Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021

Supporting Information

CpFe(CO)₂ anion-catalyzed highly efficient hydrosilylation

of ketones and aldehydes

Ke Lou,^a Qingyang Zhou,^{b†} Qi Wang,^{b†} Xingchao Fan,^a Xiufang Xu^{*b} and Chunming Cui^{*a}

Contents

1.	Experimental Section	.2
2.	NMR spectra	.5
3.	References	17

1. Experimental Section

General Considerations.

All operations were carried out under an atmosphere of dry argon or nitrogen by using modified Schlenck line and glovebox techniques. All solvents were freshly distilled from Na and degassed immediately prior to use. Elemental analyses were carried out on an Elemental Vario EL analyzer. The ¹H, ¹³C and ²⁹Si NMR spectroscopic data were recorded on Bruker Mercury Plus 300, 400 and 600 MHz NMR spectrometers. Chemical shifts are referenced against external Me₄Si for ¹H, ¹³C and ²⁹Si NMR. K[CpFe(CO)₂] (**1**K) and [NEt₄][CpFe(CO)₂] (**1**NEt₄) were synthesized according to the published procedure.^[S1, S2]

General procedure for hydrosilylation of corbonyl compounds catalyzed by $1NEt_4$. In the glovebox, $10 \mu l$ of $1NEt_4$ (0.05M in THF) was added in a Schlenk tube eqquiped with a stir bar, then remove the THF under vacuum condition. 1 mmol of substrate and 0.34 or 0.5 mmol of PhSiH₃ was added to the Schlenk tube sequentially. The reaction was stirred for 10 - 30 min, then exposed to air to stop the reaction. The conversions were determined by ¹H NMR spectroscopy at ambient temperature. The pure products were isolated by filtered through a Celite pad to remove the catalyst and then evacuating the volatiles under vacuum.

Scaled-up reaction of hydrosilylation of acetophenone catalyzed by $1NEt_4$. In a argon atmosphere, 15 mg of $1NEt_4$ (0.05 mmol) and of 12.0 g of acetophenone (100 mmol) was added in a Schlenk tube equiped with a stir bar, and the mixture was cooled to 0 °C, then 3.7 g of PhSiH₃ (0.34 mmol) was slowly added to the Schlenk tube. The reaction was stirred for 10 min, then exposed to air to stop the reaction. The conversions were determined by ¹H NMR spectroscopy at ambient temperature.

Charcaterization of the hydrosilylation Products

PhSi(OCH(Me)Ph)₃ (3a)^[S3]. ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.54 (m, 2H, Ar-*H*), 7.40 (d, J = 7.4 Hz, 2H, Ar-*H*), 7.34 – 7.18 (m, 16H, Ar-*H*), 5.11 – 4.96 (m, 3H, OCH(CH₃)), 1.43 (dd, J = 10.1, 6.4 Hz, 5H, (OCH(CH₃)), 1.33 (dd, J = 8.8, 6.4 Hz, 5H, (OCH(CH₃))). ¹³C NMR (101 MHz, CDCl₃) δ 134.94, 128.05 (d, J = 6.4 Hz), 127.62, 126.85 (d, J = 8.4 Hz), 125.36 (d, J = 5.3 Hz), 77.32, 77.00, 76.68, 71.12, 26.49 (d, J = 10.1 Hz).

PhSi(OCH(Me)(*p***-OMeC₆H₄))₃ (3b)^[53].** ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.27 (m, 6H, Ar-*H*), 7.23 – 7.08 (m, 5H, Ar-*H*), 6.88 – 6.74 (m, 6H, Ar-*H*), 5.03 – 4.87 (m, 3H, (OCH(CH₃)), 3.84 – 3.75 (m, 9H, OCH₃), 1.60 – 1.28 (m, 9H, (OCH(CH₃)). ¹³C NMR (101 MHz, CDCl₃) δ 158.67, 137.55, 137.43, 134.93, 134.18, 133.34, 130.45, 127.82, 126.76, 126.71, 126.64, 113.57, 113.50, 77.00, 71.51, 55.23, 55.19, 26.33, 26.20.

PhSi(OCH(Me)(*p***-CNC**₆**H**₄**))**₃ (**3***c*). ¹H NMR (400 MHz, CDCl₃) δ 7.70 – 7.17 (m, 17H, Ar-*H*), 5.03 (s, 3H, (OCH(CH₃)), 1.42 (dd, J = 38.4, 27.8 Hz, 9H, (OCH(CH₃)). ¹³C NMR (101 MHz, CDCl₃): 150.29, 134.56, 134.31, 133.93, 128.09, 125.81, 125.79, 118.63, 111.04 (*C*N), 70.78, 26.33. ²⁹Si NMR (79 MHz, CDCl₃): δ -60.77. HRMS (ESI), m/z calcd. for $C_{33}H_{29}N_3O_3Si$ (M+Na)⁺ 566.1876, found: 566.1875. Elemental analysis (%) calcd for $C_{33}H_{29}N_3O_3Si$: C, 72.90; H, 5.38; N, 7.73; O, 8.83; Found: C, 72.79; H, 5.45; N, 7.75; O, 8.67.

PhSi(OCH(Me)(*p***-BrC**₆**H**₄**)**)₃**.** (**3d**) ¹H NMR (400 MHz, CDCl₃) δ 7.59 (dd, J = 21.3, 7.6 Hz, 1H, Ar-*H*), 7.51 (d, J = 6.8 Hz, 1H, Ar-*H*), 7.45 – 7.29 (m, 9H, Ar-*H*), 7.09 (dd, J = 16.7, 8.4 Hz, 3H, Ar-*H*), 7.00 (t, J = 8.9 Hz, 3H, Ar-*H*), 4.94 (ddd, J = 19.1, 11.0, 6.4 Hz, 3H, C*H*), 1.47 – 1.39 (m, 9H, C*H*₃). ¹³C NMR (101 MHz, CDCl₃): 144.15, 135.80, 134.05, 131.24, 130.75, 127.97, 127.05, 120.86, 71.30, 26.28. ²⁹Si NMR (79 MHz, CDCl₃): δ -60.28. HRMS (ESI), m/z calcd. for $C_{30}H_{29}Br_3O_3Si$ (M+Na)⁺ 724.9334, found: 724.9515. Elemental analysis (%) calcd for $C_{30}H_{29}Br_3O_3Si$: C, 51.08; H, 4.14; O, 6.80; Found: C, 51.28; H, 4.30; O, 6.66.

PhSi(OCH(Me)(*p***-COOMeC**₆**H**₄**)**)₃ (3e). ¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, *J* = 7.7 Hz, 5H, Ar-*H*), 7.47 – 7.45 (m, 2H, Ar-*H*), 7.33 (d, *J* = 7.7 Hz, 4H, Ar-*H*), 7.27 – 7.10 (m, 6H, Ar-*H*), 4.84 (m, 3H, C*H*), 3.80 (s, 9H, COO*Me*), 1.34 – 1.22 (m, 9H, C*H*₃). ¹³C NMR (101 MHz, CDCl₃): δ 166.92(COOCH₃), 150.51 (d, *J* = 4.5 Hz), 150.39 (d, *J* = 3.6 Hz), 134.72, 129.73, 129.55 (d, *J* = 2.2 Hz), 129.46, 127.85. 125.22, 125.08 (d, *J* = 3.4 Hz), 70.83, 51.97(COOCH₃), 26.31 (d, *J* = 11.3 Hz). ²⁹Si NMR (79 MHz, CDCl₃): δ -60.04. HRMS (ESI), m/z calcd. for C₃₆H₃₈O₉Si (M+Na)⁺ 665.2183, found: 665.2180. Elemental analysis (%) calcd for C₃₆H₃₈O₉Si: C, 67.27; H, 5.96; O, 22.40; Found: C, 67.41; H, 5.75; O, 22.23.

PhSi(OCH(Me)(*m***-ClC₆H₄))₃ (3f).** ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.12 (*m*, 17H, Ar-*H*), 5.01 – 4.90 (*m*, *J* = 19.4 Hz, 3H, (OCH(CH₃)), 1.39 – 1.55 (*m*, *J* = 31.1, 29.4 Hz, 9H, (OCH(CH₃)) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 147.43, 134.78, 134.10, 130.61, 129.50, 128.87, 127.19, 125.50, 123.41, 70.75, 26.44. ²⁹Si NMR (79 MHz, CDCl₃): δ -60.23. HRMS (ESI), *m*/z calcd. for C₃₀H₂₉Cl₃O₃Si (M+Na)⁺ 593.0849, found: 593.0848. Elemental analysis (%) calcd for C₃₀H₂₉Cl₃O₃Si: C, 63.00; H, 5.11; O, 8.39; Found: C, 63.24; H, 5.21; O, 8.63.

PhSi(OCH(CF)₃Ph)₃ (3g)^[S3]. ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.29 (m, 17H, Ar-*H*), 7.21 – 7.17 (m, 3H, Ar-*H*), 5.24 – 4.99 (m, 3H, OC*H*) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 134.86 (d, *J* = 3.6 Hz), 133.59 (d, *J* = 3.8 Hz), 133.44 (d, *J* = 5.0 Hz), 131.67 (d, *J* = 4.8 Hz), 129.63 (d, *J* = 0.9 Hz), 129.54 (d, *J* = 1.7 Hz), 128.45 (t, *J* = 4.2 Hz), 127.69 (dd, *J* = 11.0, 6.3 Hz), 125.09 (d, *J* = 5.7 Hz), 122.28 (d, *J* = 6.0 Hz), 73.84 (q, *J* = 33.0 Hz).

PhSi(OCH₂C₆H₅)₃ (3h)^[54].¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, *J* = 6.7 Hz, 2H, Ar-*H*), 7.38 (dd, *J* = 9.3, 5.5 Hz, 4H, Ar-*H*), 7.34 – 7.28 (m, 14H, Ar-*H*), 4.86 (s, 6H, CH₂).

PhSi(OCH₂(*p***-NMe₂C₆H₄))₃ (3i)**.¹H NMR (400 MHz, CDCl₃): δ 7.60 – 7.59 (m, 2H, Ar-*H*), 7.30 – 7.25 (m, 3H, Ar-*H*), 7.11 – 7.09 (m, 6H, Ar-*H*), 6.60 – 6.58 (m, 6H, Ar-*H*), 4.65 (s, 6H, CH₂), 2.82 (s, 18H, N(CH₃)₂). ¹³C NMR (101 MHz, CDCl₃): δ150.00, 135.06, 134.23, 130.21, 128.50, 128.34, 127.68, 112.45, 64.88(CH₂), 40.66 (N(CH₃)₂). ²⁹Si NMR (79 MHz, C₆D₆): δ -56.96. HRMS (ESI), m/z calcd. for C₃₃H₄₁N₃O₃Si (M+Na)⁺ 578.2809, found: 578.2810. Elemental analysis (%) calcd for C₃₃H₄₁N₃O₃Si: C, 71.31; H, 7.44; N, 7.56; O, 8.64; Found: C, 71.69; H, 7.35; N, 7.75; O, 8.76.

PhSi(OCH₂(*p***-CCHC₆H₄))₃ (3j). ¹H NMR (400 MHz, CDCl₃): δ 7.83 (d,** *J* **= 6.2 Hz, 2H, Ar-***H***), 7.50 (d,** *J* **= 7.8 Hz, 6H, Ar-***H***), 7.29 (s, 3H, Ar-***H***), 7.10 (s, 6H, Ar-***H***), 4.73 (s, 6H, CH₂), 2.82 (s, 3H, CCH). ¹³C NMR (101 MHz, CDCl₃): δ 141.54, 140.50, 134.52, 132.20, 130.78, 127.97, 126.63, 126.15, 121.16, 83.45(***C***CH), 77.20(***C***CH), 64.62(***C***H₂). ²⁹Si NMR (79 MHz, C₆D₆): δ -56.29. HRMS (ESI), m/z calcd. for C₃₃H₂₆O₃Si (M+Na)⁺ 521.1549, found: 521.1548. Elemental analysis (%) calcd for C₃₃H₂₆O₃Si: C, 79.49; H, 5.26; O, 9.63; Found: C, 79.13; H, 5.32; O, 9.81.**

PhSiH(OCy)₂ (4k)^[S3]. ¹H NMR (400 MHz, CDCl₃): δ 7.76 – 7.72 (m, 2H, Ar-*H*), 7.46 – 7.26 (m, 3H, Ar-*H*), 5.08 (s, 1H, Si*H*), 3.97 – 3.92 (m, 2H, OC*H*), 1.92 (m, 4H, CH₂), 1.78 – 1.77 (m, 4H, CH₂), 1.56 – 1.55 (m, 4H, CH₂), 1.25 – 1.21 (m, 6H, CH₂) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 134.72, 134.01, 130.17, 127.71, 71.91, 35.42, 25.56, 23.98.

PhSiH(OCH(Me)(*n*hexyl))₂ (4l). ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 6.5 Hz, 2H, Ar-*H*), 7.39 (d, J = 6.8 Hz, 3H, Ar-*H*), 4.99 (s, 1H, Si*H*), 4.04 (d, J = 5.7 Hz, 2H (OC*H*(CH₃)), 1.55 (s, 2H), 1.40 (s, 4H), 1.32 – 1.18 (m, 20H), 0.87 (s, 6H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ134.06, 130.27, 127.78, 70.19, 69.91 (d, J = 3.6 Hz), 39.37, 29.29, 22.63, 14.07. ²⁹Si NMR (79 MHz, C₆D₆): δ -60.11. HRMS (ESI), m/z calcd. for C₂₂H₄₀O₂Si (M+Na)⁺ 387.2690, found: 387.2688. Elemental analysis (%) calcd for C₂₂H₄₀O₂Si: C, 72.47; H, 11.06; O, 8.78; Found: C, 72.64; H, 11.09; O, 8.63.

PhSiH(OCH(*i***Pr)₂)₂ (4m)^[S3]. ¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.67 (d,** *J* **= 7.3 Hz, 2H, Ar-***H***), 7.44 – 7.40 (m, 3H, Ar-***H***), 5.08 (s, 1H, Si***H***), 3.66 – 3.61 (m, 2H, OC***H***), 1.83 – 1.76 (m, 2H, (CH(CH₃)₂)), 1.59 – 1.49 (m, 5H, (CH(CH₃)₂)), 0.97 – 0.86(m, 21H, (CH(CH₃)₂)) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 134.79, 134.03, 130.14, 127.72, 80.07 (s), 79.88 (d,** *J* **= 2.3 Hz), 32.64 (d,** *J* **= 4.5 Hz), 26.48 (d,** *J* **= 7.4 Hz), 18.94, 17.37 (d,** *J* **= 5.4 Hz), 10.20 (d,** *J* **= 6.5 Hz).**

PhSiH(OCH(Me)tBu)₂ (4n)^[S5]. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 5.0 Hz, 2H,Ar-*H*), 7.39 (d, *J* = 7.4 Hz, 3H,Ar-*H*), 4.99 (s, 1H,Si*H*), 3.72 (m, 2H, (OC*H*(CH₃)), 1.12 – 1.17 (m, 6H, (OCH(CH₃)), 0.88 (s, 18H, tBu-*H*) ppm. ¹³C NMR (101 MHz, CDCl₃) δ:134.70, 134.08, 130.16, 127.76, 77.87, 35.47 (d, *J* = 4.7 Hz), 25.78, 18.24 (dd, *J* = 16.9, 6.9 Hz). HRMS (ESI), m/z calcd. for C₁₈H₃₂O₂Si (M+Na)⁺ 331.2064, found: 331.2063.

PhSiH(OCH(Me)(1-butenyl))₂ (4o).¹H NMR (400 MHz, CDCl₃): δ 7.66 (d, *J* = 7.4 Hz, 2H, Ar-*H*), 7.41 (dt, *J* = 13.9, 6.8 Hz, 3H, Ar-*H*), 5.76 – 5.83 (m, 2H, (CH=CH₂)), 4.99 – 5.08 (m, 3H, (CH=CH₂)), Si*H*), 4.95 (dd, *J* = 12.3, 5.8 Hz, 2H, (CH=CH₂)), 4.16 – 4.00 (m, 2H, (OCH(CH₃))), 2.07 – 2.18 (m, 4H, (CH₂CH=CH₂)), 1.72 – 1.64 (m, 2H, (OCH(CH₂)), 1.74 – 1.49 (m, 2H, (OCH(CH₂)), 1.33 – 1.08 (m, 6H, (OCH(CH₃)) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 138.51, 133.29, 127.66, 114.77, 114.53 (d, J = 45.3 Hz), 77.39, 77.07, 76.75, 67.66, 38.51, 38.27, 30.16, 29.79, 23.37 (d, J = 15.7 Hz). ²⁹Si NMR (79 MHz, C₆D₆): δ -59.04. HRMS (ESI), m/z calcd. for C₁₈H₂₈O₂Si (M+Na)⁺ 327.1751, found: 327.1752. Elemental analysis (%) calcd for C₁₈H₂₈O₂Si: C, 71.00; H, 9.27; O, 10.51; Found: C, 70.88; H, 9.38; O, 10.78.

PhSiH(OCH₂Cy)₂ (4p)^[S4]. ¹H NMR (400 MHz, CDCl₃): δ 7.65 (d, *J* = 6.4 Hz, 2H, Ar-*H*), 7.45 – 7.38 (m, *3*H, Ar-*H*), 4.91(s, 1H, Si*H*), 3.60 (d, *J* = 6.4 Hz, 4H, CH₂), 1.80 – 1.71 (m, 10H, CH₂), 1.57 – 1.52 (m, 2H, CH), 1.26 – 1.14 (m, 6H, CH₂), 0.98 – 0.89 (m, 4H, CH₂). ¹³C NMR (101 MHz, CDCl₃): δ135.78, 134.07, 130.42, 127.84, 69.28, 40.18, 29.60, 26.59, 25.82.

PhSiH(OCH₂tBu)₂ (4q)^[S6] ¹H NMR (400 MHz, CDCl₃): δ 7.67 (dd, *J* = 7.8, 1.4 Hz, 2H, Ar-*H*), 7.47 – 7.37 (m, 3H, Ar-*H*), 4.92 (s, 1H, Si*H*), 3.46 (s, 4H, *CH*₂), 0.92 (s, 18H, C(*CH*₃)₃). ¹³C NMR (101 MHz, CDCl₃) δ 135.85, 134.18, 130.44, 128.00 (d, *J* = 25.3 Hz), 73.84, 26.52 (d, *J* = 55.5 Hz). HRMS (ESI), m/z calcd. for C₁₆H₂₈O₂Si (M+Na)⁺ 303.1756, found: 303.1762.

PhSiH(OCH(*p***-MeC₆H₄)₂)₂ (4r)^[S3]. ¹H NMR (400 MHz, CDCl₃): δ 7.44 (m, 2H, Ar-***H***), 7.29 (m, 1H, Ar-***H***), 7.22 (m, 2H, Ar-***H***), 7.07 – 7.01 (m, 8H, Ar-***H***), 6.94 (m, 8H, Ar-***H***), 5.68 (s, 2H, C***H***), 4.91 (s, 1H, Si***H***), 2.19 (s, 12H, C***H***₃). ¹³C NMR (101 MHz, CDCl₃): δ140.86 (d,** *J* **= 8.2 Hz), 136.43 (d,** *J* **= 19.8 Hz), 134.70, 132.70, 130.26, 128.64 (d,** *J* **= 10.6 Hz), 127.56, 126.25 (d,** *J* **= 22.3 Hz), 76.50, 20.88. ²⁹Si NMR (79 MHz, CDCl₃) δ -31.09 (d, J = 246.9 Hz). HRMS (ESI), m/z calcd. for C_{36}H_{36}O_2Si (M+Na)⁺ 551.2382, found: 551.2434.**

PhSiH(OCH(Me)thiophene)₂ (4s). ¹H NMR (400 MHz, CDCl₃) δ 7.71 (m, 2H, Ar-*H*), 7.46 (d, *J* = 18.4 Hz, 3H, Ar-*H*), 7.26(m, 2H, thiophene-*H*), 6.95 (d, *J* = 21.9 Hz, 4H, thiophene-*H*), 5.37 (m, 2H, (OCH(CH₃)), 5.10 (s, 1H, Si*H*), 1.70 – 1.55 (m, 6H, (OCH(CH₃)) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 149.83, 135.82, 134.66, 130.52 (d, *J* = 28.3 Hz), 127.80 (d, *J* = 18.9 Hz), 126.29, 123.80, 122.84, 67.97 (d, *J* = 8.6 Hz), 26.32. ²⁹Si NMR (79 MHz, CDCl₃): δ -59.63. HRMS (ESI), m/z calcd. for C₁₈H₂₀O₂S₂Si (M+Na)⁺ 383.0572, found: 383.0570. Elemental analysis (%) calcd for C₁₈H₂₀O₂S₂Si: C, 59.96; H, 5.59; O, 8.87; Found: C, 59.78; H, 5.33; O, 8.68.

2. NMR spectra

Figure S1. ¹H NMR spectrum of 2a react with PhSiH₃ (400MHz, CDCl₃).

Figure S2. ¹H NMR spectrum of 2a react with Ph_2SiH_2 (400MHz, CDCl₃).

Figure S3. ¹H NMR spectrum of 2a react with (EtO)₃SiH (400MHz, CDCl₃).

Figure S4. ¹H NMR spectrum of 3c (400MHz, CDCl₃).

Figure S8. ¹H NMR spectrum of 3e (400MHz, CDCl₃).

Figure S12. ¹H NMR spectrum of 3i (400MHz, CDCl₃).

Figure S15. ¹³C NMR spectrum of 3j (101 MHz, CDCl₃).

Figure S16. ¹H NMR spectrum of 4I (400MHz, CDCl₃).

2.12H 3.20H -4.54I 2.05 4.62 4.34 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 f1 (ppm) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5

Figure S18. ¹H NMR spectrum of 4o (400MHz, CDCl₃).

9.0

8.5

Figure S20. ¹H NMR spectrum of 4s (400MHz, CDCl₃).

Figure S22. ¹H NMR spectrum of intermolecular chemoselective reaction (101 MHz, CDCl₃).

Figure S23. ¹H NMR spectrum of intramolecular chemoselective reaction (101 MHz, CDCl₃).

3. References

[S1] J. S. Plotkin, S. G. Shorev, *Inorg. Chem.* 1981, **20**, 285-287.

- [S2] J. M. Burlitch, M. E. Leonowicz, R. B. Petersen, and R. E. Hughes, Inorg. Chem. 1979, 18, 1097-1105.
- [S3] T. K. Mukhopadhyay, M. Flores, T. L. Groy, R. J. Trovitch, J. Am. Chem. Soc. 2014, 136, 882-885.
- [S4] C. Ghosh, T. K. Mukhopadhyay, M. Flores, T. L. Groy, R. J. Trovitch, *Inorg. Chem.* 2015, **54**, 10398-10406.
- [S5] J. M. S. Cardoso, R. Lopes, B. Royo, J. Organomet. Chem. 2015, 775, 173-177.
- [S6] D. H. R. Barton, M. J. Kelly, *Tetrahedron Lett.* 1992, **33**, 5041-5044.