LaTeBO_{5} : a new borotellurite with a large birefringence activated by the highly distorted $\left[\mathrm{Te}^{(\mathrm{iv})} \mathrm{O}_{4}\right]$ group

${ }^{\text {a Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, }}$ Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China. E-mail: hwyu15@gmail.com

CONTENTS

1. Experimental procedures... 2
2. Structural refinement and crystal data... S4
3. The structure and properties of borotellurites and borotellurates..........................S8

4. The $\left[\mathrm{Te}^{(\mathrm{iv})} \mathrm{O}_{4}\right]$ and $\left[\mathrm{Te}^{(\mathrm{iv})} \mathrm{O}_{3}\right]$ group in borotellurites...S11
5. The EDX spectra..S12
6. Reflectance and UV-Vis-IR spectra of the LaTeBO ${ }_{5} \ldots \ldots . S 13$

7. The band structure and density of states of LaTeBO $\mathrm{L}_{5} \ldots . . . \ldots \ldots$
8. Birefringence measurements of LaTeBO_{5} crystal..S16

9. Reference.. S 18

Experimental section

Synthesis of polycrystalline LaTeBO 5 .

The polycrystalline samples of LaTeBO_{5} were synthesized by the traditional solid-state reactions technology. The stoichiometric ratio (1:1:1) of $\mathrm{La}_{2} \mathrm{O}_{3}$ (99.99%, Aladdin Chemistry Co., Ltd.), TeO_{2} (99.99%, Aladdin Chemistry Co., Ltd.) and $\mathrm{H}_{3} \mathrm{BO}_{3}$ (99.99\%, Aladdin Chemistry Co., Ltd.) were thoroughly ground and then packed into a crucible and preheated from 25 to $300{ }^{\circ} \mathrm{C}$ at a rate of $4{ }^{\circ} \mathrm{C} / \mathrm{min}$ in a furnace. In order to obtain pure phase LaTeBO_{5}, the temperature was raised to $710{ }^{\circ} \mathrm{C}$ at a rate of $4{ }^{\circ} \mathrm{C} / \mathrm{min}$ and kept at this temperature for 70 h with several intermediate grinding. The experimental XRD powder spectrum of LaTeBO_{5} is according with the calculated one from its single-crystal XRD data.

Single crystal synthesis.

The single crystal of LaTeBO_{5} was obtained through the high temperature melting method. In order to reduce the viscosity of La-Te-B-O system, PbO was used as a flux. The mixtures of $\mathrm{La}_{2} \mathrm{O}_{3}, \mathrm{TeO}_{2}, \mathrm{H}_{3} \mathrm{BO}_{3}$ and PbO with a molar ratio of $1: 2: 1: 2$ were slowly heated up to $680^{\circ} \mathrm{C}$ at a rate $4^{\circ} \mathrm{C} / \mathrm{min}$ and maintained at this temperature for 8 h to obtain a transparent and homogeneous melt. Then the melt was lowered to crystallization temperature $630^{\circ} \mathrm{C}$ at a rate $3{ }^{\circ} \mathrm{C} / \mathrm{h}$ and followed by a cooling rate of $20^{\circ} \mathrm{C} / \mathrm{h}$ to $30^{\circ} \mathrm{C}$. Finally, a colorless and transparent single crystal was obtained.

Powder X-ray diffraction.

The single phase of LaTeBO_{5} powder data was collected from 10° to $70^{\circ}(2 \theta)$ with a step width size of 0.01° and a step time of 2 s used a SmartLab9KW powder X-ray diffractometer with Cu K α radiation.

Structure determination.

The crystal structure of LaTeBO_{5} was detected by single-crystal X-ray diffraction equipment with a Bruker SMART APEX III CCD diffractometer and Mo K α radiation ($\lambda=0.71073 \AA$) at 293(2) K. The data integration, cell refine and absorption were carried out by the SAINT program. ${ }^{1}$ The crystal structure was solved used the SHELXTL crystallographic software package. ${ }^{2}$ The crystal data and structure refinement parameters are shown in Table S1. Some structural parameters including final refined atomic positions, isotropic thermal parameters and main interatomic distances and angles are exhibited in Table S2 and Table S3, respectively.

Energy-Dispersive X-Ray spectroscope (EDX).

Microprobe elemental analyses and the elemental distribution maps were performed using an energy dispersive X-ray spectroscope with a field-emission scanning electron microscope (FESEM, Quanta FEG 250) made by FEI.

UV-Vis-NIR diffuse reflectance spectrum.

The Shimadzu SolidSpec-3700DUV spectrophotometer was employed to measure UV-Vis-NIR diffuse reflectance spectrum of LaTeBO_{5} in a wavelength range from 190 to 2600 nm at room temperature. According to the Kubelka-Munk function ${ }^{3}$: $F(R)=(1-R)^{2} / 2 R=K / S(R=$ reflectance; $\mathrm{K}=$ absorption; $\mathrm{S}=$ scattering), the reflectance spectrum was converted to absorption spectrum.

Infrared spectroscopy.

The Nicolet iS50 FT-IR spectrometer was employed to record the infrared spectrum of LaTeBO_{5} in the range $400-4000 \mathrm{~cm}^{-1}$.

Thermal stability.

The thermal characteristic of LaTeBO_{5} was evaluated on differential scanning calorimetry (DSC) and thermogravimetric analysis (TG) using a STA449 F5 DSC/TG analyzer (NETZSCH Instruments). In nitrogen atmosphere, the purity phase of LaTeBO_{5} was packed into platinum crucible and raised to $1300^{\circ} \mathrm{C}$ at a rate of $5^{\circ} \mathrm{C} / \mathrm{min}$ and followed by cooling to room temperature under the same rate.

Theoretical calculation.

The band structures, the total and partial density of states and the optical properties of LaTeBO_{5} were calculated by a plane-wave pseudopotential density functional theory (DFT) method employed on CASTEP program. ${ }^{4}$ The generalized gradient approximation (GGA) ${ }^{5}$ with the Perdew-Burke-Ernzerhof function ${ }^{6}$ was setting as exchange-correlation function. The valence states were treated as follows: La- $5 \mathrm{~d}^{1} 6 \mathrm{~s}^{2}, \mathrm{Te}-5 \mathrm{~s}^{2} 5 \mathrm{p}^{4}, \mathrm{~B}-2 \mathrm{~s}^{2} 2 \mathrm{p}^{1}$, O- $2 \mathrm{~s}^{2} 2 \mathrm{p}^{4}$ under the normconserving pseudopotential. The energy cutoff of the plane wave was set as 830 eV and the k point grid sampling in the Monkhorst Pack scheme was set at $2 \times 4 \times 2$ in the Brillouin zone. ${ }^{7}$

Table S1. Crystal data and structure refinement for LaTeBO_{5}.

Empirical formula	LaTeBO_{5}
Formula weight	357.32
Temperature	$293(2) \mathrm{K}$
Wavelength	$0.71073 \AA$
Crystal system	Orthorhombic
Space group	$P b c a$
Unit cell dimensions	$a=10.8220(5) \AA$
	$b=6.9216(3) \AA$
	$c=11.5812(5) \AA$
Z	8
Absorption coefficient	$16.350 \mathrm{~mm}-1$
F(000)	1232
Reflections collected	5367
Independent reflections	$997\left[\mathrm{R}_{\text {int }}=0.1015\right]$
Completeness to theta $=25.242^{\circ}$	100.0%
Data / restraints / parameters	$997 / 0 / 73$
Goodness-of-fit on F 2	0.972
Final R indices [I>2sigma(I)] ${ }^{\circ} \mathrm{aa}$	$R_{l}=0.0279, w R_{2}=0.0733$
R indices (all data) ${ }^{[a]}$	$R_{l}=0.0310, w R_{2}=0.0770$
Largest diff. peak and hole	$1.611 \mathrm{and}-1.996 \mathrm{e} \cdot \AA \AA^{-3}$

${ }^{[\mathrm{a}]} R_{l}=\Sigma| | F_{o}\left|-\left|F_{c}\right|\right| \Sigma\left|F_{o}\right|$ and $w R^{2}=\left[\Sigma w\left(F_{o}{ }^{2}-F_{c}{ }^{2}\right)^{2} / \Sigma w F_{o}{ }^{4}\right]^{1 / 2}$ for $F_{o}{ }^{2}>2 \sigma\left(F_{o}{ }^{2}\right)$

Table S2. Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathrm{LaTeBO}_{5} . \mathrm{U}_{\mathrm{eq}}$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Atoms	x	y	z	U_{eq}	BVS
$\mathrm{La}(1)$	$5105(1)$	$5320(1)$	$6766(1)$	$6(1)$	3.16
$\mathrm{~B}(1)$	$7539(6)$	$2399(10)$	$7319(5)$	$7(1)$	2.98
$\mathrm{Te}(1)$	$6411(1)$	$855(1)$	$4983(1)$	$7(1)$	3.92
$\mathrm{O}(1)$	$7686(4)$	$1407(6)$	$6252(3)$	$11(1)$	2.02
$\mathrm{O}(2)$	$5835(4)$	$3388(6)$	$5061(3)$	$11(1)$	2.15
$\mathrm{O}(3)$	$5302(4)$	$-277(7)$	$6049(4)$	$10(1)$	2.05
$\mathrm{O}(4)$	$6387(4)$	$2830(6)$	$7685(3)$	$8(1)$	2.09
$\mathrm{O}(5)$	$8586(4)$	$2676(6)$	$7932(4)$	$10(1)$	1.91

Table S3. Selected bond distances (\AA) and angles (deg).

$\mathrm{La}(1)-\mathrm{O}(4) \# 1$	2.455(4)	$\mathrm{O}(2) \# 3-\mathrm{La}(1)-\mathrm{O}(3) \# 1$	143.81(14)
$\mathrm{La}(1)-\mathrm{O}(4)$	2.455(4)	$\mathrm{O}(2)-\mathrm{La}(1)-\mathrm{O}(3) \# 1$	137.15(14)
$\mathrm{La}(1)-\mathrm{O}(5) \# 2$	2.485(4)	$\mathrm{O}(5) \# 4-\mathrm{La}(1)-\mathrm{O}(3) \# 1$	71.36(14)
$\mathrm{La}(1)-\mathrm{O}(2) \# 3$	2.512(4)	$\mathrm{O}(1) \# 4-\mathrm{La}(1)-\mathrm{O}(3) \# 1$	115.37(13)
$\mathrm{La}(1)-\mathrm{O}(2)$	2.513(4)	$\mathrm{O}(4) \# 1-\mathrm{La}(1)-\mathrm{B}(1) \# 4$	99.46(16)
$\mathrm{La}(1)-\mathrm{O}(5) \# 4$	2.548(4)	$\mathrm{O}(4)-\mathrm{La}(1)-\mathrm{B}(1) \# 4$	76.33(16)
$\mathrm{La}(1)-\mathrm{O}(1) \# 4$	2.576(4)	$\mathrm{O}(5) \# 2-\mathrm{La}(1)-\mathrm{B}(1) \# 4$	152.42(16)
$\mathrm{La}(1)-\mathrm{O}(3) \# 1$	2.601(4)	$\mathrm{O}(2) \# 3-\mathrm{La}(1)-\mathrm{B}(1) \# 4$	110.72(16)
$\mathrm{La}(1)-\mathrm{B}(1) \# 4$	2.997(7)	$\mathrm{O}(2)-\mathrm{La}(1)-\mathrm{B}(1) \# 4$	98.96(17)
$\mathrm{La}(1)-\mathrm{Te}(1) \# 3$	3.7151(5)	$\mathrm{O}(5) \# 4-\mathrm{La}(1)-\mathrm{B}(1) \# 4$	26.64(15)
$\mathrm{La}(1)-\mathrm{La}(1) \# 5$	3.8624(3)	$\mathrm{O}(1) \# 4-\mathrm{La}(1)-\mathrm{B}(1) \# 4$	28.32(15)
$\mathrm{La}(1)-\mathrm{La}(1) \# 1$	3.8624(3)	$\mathrm{O}(3) \# 1-\mathrm{La}(1)-\mathrm{B}(1) \# 4$	90.71(16)
$\mathrm{B}(1)-\mathrm{O}(4)$	$1.350(7)$	$\mathrm{O}(4) \# 1-\mathrm{La}(1)-\mathrm{Te}(1) \# 3$	49.21(10)
$\mathrm{B}(1)-\mathrm{O}(5)$	1.350(7)	$\mathrm{O}(4)-\mathrm{La}(1)-\mathrm{Te}(1) \# 3$	170.43(9)
$\mathrm{B}(1)-\mathrm{O}(1)$	$1.423(7)$	$\mathrm{O}(5) \# 2-\mathrm{La}(1)-\mathrm{Te}(1) \# 3$	108.02(10)
$\mathrm{Te}(1)-\mathrm{O}(2)$	1.863(4)	$\mathrm{O}(2) \# 3-\mathrm{La}(1)-\mathrm{Te}(1) \# 3$	26.93(9)
$\mathrm{Te}(1)-\mathrm{O}(3)$	1.892(4)	$\mathrm{O}(2)-\mathrm{La}(1)-\mathrm{Te}(1) \# 3$	95.15(9)
$\mathrm{Te}(1)-\mathrm{O}(1)$	2.052(4)	$\mathrm{O}(5) \# 4-\mathrm{La}(1)-\mathrm{Te}(1) \# 3$	94.50(10)
$\mathrm{Te}(1)-\mathrm{O}(3) \# 6$	2.242(4)	$\mathrm{O}(1) \# 4-\mathrm{La}(1)-\mathrm{Te}(1) \# 3$	94.34(9)
$\mathrm{O}(4) \# 1-\mathrm{La}(1)-\mathrm{O}(4)$	139.11(4)	$\mathrm{O}(3) \# 1-\mathrm{La}(1)-\mathrm{Te}(1) \# 3$	124.66(9)
$\mathrm{O}(4) \# 1-\mathrm{La}(1)-\mathrm{O}(5) \# 2$	92.84(13)	$\mathrm{B}(1) \# 4-\mathrm{La}(1)-\mathrm{Te}(1) \# 3$	98.64(13)
$\mathrm{O}(4)-\mathrm{La}(1)-\mathrm{O}(5) \# 2$	78.21(14)	$\mathrm{O}(4) \# 1-\mathrm{La}(1)-\mathrm{La}(1) \# 5$	118.77(10)
$\mathrm{O}(4) \# 1-\mathrm{La}(1)-\mathrm{O}(2) \# 3$	72.56(13)	$\mathrm{O}(4)-\mathrm{La}(1)-\mathrm{La}(1) \# 5$	38.12(9)
$\mathrm{O}(4)-\mathrm{La}(1)-\mathrm{O}(2) \# 3$	147.52(14)	$\mathrm{O}(5) \# 2-\mathrm{La}(1)-\mathrm{La}(1) \# 5$	40.47(10)
$\mathrm{O}(5) \# 2-\mathrm{La}(1)-\mathrm{O}(2) \# 3$	96.47(15)	$\mathrm{O}(2) \# 3-\mathrm{La}(1)-\mathrm{La}(1) \# 5$	131.74(10)
$\mathrm{O}(4) \# 1-\mathrm{La}(1)-\mathrm{O}(2)$	141.92(13)	$\mathrm{O}(2)-\mathrm{La}(1)-\mathrm{La}(1) \# 5$	83.54(9)
$\mathrm{O}(4)-\mathrm{La}(1)-\mathrm{O}(2)$	77.81(13)	$\mathrm{O}(5) \# 4-\mathrm{La}(1)-\mathrm{La}(1) \# 5$	111.90(10)
$\mathrm{O}(5) \# 2-\mathrm{La}(1)-\mathrm{O}(2)$	85.80(14)	$\mathrm{O}(1) \# 4-\mathrm{La}(1)-\mathrm{La}(1) \# 5$	114.71(10)
$\mathrm{O}(2) \# 3-\mathrm{La}(1)-\mathrm{O}(2)$	69.82(16)	$\mathrm{O}(3) \# 1-\mathrm{La}(1)-\mathrm{La}(1) \# 5$	54.52(10)
$\mathrm{O}(4) \# 1-\mathrm{La}(1)-\mathrm{O}(5) \# 4$	77.03(13)	$\mathrm{B}(1) \# 4-\mathrm{La}(1)-\mathrm{La}(1) \# 5$	112.71(13)
$\mathrm{O}(4)-\mathrm{La}(1)-\mathrm{O}(5) \# 4$	84.58(13)	$\mathrm{Te}(1) \# 3-\mathrm{La}(1)-\mathrm{La}(1) \# 5$	148.478(16)
$\mathrm{O}(5) \# 2-\mathrm{La}(1)-\mathrm{O}(5) \# 4$	139.90(5)	$\mathrm{O}(4) \# 1-\mathrm{La}(1)-\mathrm{La}(1) \# 1$	38.13(9)
$\mathrm{O}(2) \# 3-\mathrm{La}(1)-\mathrm{O}(5) \# 4$	116.35(14)	$\mathrm{O}(4)-\mathrm{La}(1)-\mathrm{La}(1) \# 1$	118.15(10)
$\mathrm{O}(2)-\mathrm{La}(1)-\mathrm{O}(5) \# 4$	125.60(14)	$\mathrm{O}(5) \# 2-\mathrm{La}(1)-\mathrm{La}(1) \# 1$	123.99(10)
$\mathrm{O}(4) \# 1-\mathrm{La}(1)-\mathrm{O}(1) \# 4$	117.61(13)	$\mathrm{O}(2) \# 3-\mathrm{La}(1)-\mathrm{La}(1) \# 1$	91.60(9)
$\mathrm{O}(4)-\mathrm{La}(1)-\mathrm{O}(1) \# 4$	77.35(13)	$\mathrm{O}(2)-\mathrm{La}(1)-\mathrm{La}(1) \# 1$	147.28(10)
$\mathrm{O}(5) \# 2-\mathrm{La}(1)-\mathrm{O}(1) \# 4$	149.50(13)	$\mathrm{O}(5) \# 4-\mathrm{La}(1)-\mathrm{La}(1) \# 1$	39.28(9)
$\mathrm{O}(2) \# 3-\mathrm{La}(1)-\mathrm{O}(1) \# 4$	94.43(14)	$\mathrm{O}(1) \# 4-\mathrm{La}(1)-\mathrm{La}(1) \# 1$	83.95(9)
$\mathrm{O}(2)-\mathrm{La}(1)-\mathrm{O}(1) \# 4$	71.44(14)	$\mathrm{O}(3) \# 1-\mathrm{La}(1)-\mathrm{La}(1) \# 1$	72.80(10)
$\mathrm{O}(5) \# 4-\mathrm{La}(1)-\mathrm{O}(1) \# 4$	54.51(12)	$\mathrm{B}(1) \# 4-\mathrm{La}(1)-\mathrm{La}(1) \# 1$	61.69(13)
$\mathrm{O}(4) \# 1-\mathrm{La}(1)-\mathrm{O}(3) \# 1$	75.46(13)	Te(1)\#3-La(1)-La(1)\#1	64.881(9)

$\mathrm{O}(4)-\mathrm{La}(1)-\mathrm{O}(3) \# 1$	$64.07(13)$	$\mathrm{La}(1) \# 5-\mathrm{La}(1)-\mathrm{La}(1) \# 1$	$127.281(18)$
$\mathrm{O}(5) \# 2-\mathrm{La}(1)-\mathrm{O}(3) \# 1$	$68.53(14)$	$\mathrm{O}(4)-\mathrm{B}(1)-\mathrm{O}(5)$	$125.4(5)$
$\mathrm{O}(5)-\mathrm{B}(1)-\mathrm{O}(1)$	$115.5(5)$	$\mathrm{Te}(1) \# 6-\mathrm{O}(3)-\mathrm{La}(1) \# 5$	$113.99(17)$
$\mathrm{O}(2)-\mathrm{Te}(1)-\mathrm{O}(3)$	$98.37(19)$	$\mathrm{B}(1)-\mathrm{O}(4)-\mathrm{La}(1) \# 5$	$122.2(4)$
$\mathrm{O}(2)-\mathrm{Te}(1)-\mathrm{O}(1)$	$90.84(18)$	$\mathrm{B}(1)-\mathrm{O}(4)-\mathrm{La}(1)$	$122.8(4)$
$\mathrm{O}(3)-\mathrm{Te}(1)-\mathrm{O}(1)$	$92.07(17)$	$\mathrm{La}(1) \# 5-\mathrm{O}(4)-\mathrm{La}(1)$	$103.75(14)$
$\mathrm{O}(2)-\mathrm{Te}(1)-\mathrm{O}(3) \# 6$	$85.25(19)$	$\mathrm{B}(1)-\mathrm{O}(5)-\mathrm{La}(1) \# 8$	$137.2(4)$
$\mathrm{O}(3)-\mathrm{Te}(1)-\mathrm{O}(3) \# 6$	$75.47(19)$	$\mathrm{B}(1)-\mathrm{O}(5)-\mathrm{La}(1) \# 7$	$95.6(3)$
$\mathrm{O}(1)-\mathrm{Te}(1)-\mathrm{O}(3) \# 6$	$166.21(16)$	$\mathrm{La}(1) \# 8-\mathrm{O}(5)-\mathrm{La}(1) \# 7$	$100.25(14)$
$\mathrm{O}(2)-\mathrm{Te}(1)-\mathrm{La}(1) \# 3$	$37.64(11)$	$\mathrm{O}(5) \# 4-\mathrm{La}(1)-\mathrm{O}(1) \# 4$	$54.51(12)$
$\mathrm{O}(3)-\mathrm{Te}(1)-\mathrm{La}(1) \# 3$	$111.76(14)$	$\mathrm{O}(4)-\mathrm{B}(1)-\mathrm{O}(5)$	$125.4(5)$
$\mathrm{O}(1)-\mathrm{Te}(1)-\mathrm{La}(1) \# 3$	$123.69(12)$	$\mathrm{O}(4)-\mathrm{B}(1)-\mathrm{O}(1)$	$118.8(5)$
$\mathrm{O}(3) \# 6-\mathrm{Te}(1)-\mathrm{La}(1) \# 3$	$58.09(12)$	$\mathrm{O}(5)-\mathrm{B}(1)-\mathrm{O}(1)$	$115.5(5)$
$\mathrm{La}(1) \# 3-\mathrm{O}(2)-\mathrm{La}(1)$	$110.18(16)$	$\mathrm{O}(4)-\mathrm{B}(1)-\mathrm{La}(1) \# 7$	$163.5(5)$
$\mathrm{Te}(1)-\mathrm{O}(3)-\mathrm{Te}(1) \# 6$	$104.53(19)$	$\mathrm{O}(5)-\mathrm{B}(1)-\mathrm{La}(1) \# 7$	$57.8(3)$
$\mathrm{Te}(1)-\mathrm{O}(3)-\mathrm{La}(1) \# 5$	$132.6(2)$	$\mathrm{O}(1)-\mathrm{B}(1)-\mathrm{La}(1) \# 7$	$59.2(3)$

Symmetry transformations used to generate equivalent atoms:

```
#1-x+1,y+1/2,-z+3/2 #2 x-1/2,y,-z+3/2 #3 -x+1,-y+1,-z+1
#4-x+3/2,y+1/2,z #5 -x+1,y-1/2,-z+3/2 #6 -x+1,-y,-z+1
#7 -x+3/2,y-1/2,z #8 x+1/2,y,-z+3/2
```

Table S4. The group structure comparison and optical properties of borotellurites and borotellurates.

	Compounds	Spacegroup		Te-O	Te-B-O group	Δn nm	@1064	$\mathrm{Eg}(\mathrm{eV})$
	$\mathrm{Rb}_{3} \mathrm{BaTeB}_{7} \mathrm{O}_{15}$	P21/n	$\left[\mathrm{B}_{3} \mathrm{O}_{8}\right]$	$\left[\mathrm{TeO}_{3}\right]$	$0 \mathrm{D}\left[\mathrm{Te}^{(\mathrm{iv})} \mathrm{O}_{3} \mathrm{~B}_{14} \mathrm{O}_{28}\right]$	0.035		4.3
borotellurites	LaTeBO_{5}	Pbca	$\left[\mathrm{BO}_{3}\right]$	$\left[\mathrm{TeO}_{4}\right]$	$0 \mathrm{D}\left[\mathrm{Te}^{\left.(\mathrm{iv})_{2} \mathrm{O}_{4}\left(\mathrm{BO}_{3}\right)_{2}\right]}\right.$	0.08		4.2
	$\mathrm{Na}_{2} \mathrm{Y}_{2} \mathrm{TeB}_{2} \mathrm{O}_{10}$	$P 2_{1} / c$	$\left[\mathrm{BO}_{3}\right]$	$\left[\mathrm{TeO}_{6}\right]$	$0 \mathrm{D}\left[\mathrm{Te}^{(\mathrm{vi})} \mathrm{O}_{4}\left(\mathrm{BO}_{3}\right)_{2}\right]$	0.04		3.52
	$\mathrm{Na}_{2} \mathrm{Dy}_{2} \mathrm{TeB}_{2} \mathrm{O}_{10}$	$P 2_{1} / \mathcal{C}$	$\left[\mathrm{BO}_{3}\right]$	$\left[\mathrm{TeO}_{6}\right]$	$0 \mathrm{D}\left[\mathrm{Te}^{(\mathrm{vi})} \mathrm{O}_{4}\left(\mathrm{BO}_{3}\right)_{2}\right]$	n/a		3.53
	$\mathrm{Na}_{2} \mathrm{Ho}_{2} \mathrm{TeB}_{2} \mathrm{O}_{10}$	$P 2_{1} / c$	$\left[\mathrm{BO}_{3}\right]$	$\left[\mathrm{TeO}_{6}\right]$	$0 \mathrm{D}\left[\mathrm{Te}^{(\mathrm{vi})} \mathrm{O}_{4}\left(\mathrm{BO}_{3}\right)_{2}\right]$	n/a		3.56
	$\mathrm{Na}_{2} \mathrm{Er}_{2} \mathrm{TeB}_{2} \mathrm{O}_{10}$	$P 2_{1} / c$	$\left[\mathrm{BO}_{3}\right]$	$\left[\mathrm{TeO}_{6}\right]$	$0 \mathrm{D}\left[\mathrm{Te}^{(\mathrm{vi})} \mathrm{O}_{4}\left(\mathrm{BO}_{3}\right)_{2}\right]$	n/a		3.59
	$\mathrm{Na}_{2} \mathrm{Tm}_{2} \mathrm{TeB}_{2} \mathrm{O}_{10}$	$P 2_{1} / \mathrm{c}$	$\left[\mathrm{BO}_{3}\right]$	$\left[\mathrm{TeO}_{6}\right]$	$0 \mathrm{D}\left[\mathrm{Te}^{(\mathrm{vi})} \mathrm{O}_{4}\left(\mathrm{BO}_{3}\right)_{2}\right]$	n/a		3.68
	$\mathrm{Na}_{2} \mathrm{Yb}_{2} \mathrm{TeB}_{2} \mathrm{O}_{10}$	$P 2 . / c$	$\left[\mathrm{BO}_{3}\right]$	$\left[\mathrm{TeO}_{6}\right]$	$0 \mathrm{D}\left[\mathrm{Te}^{(\mathrm{vi})} \mathrm{O}_{4}\left(\mathrm{BO}_{3}\right)_{2}\right]$	n/a		3.84
borotellurates								
	$\mathrm{Na}_{2} \mathrm{Lu}_{2} \mathrm{TeB}_{2} \mathrm{O}_{10}$	$P 21 / c$	$\left[\mathrm{BO}_{3}\right]$	$\left[\mathrm{TeO}_{6}\right]$	$0 \mathrm{D}\left[\mathrm{Te}^{(\mathrm{v})} \mathrm{O}_{4}\left(\mathrm{BO}_{3}\right)_{2}\right]$	n/a		3.9
	$\mathrm{Pb}_{2} \mathrm{Mg}_{2} \mathrm{TeB}_{2} \mathrm{O}_{10}$	Cmca	$\left[\mathrm{BO}_{3}\right]$	$\left[\mathrm{TeO}_{6}\right]$	$0 \mathrm{D}\left[\mathrm{Te}^{(\mathrm{vi})} \mathrm{O}_{4}\left(\mathrm{BO}_{3}\right)_{2}\right]$	0.077		4.0
	$\mathrm{Ba}_{2} \mathrm{Mg}_{2} \mathrm{TeB}_{2} \mathrm{O}_{10}$	Cmca	$\left[\mathrm{BO}_{3}\right]$	$\left[\mathrm{TeO}_{6}\right]$	$0 \mathrm{D}\left[\mathrm{Te}^{(\mathrm{vi})} \mathrm{O}_{4}\left(\mathrm{BO}_{3}\right)_{2}\right]$	0.046		4.5
	$\mathrm{Sr}_{5} \mathrm{TeO}_{2}\left(\mathrm{BO}_{3}\right)_{4}$	P4/mnc	$\left[\mathrm{BO}_{3}\right]$	$\left[\mathrm{TeO}_{6}\right]$	$0 \mathrm{D}\left[\mathrm{Te}^{(\mathrm{vi})} \mathrm{O}_{2}\left(\mathrm{BO}_{3}\right)_{4}\right]$	0.048		4.28
	$\mathrm{Ba}_{4} \mathrm{~B}_{8} \mathrm{TeO}_{19}$	Cc	$\left[\mathrm{B}_{3} \mathrm{O}_{11}\right]$	$\left[\mathrm{TeO}_{6}\right]$	$3 \mathrm{D}\left[\mathrm{B}_{8} \mathrm{Te}^{(\mathrm{vi})} \mathrm{O}_{19}\right]$	0.055		3.42

Figure S1. The experimental and calculated XRD diffraction (a) and (b) after melting of LaTeBO_{5}.

Figure S2. DSC/TG curves of the LaTeBO_{5}

Figure S3. (a) the $\left[\mathrm{Te}^{(\mathrm{iv})} \mathrm{O}_{4}\right]$ group in LaTeBO_{5}, (b) the $\left[\mathrm{Te}^{(\mathrm{iv})} \mathrm{O}_{3}\right]$ group in $\mathrm{Rb}_{3} \mathrm{BaTeB}_{7} \mathrm{O}_{15}$

Figure S4. The EDX analysis of LaTeBO_{5}

Figure S5. UV-Vis-IR reflectance spectrum (a) and (b) absorption spectrum of the LaTeBO_{5}.

Figure S6. IR spectrum of the LaTeBO_{5}

Figure S7. The band structure (a) and (b) total and partial density of states in LaTeBO_{5}.

Figure S8. A LaTeBO 5_{5} crystal for birefringence measurements by cross-polarized light.

Figure S9. The thickness of LaTeBO_{5} crystal.

Reference

1. R. Masse, J. Grenier and A. Durif-Varambon, Bull. Soc. Fr. Mineral. Cristallogr., 1967, 90, 20-23.
2. G. Blasse, J. Inorg. Nucl. Chem., 1968, 30, 2283-2284.
3. P. Kubelka and F. Munk, Z. Tech. Phys., 1931, 12, 886-892.
4. S. Clark, M. Segall, C. Pickard, P. Hasnip, M. Probert, K. Refson and M. Payne, Z. Kristallogr., 2005, 220, 567-570.
5. J. Perdew, J. Chevary, S. Vosko, K. Jackson, M. Pederson, D. Singh, C. Fiolhais and Erratum, Phys. Rev. B, 1992, 46, 6671-6675.
6. J. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865-3868.
7. H. Monkhorst and J. Pack, Phys. Rev. B, 1976, 13, 5188-5192.
