanocomposite	Phase	a (Å)	b (Å)	c (Å)	β angle(°)	V (Å ³)
LMO-110	Li _{1.12} Mn _{1.7} O ₄	8.1397	-	-	-	539.2955
	Li ₂ MnO ₃	4.9400	8.5277	5.0085	108.800	199.7378
LMO-140	Li _{1.12} Mn _{1.7} O ₄	8.1272	-	-	-	536.8187
	Li_2MnO_3	4.9279	8.5260	5.0108	108.930	199.1424
LMO-170	Li _{1.12} Mn _{1.7} O ₄	8.1366	-	-	-	538.6697
	Li ₂ MnO ₃	4.9303	8.5306	5.0130	108.943	199.4214

Table S2

Quantitative analysis C 1s XPS spectra of LMO nanocomposite

Sample	C-C%	C-0%	C=O%	CO ₃ ⁻² %
LMO-170	12.1	5.3	9.0	1.1
LMO-140	5.3	1.9	5.8	1.3
LMO-110	9.5	4.6	3.4	0.0

Table S3

DFT optimized cell parameters for simulated LMO and HMO

Structure	Cell parameters						
	a(Å)	b(Å) c(Å)		β angle (°)	Volume		
Li ₉ Mn ₁₅ O ₃₂	8.19191	-	-	-	549.655156		
$H_{9}Mn_{15}O_{32}$	8.16750	-	-	-	544.333233		
$Li_8Mn_4O_{12}$	4.93214	8.53083	4.93276	109.5915	195.531518		
$H_8Mn_4O_{12}$	4.82884	8.92474	4.58778	115.7690	178.053829		

Table S4

hkl	Li ₉ Mn ₁₅ O ₃₂		$H_9Mn_{15}O_{32}$		$Li_8Mn_4O_{12}$		$H_8Mn_4O_{12}$	
	d(Å)	2θ	d(Å)	20	d(Å)	20	d(Å)	2θ
111	4.6822	18.93	4.5978	19.28	-	-	-	-
400	2.0477	44.19	2.0406	44.35	-	-	-	-
001	-	-	-	-	4.6471	19.08	4.1315	21.49
131	-	-	-	-	2.0107	45.05	1.9144	47.45

Simulated X-ray diffraction data for LMO and HMO

References

- 1 S.-H. Lee, I.-S. Jo and J. Kim, *Surf. Interface Anal.*, 2014, **46**, 570–576.
- 2 P. Verma, P. Maire and P. Novák, *Electrochim. Acta*, 2010, **55**, 6332–6341.
- D. Aurbach, I. Weissman, A. Schechter and H. Cohen, *Langmuir*, 1996, **12**, 3991–4007.
- 4 L. El Ouatani, R. Dedryvère, J.-B. Ledeuil, C. Siret, P. Biensan, J. Desbrières and D. Gonbeau, *J. Power Sources*, 2009, **189**, 72–80.