Supporting Information

Efficient and selective removal of Congo red by a C@Mo

composite nanomaterial using a citrate-based coordination

polymer as the precursor

Xiao-Sa Zhang,^a Hong-Tian Zhao,^a Yu Liu,^a Wen-Ze Li,^{a*} Yan Wang,^a Xiao-Yu Zhao,^a

Ai-Ai Yang^a and Jian Luan^{b*}

^a College of Sciences, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China

^b College of Sciences, Northeastern University, Shenyang, 100819, P. R. China

E-mail: <u>liwenze@syuct.edu.cn</u> (W. Z. Li); <u>2010044@stu.neu.edu.cn</u> (J. Luan)

Table S1 Selected bond distances (Å) and angles (°) for complex 1

Cu(1)–O(1)	1.934(5)	Cu(2)–O(1W)	2.089(5)
Cu(1)–O(5)	1.936(4)	Cu(2)–O(7)	1.912(4)
Cu(1)–O(4)	1.944(4)	Cu(2)–O(2)	1.921(5)
Cu(1)–O(7)	1.951(4)	Cu(2)–O(3)#2	1.923(5)
Cu(1)–O(6)#1	2.285(4)	Cu(2)–O(2W)	2.275(5)
O(1)–Cu(1)–O(5)	158.7(2)	O(7)–Cu(2)–O(2)	93.3(2)
O(1)–Cu(1)–O(4)	88.63(19)	O(7)–Cu(2)–O(3)#2	97.09(18)
O(5)–Cu(1)–O(4)	90.53(18)	O(2)–Cu(2)–O(3)#2	169.6(2)
O(1)–Cu(1)–O(7)	97.55(18)	O(7)–Cu(2)–O(1W)	135.79(19)
O(5)–Cu(1)–O(7)	84.59(17)	O(2)–Cu(2)–O(1W)	82.9(2)
O(4)–Cu(1)–O(7)	173.37(17)	O(3)#2-Cu(2)-O(1W)	88.7(2)
O(1)–Cu(1)–O(6)#1	94.6(2)	O(7)–Cu(2)–O(2W)	136.04(18)
O(5)–Cu(1)–O(6)#1	106.6(2)	O(2)–Cu(2)–O(2W)	86.7(2)
O(4)-Cu(1)-O(6)#1	87.89(17)	O(3)#2-Cu(2)-O(2W)	86.8(2)
O(7)–Cu(1)–O(6)#1	89.20(17)	O(1W)–Cu(2)–O(2W)	87.89(18)

Symmetry code: #1 -x + 2, y - 1/2, -z + 1/2; #2 x, -y + 3/2, z - 1/2

CPs)	Table	S2.	Coordination	Modes	of	Carboxylic	Ligand	H ₄ cit	(Other	Metal-base	d
	CPs)										

			Coordination	Coordination		Refe
No.	СР	cit anion	mode	mode of	-OH	renc
			mode			e
				μ_2 - η^1 : η^1		
A4	$[Gd(cit)(H_2O)]$	The second	Pentadentate	μ_2 - η^1 : η^1	μ_1	S 1
				μ_2 - η^1 : η^1		
				μ_1 - η^1 : η^0		
		prover a	Biadentate	μ_1 - η^1 : η^0	NA	
A5	[5Ba(Hcit)2(H2cit)	· ·		μ_0 - η^0 : η^0		S2
110	$2 \cdot 6 H_2 O] \cdot 2 H_2 O$	ATA		$\mu_2 - \eta^2 : \eta^1$		02
			Tetradentate	$\mu_3-\eta^2:\eta^1$	μ_1	
				$\mu_1 - \eta^1 : \eta^0$		
				$\mu_2 - \eta^2 : \eta^1$		
		TRE	Tetradentate	$\mu_1 - \eta^1 : \eta^0$	μ_1	
A6	[5.5Pb(Hcit) ₃ (H ₂ ci	V. V		$\mu_2 - \eta^2 : \eta^0$		S2
	t) \cdot 5H ₂ O] \cdot 4.5H ₂ O	A		$\mu_2 - \eta^1 : \eta^0$		52
			Pentadentate	$\mu_2 - \eta_1^1 : \eta_1^1$	μ_1	
	[Na(OH2)6] · {[Na3(A7 OH2)8]3[NaPd3(cit			$\mu_3 - \eta^3 : \eta^1$		
. –		V A	Sexadentate	$\mu_3 - \eta^2 : \eta^1$		~ -
A7 OH ₂) ₈] ₃ [NaPd ₃ (cit) ₃] ₂ }·(H ₂ O)				$\mu_3 - \eta^2 : \eta^1$	μз	S 3
)3]2}·(H2O)		$\mu_1 - \eta^1 : \eta^0$			
[FeCd ₂ (Hcit) ₂	[FeCd ₂ (Hcit) ₂ (H ₂	1	T (1) ($\mu_3 - \eta^2 : \eta^1$		C 4
Að	O)2]		Tetradentate	$\mu_3 - \eta^2 : \eta^1$	μ_1	84
	· -			$\mu_1 - \eta^1 : \eta^1$		
	[Cd3(Hcit)2(H2O)2		T-4 14-4-	$\mu_3 - \eta^2 : \eta^1$		C 4
A9]		Tetradentate	$\mu_3 - \eta^2 : \eta^1$	μ_1	84
				$\mu_1 - \eta^2 : \eta^2$		
A10 [NiZn ₂ (Hcit) ₂ () ₂]	[NiZn ₂ (Hcit) ₂ (H ₂ O) ₂]		Totus doutoto	$\mu_{3}-\eta^{-1}:\eta^{-1}$		95
)2]		Tetradentale	$\mu_3 - \eta \cdot \eta$	μ_1
				$\mu_1 - \eta \cdot \eta$		
A11	[CoCd ₂ (Hcit) ₂ (H ₂ O) ₂]		Tatradantata	$\mu_3 - \eta \cdot \eta$		\$5
		411	Tetradentale	$\mu_3 - \eta \cdot \eta$	μ_1	35
				$\mu_1 - \eta \cdot \eta$ $\mu_2 - n^2 \cdot n^1$		
۸12	[CoZn ₂ (Hcit) ₂ (H ₂		Tetradentate	$\mu_{3} - \eta : \eta$	111	\$5
A12	O)2]	AND	Tetrademate	$\mu_{3} - \eta \cdot \eta$	μ_1	55
	[Ln(Heit)(H2O)2.2			$\mu_1 - \eta \cdot \eta$		
A13	H2O1	~~~		$\mu_3-\eta^2:\eta^1$		
	(Ln = Sm, Gd, Er, Nd)	AXX	Tridentate	$\mu_2 - \eta^1 : \eta^1$	μ_1	S 6
				μ_1 - η^1 : η^0		

Supporting Information

A14	[NiCd(cit)(H ₂ O)]		Tetradentate	$\mu_{3}-\eta^{2}:\eta^{1}$ $\mu_{3}-\eta^{2}:\eta^{1}$ $\mu_{1}-\eta^{1}:\eta^{1}$	μ_1	S7
A15	[Ge(Hcit)2Ba(H2O)3]·3H2O	ba	Tridentate	$\mu_{1}-\eta^{1}:\eta^{0}$ $\mu_{1}-\eta^{1}:\eta^{0}$ $\mu_{2}-\eta^{1}:\eta^{1}$	μ_1	S8
A16	[Cu ₂ Ge(cit) ₂ (INH) 2]·4H ₂ O	<u>Str</u>	Tridentate	$\mu_{1}-\eta^{1}:\eta^{0}$ $\mu_{2}-\eta^{1}:\eta^{1}$ $\mu_{1}-\eta^{1}:\eta^{0}$	μ_1	S9
		- effe	Biadentate	$\mu_{2}-\eta^{2}:\eta^{0}$ $\mu_{1}-\eta^{1}:\eta^{0}$ $\mu_{0}-\eta^{0}:\eta^{0}$	μ_1	
A17	$[M(Hcit)(H_2cit)(H_3cit)(H_2O)] \cdot H_2O$ $(M = La, Ce)$	the	Tetradentate	$\mu_{3}-\eta^{2}:\eta^{1}$ $\mu_{3}-\eta^{2}:\eta^{1}$ $\mu_{0}-\eta^{0}:\eta^{0}$	μ_1	S10
		100	Tetradentate	$\mu_{3}-\eta^{2}:\eta^{1}$ $\mu_{3}-\eta^{2}:\eta^{1}$ $\mu_{0}-\eta^{0}:\eta^{0}$	μ_1	
A18	$[Zn(Hcit)(phen)(H2O)][Zn_2(Hcit)(phen)_2(H_2O)_3] \cdot 13.5H2Ophen =1,10-phenanthroline$	Des	Biadentate	$\mu_1 - \eta^1 : \eta^1$ $\mu_1 - \eta^1 : \eta^0$ $\mu_1 - \eta^1 : \eta^0$	μ_1	S11
A19	[Zn3(Hcit)2(phen)4]·14H2O	Dis	Biadentate	$\mu_{1}-\eta^{1}:\eta^{1}\ \mu_{1}-\eta^{0}:\eta^{0}\ \mu_{0}-\eta^{0}:\eta^{0}$	NA	S11
A20	[Co ₈ (cit) ₄ (bbi) ₆ (H ₂ O) ₁₀]·7H ₂ O bbi = 1,1'-(1,4-butanedi yl)bis(imidazole)	10	Pentadentate	$\mu_{2}-\eta^{2}:\eta^{0}$ $\mu_{2}-\eta^{2}:\eta^{0}$ $\mu_{1}-\eta^{1}:\eta^{0}$	μ3	S12

Fig. S1 The IR spectrum of complex 1.

Fig. S2 The PXRD patterns of simulated and fresh sample for complex 1.

Fig. S3 The TG curve of complex 1.

Fig. S4 UV–vis spectra of MB (a), RhB (b), MO (c), GV (d) solutions after different adsorption times with complex **1**.

Fig. S5 The adsorption rates of MB, RhB, MO, CR and GV at different times with complex 1.

Fig. S6 UV–vis spectra of different concentrations of CR solutions after 240 min with **C-Mo-1** at different temperatures.

Fig. S7 Adsorption kinetics of CR adsorbed by C-Mo-1: (a) Pseudo-first-order model;(b) Pseudo-second-order model; (c) Intra-particle diffusion model.

Fig. S8 The plot of lnKe-1/T for adsorption of CR on C-Mo-1.

Fig. S9 UV-vis spectra of MB (a), RhB (b), MO (c) and GV (d) solutions after different adsorption times with C-Mo-1.

Reference:

S1 S. J. Liu, C. Cao, C. C. Xie, T. F. Zheng, X. L. Tong, J. S. Liao, J. L. Chen, H. R.

Wen, Z. Chang and X. H. Bu, *Dalton Trans.*, 2016, **45**, 9209–9215.

S2 A. Drzewiecka-Antonik, A. E. Koziol, P. Rejmak, K. Lawniczak-Jablonska, L. Nittler, T. Lis, *Polyhedron*, 2017, **132**, 1–11.

S3 P. Gunari, S. Krishnasamy, S. Q. Bai and T. S. A. Hor, *Dalton Trans.*, 2010, **39**, 9462–9464.

S4 L. Li, J. Jin, Z. F. Shi, L. M. Zhao, J. C. Liu, Y. H. Xing and S. Y. Niu, *Inorg. Chim. Acta*, 2010, **363**, 748–754.

S5 L. Li, S. Y. Niu, J. Jin, Q. Meng, Y. X. Chi, Y. H. Xing and G. N. Zhang, *J. Solid State Chem.*, 2011, **184**, 1279–1285.

S6 X. F. Li, Y. Y. Wu, H. J. Lun, H. Y. Li, J. H. Yang and Y. M. Li, *Synthetic Met.*, 2017, **232**, 103–110.

S7 O. Mtioui-Sghaier, R. Mendoza-Meroño, E. Fernández-Zapico, S. García-Granda,
A. Fernández-González, L. Ktari and M. Dammak, *J. Mol. Struct.*, 2016, 1105, 105–111.

S8 A. G. Pesaroglo, E. E. Martsinko, L. K. Minacheva, I. I. Seifullina and V. S. Sergienko, *Rus. J. Inorg. Chem.*, 2010, **55**, 1366–1372.

S9 I. I. Seifullina, E. E. Martsinko, E. A. Chebanenko, V. V. D'yakonenko, S. V. Shishkina and O. V. Pirozhok, *J. Struct. Chem.*, 2018, **59**, 154–159.

S10 S. F. Weng, Y. H. Wang and C. S. Lee, J. Solid State Chem., 2012, 188, 77-83.

S11 R. H. Zhang, W. S. Xia, H. X. Wang and Z. H. Zhou, *Inorg. Chem. Commun.*, 2009, **12**, 583–587.

S12 B. J. Zhang, C. J. Wang, G. M. Qiu, S. Huang, X. L. Zhou, J. Weng and Y. Y. Wang, *Inorg. Chim. Acta*, 2013, **397**, 48–59.