Electronic Supplementary Information (ESI) for:

Getting a Lead on Pb²⁺ - Amide Chelators for ^{203/212}Pb Radiopharmaceuticals

Aidan Ingham,^{*a,b* ‡} Thomas I. Kostelnik,^{*a,b* ‡} Brooke McNeil,^{*b,c*} Brian O. Patrick,^{*d*} Neha Choudhary,^{*a,b*} María de Guadalupe Jaraquemada-Peláez^{*a**} and Chris Orvig^{*a**}

^{*a*} Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada

^b Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, V6T 2A3, Canada

^c Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Canada

^d Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1

[‡] These authors contributed equally to this work

*Corresponding Authors: Chris Orvig (<u>orvig@chem.ubc.ca</u>) and María de Guadalupe Jaraquemada-Peláez (<u>mdgjara@chem.ubc.ca</u>)

Table of Contents

NMR Spectra	
X-ray Crystal Structure Data	S11-14
Solution Thermodynamics Results	
Radiolabeling Data	S20
High-Resolution Mass Spectrometry Data	S21
References	

NMR Spectra of Compounds 2-11

Figure S1. ${}^{13}C{}^{1}H$ NMR spectrum of DTPAm (2) (100 MHz, 25 °C, D₂O).

Figure S2. ¹H NMR spectrum of compound 3 (400 MHz, 25 °C, CDCl₃).

Figure S3. ${}^{13}C{}^{1}H$ NMR spectrum of compound 3 (100 MHz, 25 °C, CDCl₃).

Figure S4. ${}^{13}C{}^{1}H$ NMR spectrum of compound 4 (EGTAm) (100 MHz, 25 °C, D₂O).

Figure S5. ¹H NMR spectrum of compound 7 (400 MHz, 25 °C, CDCl₃).

Figure S6. ${}^{13}C{}^{1}H$ NMR spectrum of compound 7 (75 MHz, 25 °C, CDCl₃).

Figure S7. ¹H NMR spectrum of compound 8 (400 MHz, 25 °C, CDCl₃).

Figure S8. ¹³C{¹H} NMR spectrum of compound 8 (75 MHz, 25 °C, CDCl₃).

Figure S9. ¹H NMR spectrum of compound 9 (300 MHz, 25 °C, CDCl₃).

Figure S10. ${}^{13}C{}^{1}H$ NMR spectrum of compound 9 (75 MHz, 25 °C, CDCl₃).

Figure S11. ¹H NMR spectrum of compound 10 (400 MHz, 25 °C, CD₂Cl₂).

Figure S12. ¹³C $\{^{1}H\}$ NMR spectrum of compound 10 (100 MHz, 25 °C, CD₂Cl₂).

Figure S13. ¹H NMR spectrum of compound 11 (ampam) (300 MHz, 25 °C, D₂O).

Figure S14. ¹³C{¹H} NMR spectrum of compound 11 (ampam) (100 MHz, 25 °C, DMSO).

Figure S15. ¹H-¹H COSY spectrum of $[Pb(DTPAm)]^{2+}$ (400 MHz, 25 °C, D₂O, pD = 7).

X-ray Crystallography Data

and [Pb(ampam)](NO ₃) ₂ .xH ₂ O	L		
Compound	[Pb(DTPAm)](NO ₃) ₂ .4H ₂ O	[Pb(EGTAm)(NO₃)](NO₃) .H₂O	[Pb(ampam)](NO ₃) ₂ .xH ₂ O
Formula	C14H36N10O15Pb	C14H30N8O13Pb	C24H38.17N10O14.67Pb
$D_{calc}/\mathrm{g~cm^{-3}}$	1.455	2.008	1.833
μ/mm^{-1}	6.239	7.108	5.208
Formula Weight	791.73	725.65	908.68
Colour	colourless	colourless	colourless

Table S1. Crystallographic information for [Pb(DTPAm)](NO₃)₂.4H₂O, [Pb(EGTAm)(NO₃)](NO₃).H₂O

Formula	$C_{14}H_{36}N_{10}O_{15}PD$	$C_{14}H_{30}N_8O_{13}PD$	C24H38.17N10O14.67PD
$D_{calc}/\mathrm{g~cm^{-3}}$	1.455	2.008	1.833
μ/mm^{-1}	6.239	7.108	5.208
Formula Weight	791.73	725.65	908.68
Colour	colourless	colourless	colourless
Shape	needle	needle	irregular
Size/mm ³	0.32x0.27x0.07	0.29x0.15x0.08	0.19x0.15x0.07
<i>Т</i> /К	296(2)	110(2)	115(2)
Crystal System	monoclinic	monoclinic	monoclinic
Space Group	P2 ₁ /c	P2 ₁ /c	C2/c
<i>a</i> /Å	8.9884(7)	11.2179(2)	14.0872(7)
<i>b</i> /Å	20.3731(16)	27.5158(5)	22.5964(10)
<i>c</i> /Å	14.8713(11)	7.7860(2)	12.3531(9)
$\alpha/^{\circ}$	90	90	90
β/°	93.436(2)	92.6860(10)	123.133(2)
γ/°	90	90	90
V/Å ³	2718.4(4)	2400.66(9)	3292.9(3)
Z	4	4	4
Z'	1	1	0.5
Wavelength/Å	0.71073	0.71073	0.71073
Radiation type	ΜοΚα	ΜοΚα	ΜοΚα
$\Theta_{min}/^{\circ}$	1.697	1.962	1.802
$\Theta_{max}/^{\circ}$	30.548	30.553	30.705
Measured Refl.	50045	34585	19580
Independent Refl.	8315	7328	5069
Reflections with $I > 2(I)$	7492	5751	4486
R _{int}	0.0389	0.0689	0.0615
Parameters	369	344	333
Restraints	0	0	139
Largest Peak	0.970	2.514	1.568
Deepest Hole	-1.015	-2.005	-2.072
GooF	1.057	1.075	1.022
wR_2 (all data)	0.0519	0.0785	0.0742
wR_2	0.0492	0.0735	0.0710
R_1 (all data)	0.0293	0.0600	0.0388
R_1	0.0236	0.0400	0.0319

Figure S16. Molecular diagram of [Pb(DTPAm)](NO₃)₂.4H₂O crystal structure showing the intermolecular bonding between solvent and anion molecules; ellipsoids are drawn at 50% probability level, except the Pb atom that is at 80%. Hydrogen atoms are omitted for clarity, except in the amide groups.

Figure S17. Molecular diagram of $[Pb(EGTAm)(NO_3)](NO_3).H_2O$ crystal structure showing the intermolecular bonding between solvent and anion molecules; ellipsoids are drawn at 50% probability level, except the Pb atom that is at 80%. Hydrogen atoms are omitted for clarity, except in the amide groups.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
01	Pb1	05	98.02(6)	04	Pb1	02	131.80(6)
01	Pb1	N6	133.88(6)	04	Pb1	03	129.78(6)
02	Pb1	01	90.78(6)	04	Pb1	05	84.67(6)
02	Pb1	05	143.52(6)	04	Pb1	N2	70.06(6)
02	Pb1	N2	63.70(6)	04	Pb1	N4	80.76(6)
02	Pb1	N4	71.30(6)	04	Pb1	N6	62.17(6)
02	Pb1	N6	133.21(6)	N2	Pb1	01	61.93(6)
03	Pb1	01	151.26(6)	N2	Pb1	05	149.85(6)
03	Pb1	02	72.19(6)	N2	Pb1	N6	119.39(6)
03	Pb1	05	84.02(6)	N4	Pb1	01	131.14(6)
03	Pb1	N2	124.70(6)	N4	Pb1	05	123.62(6)
03	Pb1	N4	65.93(6)	N4	Pb1	N2	69.45(6)
03	Pb1	N6	70.74(6)	N4	Pb1	N6	68.11(6)
04	Pb1	01	78.83(6)	N6	Pb1	05	57.01(6)

Table S2. Selected crystallographic bond angle information for [Pb(DTPAm)](NO₃)₂.4H₂O

Table S3. Selected crystallographic bond angle information for [Pb(EGTAm)(NO₃)](NO₃).H₂O

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
01	Pb1	02	90.19(11)	05	Pb1	04	123.17(10)
01	Pb1	03	92.53(10)	05	Pb1	06	90.30(11)
01	Pb1	04	135.14(10)	05	Pb1	07	88.98(10)
01	Pb1	05	72.28(10)	05	Pb1	08	128.52(10)
01	Pb1	06	71.91(11)	05	Pb1	N2	112.19(11)
01	Pb1	07	154.91(11)	05	Pb1	N5	60.37(10)
01	Pb1	08	138.45(10)	06	Pb1	02	159.46(10)
01	Pb1	N2	62.55(11)	06	Pb1	03	76.60(10)
01	Pb1	N5	111.51(10)	06	Pb1	04	66.66(10)
02	Pb1	04	133.24(10)	06	Pb1	07	126.05(10)
02	Pb1	07	68.29(10)	06	Pb1	08	132.68(10)
02	Pb1	08	67.65(10)	06	Pb1	N2	117.56(10)
02	Pb1	N5	117.91(10)	06	Pb1	N5	62.55(10)
03	Pb1	02	115.19(9)	07	Pb1	08	45.51(9)
03	Pb1	04	62.15(9)	N2	Pb1	02	58.96(10)
03	Pb1	07	107.95(9)	N2	Pb1	04	124.61(10)
03	Pb1	08	68.61(9)	N2	Pb1	07	112.38(11)
03	Pb1	N2	65.72(11)	N2	Pb1	08	75.91(10)
03	Pb1	N5	120.67(10)	N2	Pb1	N5	172.31(11)
04	Pb1	07	69.14(10)	N5	Pb1	04	62.93(10)
04	Pb1	08	69.07(10)	N5	Pb1	07	70.71(10)
05	Pb1	02	74.30(11)	N5	Pb1	08	109.92(10)
05	Pb1	03	162.59(11)				

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
01	Pb1	011	84.37(10)	031	Pb1	01	143.73(7)
011	Pb1	$N2^{1}$	59.12(7)	031	Pb1	011	116.90(7)
01	Pb1	N21	111.33(7)	03	Pb1	011	143.73(7)
011	Pb1	N2	111.33(7)	031	Pb1	02	67.83(7)
01	Pb1	N2	59.12(7)	03	Pb1	021	67.83(7)
011	Pb1	N3	70.95(7)	03	Pb1	02	77.57(7)
011	Pb1	N31	94.98(8)	031	Pb1	021	77.57(7)
01	Pb1	N3	94.98(8)	031	Pb1	03	63.73(10)
01	Pb1	N31	70.95(7)	031	Pb1	$N2^{1}$	64.55(7)
021	Pb1	011	147.99(7)	03	Pb1	$N2^{1}$	126.95(7)
021	Pb1	01	70.68(7)	031	Pb1	N2	126.95(7)
02	Pb1	011	70.68(7)	03	Pb1	N2	64.55(7)
02	Pb1	01	147.99(7)	03	Pb1	$N3^{1}$	119.02(8)
02	Pb1	021	139.16(10)	031	Pb1	$N3^{1}$	77.84(8)
021	Pb1	N2	73.05(8)	03	Pb1	N3	77.84(8)
021	Pb1	$N2^{1}$	111.22(8)	031	Pb1	N3	119.02(8)
02	Pb1	N2	111.22(8)	N2	Pb1	$N2^{1}$	168.42(11)
02	Pb1	$N2^{1}$	73.05(8)	N3	Pb1	N2	58.72(8)
021	Pb1	N3	129.36(8)	$N3^{1}$	Pb1	N2	119.12(8)
021	Pb1	N31	58.57(8)	N3	Pb1	$N2^{1}$	119.12(8)
02	Pb1	$N3^{1}$	129.36(8)	$N3^{1}$	Pb1	$N2^{1}$	58.72(8)
02	Pb1	N3	58.57(8)	N3	Pb1	$N3^{1}$	161.40(12)
03	Pb1	01	116.90(7)				

Table S4. Selected crystallographic bond angle information for [Pb(ampam)](NO₃)₂.xH₂O

Solution Thermodynamics Results

Figure S18. A) Titration plot of ~20 mL of [DTPAm] = 9.13×10^{-4} M with [NaOH] = 0.16 M at 25 °C and I = 0.16 M (NaCl); B) Titration plot of ~15 mL of [Pb²⁺] = [DTPAm] = 6.35×10^{-4} M with [NaOH] = 0.16 M at 25 °C and I = 0.16 M (NaCl).

Figure S19. A) Titration plot of ~11 mL of [EGTAm] = 9.99×10^{-4} M with [NaOH] = 0.16 M at 25 °C and I = 0.16 M (NaCl); B) Titration plot of ~15 mL of [Pb²⁺] = [EGTAm] = 6.63×10^{-4} M with [NaOH] = 0.16 M at 25 °C and I = 0.16 M (NaCl).

Figure S20. A) Titration plot of ~11 mL of [ampam] = 9.50×10^{-4} M with [NaOH] = 0.16 M at 25 °C and I = 0.16 M (NaCl); B) Titration plot of ~15 mL of [Pb²⁺] = [ampam] = 6.78×10^{-4} M with [NaOH] = 0.16 M at 25 °C and I = 0.16 M (NaCl).

Figure S21. ¹H NMR spectra of ampam versus $[Pb(ampam)]^{2+}$ at various pD values (300 MHz, 25 °C, D₂O).

equilibrium reaction ^[b]	DOTA ^[c]	TCMC ^[e]	DTPA ^[g]	DTPAm ^[h]	EDTA ^[i]	EDTAm ^[j]	EGTA ^[g]	EGTAm ^[h]	ampam ^[h]
$\mathbf{L} + \mathbf{H}^{\scriptscriptstyle +} \leftrightarrows \mathbf{H} \mathbf{L}$	12.6	7.70(1)	11.84	5.99(1)	9.55	4.36(2)	9.40	4.32(1)	5.61(1)
$\mathrm{HL} + \mathrm{H}^{\scriptscriptstyle +} \leftrightarrows \mathrm{H}_2\mathrm{L}$	9.70	6.21(1)	9.40	2.33(1)	6.01		8.78	3.53(1)	5.05(1)
$H_2L + H^+ \leftrightarrows H_3L$	4.50		4.85		2.92				2.44(2)
$H_3L + H^+ \leftrightarrows H_4L$	4.14		3.10		2.17				
$H_4L + H^+ \leftrightarrows H_5L$	2.32		2.20		-				
$\frac{\log K_{\mathrm{HqL}} \{ [\mathbf{H}_q \mathbf{L}] / [\mathbf{H}_{q-1} \mathbf{L}] [\mathbf{H}^+] \}}{\ \mathbf{H}_q\ _{1} \ \mathbf{H}^+\ _{1} \ \mathbf{H}_q\ _{1}}$	33.26	13.91	31.39	8.32	20.65	4.36(2)	18.18	7.85	13.1
log K _{PbL}	24.3 ^[d]	>19 ^[e]	18.66 ^[d]	8.79(2)	18 ^[d]	5.85(5)	14.54	6.24(3)	9.21(4)
pPb ²⁺	18.4 ^[d]	19.5 ^[f]	15 ^[d]	9.7	15.9 ^[d]	6.9 ^[f]	12.1 ^[f]	7.2	10.2

Table S5. Protonation constants (log K_{HqL}) and pM^[a] (M = Pb²⁺) values of discussed chelating ligands.

[a] From ref 1; [b] charges omitted for simplicity; [c] from ref 2; [d] from ref 3; [e] from ref 4; [f] calculated with stability constants in this table; [g] from ref 5; [h] this work; [i] from ref 6; [j] from ref 7.

Radiolabeling Data

Figure S22. Radio-HPLC traces: $A = \text{free} [^{203}\text{Pb}]\text{Pb}^{2+}$, $B = 10^{-3} \text{ mol dm}^{-3} [^{203}\text{Pb}][\text{Pb}(\text{EGTAm})]^{2+}$ and $C = 10^{-3} \text{ mol dm}^{-3} [^{203}\text{Pb}][\text{Pb}(\text{ampam})]^{2+}$. A 250 mm synerigi hydro analytical column was used with the flow rate set to 1 mL/min. The gradient set up was: $A = H_2O$ (0.1% TFA), B = MeCN (0.1% TFA), A = 95%, 0-2 min, A = 95-80%, 2-18 min, with the stop time set to 10 min.

High-Resolution Mass Spectrometry Data

complexes.			
Species	Formula	Calcd (m/z)	Found (m/z)
EGTAm	$C_{14}H_{28}N_6O_6$	376.2074	376.2070
EGTAm-Pb	$C_{14}H_{27}N_6O_6Pb \\$	579.1722	579.1724
DTPAm	$C_{14}H_{28}N_8O_5$	388.2183	388.2184
DTPAm-Pb	$C_{14}H_{27}N_8O_5Pb$	591.1835	591.1835
Ampam	$C_{24}H_{34}N_8O_6$	530.2601	530.2606
Ampam-Pb	$C_{24}H_{33}N_8O_6Pb \\$	733.2253	733.2256

Table S6. HR-ESI-MS data for EGTAm, DTPAm and ampam, as well as their respective Pb^{2+} complexes.

References

- 1) W. R. Harris, C. J. Carrano and K. N. Raymond, J. Am. Chem. Soc., 1979, 101, 2213–2214.
- L. Burai, I. Fábián, R. Király, E. Szilágyi and E. Brücher, J. Chem. Soc. Dalt. Trans., 1998, 243–248.
- C. G. Pippin, T. J. McMurry, M. W. Brechbiel, M. McDonald, R. Lambrecht, D. Milenic, M. Roselli, D. Colcher and O. A. Gansow, *Inorganica Chim. Acta*, 1995, 239, 43–51.
- H. Maumela, R. D. Hancock, L. Carlton, J. H. Reibenspies and K. P. Wainwright, J. Am. Chem. Soc., 1995, 117, 6698–6707.
- A. E. Martell, R. M. Smith and A. E. Martell, *Critical Stability Constants*, Springer US: Boston, MA, 1989; Vol. 1–6.
- E. Boros, C. L. Ferreira, J. F. Cawthray, E. W. Price, B. O. Patrick, D. W. Wester, M. J. Adam and C. Orvig, *J. Am. Chem. Soc.*, 2010, **132**, 15726–15733.
- L. A. Clapp, C. J. Siddons, J. R. Whitehead, D. G. VanDerveer, R. D. Rogers, S. T. Griffin,
 S. B. Jones and R. D. Hancock, *Inorg. Chem.*, 2005, 44, 8495–8502.