Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021

> Electronic Supplementary Information (ESI) Structural and spectroscopic characterization of new $Ba_2RE_2Ge_4O_{13}$ (*RE* = Pr, Nd, Gd, Dy) and $Ba_2Gd_{2-x}Eu_xGe_4O_{13}$ tetragermanates

O. A. Lipina, L. L. Surat, A. Yu. Chufarov, A. P. Tyutyunnik, A. N. Enyashin, Ya. V. Baklanova, A. V. Chvanova, L. Yu. Mironov, K. G. Belova and V. G. Zubkov

Table S1 Atomic coordinates and isotropic thermal parameters (Å²) for $Ba_2RE_2Ge_4O_{13}$ (*RE* = Pr–Dy)

		• /	Pr	Nd	Eu ^a	Gd	Dy
Ba	8 <i>f</i>	х	0.15698(10)	0.15676(8)	0.15677(8)	0.15689(10)	0.15700(9)
	-	у	0.5035(5)	0.5031(4)	0.5035(4)	0.5029(4)	0.5032(4)
		Z	0.33231(7)	0.33256(5)	0.33266(6)	0.33266(7)	0.33263(6)
		$U_{iso} \times 100$	2.63(6)	2.49(9)	3.06(4)	2.56(12)	3.39(4)
RE	8 <i>f</i>	х	0.11713(10)	0.11615(8)	0.11467(9)	0.11428(10)	0.11297(9)
	-	У	0.5112(4)	0.5106(3)	0.5101(3)	0.5104(4)	0.5099(4)
		Z	0.08758(7)	0.08719(5)	0.08656(5)	0.08652(6)	0.08598(5)
		$U_{iso} \times 100$	2.49(6)	2.30(9)	2.71(5)	2.14(12)	2.94(5)
Ge(1)	8 <i>f</i>	х	0.06606(18)	0.06640(14)	0.06551(14)	0.06559(17)	0.06542(14)
		У	0.0463(7)	0.0457(5)	0.0432(6)	0.0449(7)	0.0421(6)
		Z	0.18570(15)	0.18567(11)	0.18386(11)	0.18393(13)	0.18260(11)
		$U_{iso} \times 100$	2.43(10)	2.32(11)	2.98(8)	2.28(14)	2.92(7)
Ge(2)	8 <i>f</i>	х	-0.11945(22)	-0.11998(17)	-0.12123(16)	-0.12124(21)	-0.12221(18)
		У	-0.0312(8)	-0.0307(6)	-0.0308(6)	-0.0289(8)	-0.0342(6)
		Z	0.04059(15)	0.04035(12)	0.03864(12)	0.03839(15)	0.03705(12)
		$U_{iso} \times 100$	2.33(9)	2.63(10)	2.72(7)	2.38(13)	2.69(7)
O(1)	8 <i>f</i>	х	0.0752(11)	0.0756(8)	0.0758(8)	0.0780(10)	0.0789(9)
		У	-0.2727(25)	-0.2726(18)	-0.2831(18)	-0.2824(23)	-0.2870(19)
		Z	0.1921(9)	0.1899(6)	0.1885(6)	0.1897(7)	0.1890(6)
		$U_{iso} \times 100$	2.2(5)	1.3(4)	2.22(14) ^a	1.84(20) ^a	2.01(14) ^a
O(2)	8 <i>f</i>	Х	0.1749(11)	0.1726(8)	0.1738(9)	0.1743(11)	0.1783(9)
		У	0.2338(21)	0.2300(16)	0.2360(16)	0.2296(19)	0.2395(16)
		Z	0.1990(8)	0.1978(6)	0.1967(6)	0.1944(7)	0.1938(6)
		$U_{iso} \times 100$	1.7(5)	1.6(3)	2.22(14) ^a	1.84(20) ^a	2.01(14) ^a
O(3)	4e	х	0	0	0	0	0
		У	0.1803(33)	0.1725(26)	0.1747(25)	0.1628(31)	0.1745(26)
		Z	1/4	1/4	1/4	1/4	1/4
		$U_{iso} \times 100$	1.8(6)	2.4(5)	2.22(14) ^a	1.84(20) ^a	2.01(14) ^a
O(4)	8f	Х	-0.0178(11)	-0.0175(8)	-0.0199(8)	-0.0190(10)	-0.0214(9)
		У	0.1732(22)	0.1652(17)	0.1769(16)	0.1703(20)	0.1727(17)
		Z	0.0951(7)	0.0965(6)	0.0967(6)	0.0968(7)	0.0948(6)
		$U_{iso} \times 100$	1.4(4)	1.6(4)	2.22(14) ^a	1.84(20) ^a	2.01(14) ^a
O(5)	8 <i>f</i>	Х	-0.1620(10)	-0.1635(7)	-0.1615(8)	-0.1602(9)	-0.1621(8)
		У	0.1023(23)	0.1019(17)	0.1071(16)	0.1140(19)	0.1072(17)
		Z	-0.0482(8)	-0.0507(6)	-0.0524(5)	-0.0509(7)	-0.0546(5)
		$U_{iso} \times 100$	2.7(5)	1.9(4)	2.22(14) ^a	1.84(20) ^a	2.01(14) ^a
O(6)	8f	Х	-0.2037(8)	-0.2053(6)	-0.2101(6)	-0.2084(7)	-0.2106(6)
		У	-0.0428(34)	-0.0485(22)	-0.0539(19)	-0.0536(24)	-0.0563(20)
		Z	0.0983(6)	0.0986(4)	0.0964(4)	0.0956(5)	0.0947(4)
	~ ^	$U_{iso} \times 100$	2.8(5)	1.4(4)	$2.22(14)^{a}$	$1.84(20)^{a}$	$2.01(14)^{a}$
O(7)	8 <i>f</i>	Х	-0.0669(9)	-0.0694(7)	-0.0667(7)	-0.0689(9)	-0.0707(8)
		У	-0.3419(24)	-0.3391(20)	-0.3441(18)	-0.3343(23)	-0.3466(18)
		Z	0.0346(7)	0.0354(6)	0.0337(5)	0.0329(7)	0.0339(6)
		$U_{iso} \times 100$	2.2(5)	2.6(4)	2.22(14) ^a	1.84(20) ^a	2.01(14) ^a

^a The data for the Ba₂Eu₂Ge₄O₁₃ compound was taken from ref. [29]. The thermal vibration parameters of oxygen atoms have been constrained as a single variable for the Ba₂ RE_2 Ge₄O₁₃ (RE = Eu-Dy).

Table S2 Selected interatomic distances (Å), angles (°) and degree of distortion/asymmetry, D, for Ba₂*RE*₂Ge₄O₁₃ (*RE* = Pr–Dy)

	Pr	Nd	Eu ^a	Gd	Dy		
Interatomic distances							
Ba–O(1)	2.756(14)	2.792(10)	2.782(10)	2.762(12)	2.754(10)		
Ba-O(1)	3.233(14)	3.231(10)	3.187(10)	3.206(12)	3.193(10)		
Ba-O(2)	2.880(14)	2.900(10)	2.899(10)	2.949(12)	2.941(10)		
Ba-O(2)	2.745(13)	2.751(10)	2.719(11)	2.675(13)	2.633(11)		
Ba-O(3)	2.824(11)	2.844(9)	2.823(8)	2.858(11)	$2.808(9)^{2}$		
Ba-O(4)	3.103(13)	3.104(10)	3.020(10)	3.042(13)	3.021(11)		
Ba-O(5)	2.828(13)	2.786(10)	2.780(10)	2.809(12)	2.740(10)		
Ba-O(6)	3.211(18)	$\overline{3.232(12)}$	3.263(10)	3.256(13)	3.268(10)		
Ba-O(6)	2.755(17)	2.725(11)	2.706(10)	2.709(12)	2.697(10)		
Ba-O(7)	3.071(12)	3.033(10)	3.057(9)	3.066(12)	3.008(10)		
$Ba-O^b$	2.941	2.940	2.924	2.933	2.906		
Expected ^c	2.898	2.898	2.898	2.898	2.898		
\overline{D}	0.058	0.057	0.057	0.058	0.062		
$\overline{RE-O(1)}$	2 409(14)	2372(11)	2314(10)	2 319(12)	2287(10)		
RE-O(2)	2.464(13)	2.462(10)	2.429(10)	2.319(12) 2.422(12)	2.390(10)		
RE-O(4)	2.592(14)	2.609(10)	2.556(10)	2.565(11)	2.596(10) 2.545(10)		
RE = O(5)	2.392(11) 2 340(12)	2.009(10) 2.333(9)	2.330(10) 2.279(8)	2.305(11) 2 246(10)	2.313(10) 2 261(9)		
RE - O(6)	2.310(12) 2 354(10)	2.333(7) 2 340(7)	2.275(8)	2.210(10) 2 308(10)	2.201(9) 2.286(8)		
RE-O(7)	2.551(10) 2.506(13)	2.510(7)	2.203(0) 2 448(10)	2.500(10) 2 481(12)	2.200(0) 2 451(10)		
RE - O(7)	2.300(13) 2 317(12)	2.320(10) 2 327(9)	2.110(10) 2.274(9)	2.101(12) 2.280(11)	2.151(10) 2.256(9)		
RE_{0}^{b}	2.51/(12)	2.327(5)	2.271()	2.200(11)	2.250())		
Expected ^c	2.420	2.423	2.307	2.374	2.334		
	0.022	0.029	2.307	0.041	0.020		
$\frac{D}{C_2(1) O(1)}$	$\frac{0.035}{1.725(14)}$	$\frac{0.038}{1.727(10)}$	$\frac{0.039}{1.761(10)}$	$\frac{0.041}{1.766(12)}$	$\frac{0.039}{1.770(11)}$		
$C_{2}(1) = O(1)$	1.733(14) 1.722(12)	1.727(10) 1.600(10)	1.701(10) 1.725(10)	1.700(13) 1.702(12)	1.770(11) 1.777(11)		
Ge(1) = O(2)	1.732(13) 1.795(7)	1.090(10) 1.770(5)	1.723(10) 1.797(5)	1.703(13) 1.756(6)	1.77(11) 1.706(6)		
Ge(1) = O(3)	1.703(7) 1.949(12)	1.770(3) 1.815(0)	1.787(3) 1.820(0)	1.730(0) 1.708(11)	1.790(0) 1.824(0)		
$C_{\alpha} O^{b}$	1.040(12)	1.813(9)	1.820(9)	1./96(11)	1.824(9)		
Ge-O ^c	1.//5	1.751	1.770	1./50	1.770		
Expected	1.//0	1.//0	1.//0	1.//0	1.//0		
$\underline{D(\text{Ge}=0)}$	0.023	0.024	0.01/	0.015	0.010		
Ge(2) - O(4)	1.820(13)	1.80/(10)	1.838(9)	1.81/(11)	1.820(10)		
Ge(2) - O(5)	1.712(13)	1.746(9)	1.751(9)	1.733(11)	1.763(9)		
Ge(2) - O(6)	1.722(10)	1.737(7)	1.758(7)	1.730(9)	1.738(8)		
Ge(2)-O(7)	1.838(13)	1.809(11)	1.842(10)	1./91(12)	1.80/(10)		
Ge–O ^o	1.773	1.775	1.797	1.768	1.782		
Expected ^c	1.765	1.765	1.765	1.765	1.765		
<u>D (Ge–O)</u>	0.032	0.019	0.024	0.021	0.018		
Angles							
Ge(1)-O(3)-Ge(1)	132.0(11)	134.4(9)	133.3(8)	137.7(11)	133.5(9)		
Ge(1)-O(4)-Ge(2)	115.9(7)	118.7(5)	116.1(5)	118.5(6)	116.9(5)		
O(1)-Ge(1)-O(2)	122.3(8)	122.5(6)	122.9(6)	120.8(7)	121.3(6)		
O(1)-Ge(1)-O(3)	113.6(8)	113.5(6)	114.1(6)	111.9(7)	113.9(6)		
O(1)-Ge(1)-O(4)	116.4(7)	114.4(5)	117.2(5)	116.8(6)	117.8(5)		
O(2)-Ge(1)-O(3)	102.0(6)	103.1(5)	101.3(5)	104.9(6)	102.2(5)		
O(2) - Ge(1) - O(4)	100.8(7)	101.4(5)	100.2(5)	100.6(6)	100.2(5)		
O(3) - Ge(1) - O(4)	98.0(5)	98.6(4)	97.1(4)	99.1(5)	97.9(4)		
O(4)-Ge(2)-O(5)	105.2(6)	107.4(4)	105.7(4)	105.6(5)	105.3(4)		
O(4)–Ge(2)–O(6)	101.7(6)	101.9(4)	101.4(4)	101.6(5)	101.0(5)		
O(4) - Ge(2) - O(7)	110.6(6)	109.6(5)	110.6(4)	109.7(6)	111.3(5)		
O(5)–Ge(2)–O(6)	118.5(6)	119.1(4)	120.0(4)	120.4(5)	120.4(̀4)́		
O(5)–Ge(2)–O(7)	111.6(7)	111.6(5)	111.6(́4)́	112.2(6)	112.9(5)		
O(6) - Ge(2) - O(7)	108.7(7)	106.7(5)	106.8(5)	106.5(6)	105.3(5)		

^{*a*} The data for the $Ba_2Eu_2Ge_4O_{13}$ compound was taken from ref. 29.

^b The average values are given in boldface.

^c The expected values were calculated as the sum of crystal radii according to ref. 44: Ba⁺² (X) – 1.66 Å, Pr⁺³ (VII) – 1.198 Å, Nd⁺³ (VII) – 1.186 Å, Eu⁺³ (VII) – 1.15 Å, Gd⁺³ (VII) – 1.14 Å, Dy⁺³ (VII) – 1.11 Å, Ge⁺⁴ (IV) – 0.530 Å, O⁻² (III) – 1.22 Å, O⁻² (IV) – 1.24 Å.

Table S3 Crystallographic data for $Ba_2Gd_{2-x}Eu_xGe_4O_{13}$, x = 0.1-0.8 (space group C2/c, Z = 4).

x	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
a, Å b Å	13.0764(2) 5.3679(1)	13.0773(2) 5 3694(1)	13.0799(2) 5.3696(1)	13.0796(2) 5.3700(1)	13.0810(1) 5 3707(1)	13.0849(1) 5.3711(1)	13.0852(3) 5.3715(1)	13.0866(2) 5.3719(1)
$c, \text{\AA}$ $c, \text{\AA}$ $\beta, ^{\circ}$ $V, \text{\AA}^{3}$	17.9920(4) 105.112(1) 1219.24(4)	17.9934(3) 105.133(1) 1219.64(4)	17.9932(4) 105.130(1) 1219.92(4)	17.9947(3) 105.140(1) 1220.02(4)	17.9937(2) 105.147(1) 1220.23(2)	17.9946(2) 105.136(1) 1220.80(2)	17.9945(4) 105.135(1) 1220.92(4)	$\begin{array}{c} 3.3719(1) \\ 17.9947(4) \\ 105.151(1) \\ 1221.06(4) \end{array}$

Table S4 Crystallographic data for Ba₂Pr₂Ge₄O₁₃ and Ba₂Gd₂Ge₄O₁₃ at selected temperatures.

<i>Т</i> , К	<i>a</i> , Å	b, Å	<i>c</i> , Å	β, °	<i>V</i> , Å ³			
$Ba_2Pr_2Ge_4O_{13}$								
100	13.2391(21)	5.4112(8)	18.0022(31)	105.535(8)	1242.55(34)			
200	13.2590(11)	5.4164(4)	18.0235(16)	105.505(4)	1247.28(18)			
300	13.2783(13)	5.4218(5)	18.0467(18)	105.448(5)	1252.30(21)			
473	13.3318(12)	5.4397(5)	18.1176(18)	105.392(5)	1266.79(21)			
673	13.3729(14)	5.4525(5)	18.1701(21)	105.285(5)	1278.01(23)			
<i>TEC</i> , K ⁻¹	1.85×10 ⁻⁵	1.42×10 ⁻⁵	1.74×10 ⁻⁵		5.25×10 ⁻⁵			
$Ba_2Gd_2Ge_4O_{13}$								
298	13.0787(11)	5.3716(4)	17.9969(17)	105.143(5)	1220.44(18)			
373	13.0894(12)	5.3748(5)	18.0112(18)	105.116(5)	1223.30(20)			
473	13.1043(14)	5.3803(5)	18.0311(21)	105.081(6)	1227.49(23)			
673	13.1369(12)	5.3907(5)	18.0763(19)	104.998(5)	1236.52(21)			
873	13.1662(13)	5.4004(5)	18.1097(21)	104.919(5)	1244.24(22)			
1073	13.1972(11)	5.4108(4)	18.1472(18)	104.819(5)	1252.74(20)			
<i>TEC</i> , K ⁻¹	1.17×10 ⁻⁵	0.94×10 ⁻⁵	1.09×10 ⁻⁵		3.43×10 ⁻⁵			

Fig. S1 The Rietveld refined XRPD patterns of $Ba_2RE_2Ge_4O_{13}$ (*RE* = Pr, Nd, Dy).

Fig. S2 The Rietveld refined XRPD patterns of $Ba_2Gd_{2-x}Eu_xGe_4O_{13}$ (x = 0.1–0.8).

Fig. S3 XRPD patterns of Ba₂Gd₂Ge₄O₁₃ measured at different temperatures.

Fig. S4 Temperature dependences of the unit cell parameters, volume (a) and β angle for Ba₂Pr₂Ge₄O₁₃ (the error is equal to three standard deviations).

Fig. S5 Simultaneous thermal analysis of $Ba_2Nd_2Ge_4O_{13}$: solid lines - TG and DSC, dashed lines - ion currents of gases.

Fig. S6 Simultaneous thermal analysis of Ba₂Gd₂Ge₄O₁₃: solid lines - TG and DSC, dashed lines - ion currents of gases.

Fig. S7 Simultaneous thermal analysis of $Ba_2Dy_2Ge_4O_{13}$: solid lines - TG and DSC, dashed lines - ion currents of gases.

Fig. S8 The PL spectra ($\lambda_{ex} = 248 \text{ nm}$) of Ba₂Gd_{2-x}Eu_xGe₄O₁₃. The inset shows the integrated luminescence intensity vs. Eu³⁺ concentration.

Fig. S9 The results of the measurement of the external quantum efficiency for $Ba_2Gd_{1.4}Eu_{0.6}Ge_4O_{13}$ phosphor ($\lambda_{ex} = 394$ nm).