Auxiliary alkyl chain modulated spin crossover behaviour in [Fe(H₂Bpz₂)₂(C_n-bipy)] complexes

Yunnan Guo^{a,b}, Aurelian Rotaru^c, Helge Müller-Bunz^d, Grace G. Morgan^d, Shishen Zhang^a, Shufang Xue^{*},^{a,b} and Yann Garcia^{*,b}

	4			5	
	100	293		100	130
Fe1-N2	2.0146(13)	2.1952(18)	Fe1-N1	1.998(2)	2.1432(13)
Fe1-N4	1.9926(13)	2.1374(17)	Fe1-N3	2.020(2)	2.1976(13)
Fe1-N6	2.0152(13)	2.2067(18)	Fe1-N5	2.024(2)	2.1856(13)
Fe1-N8	1.9985(14)	2.1391(17)	Fe1-N7	1.998(2)	2.1443(12)
Fe1-N9	1.9746(13)	2.2293(16)	Fe1-N9	1.977(2)	2.2220(12)
Fe1-N10	1.9705(13)	2.2260(16)	Fe1-N10	1.982(2)	2.2439(12)
Fe-N _{av(pz)}	2.0052(13)	2.1696(17)	Fe-N _{av(pz)}	2.010(2)	2.1678(12)
Fe-Nav(bipy)	1.9726(13)	2.2277(16)	Fe-Nav(bipy)	1.9795(2)	2.2330(12)
N2-Fe1-N4	88.82(5)	87.56(7)	N1-Fe1-N3	88.53(10)	86.45(5)
N2-Fe1-N6	175.90(5)	177.95(7)	N1-Fe1-N5	88.35(10)	90.09(5)
N2-Fe1-N8	88.82(5)	92.68(7)	N1-Fe1-N7	88.19(10)	96.66(5)
N2-Fe1-N9	95.17(5)	94.04(6)	N1-Fe1-N9	95.94(10)	97.98(5)
N2-Fe1-N10	86.25(5)	84.87(6)	N1-Fe1-N10	176.12(10)	168.73(5)
N4-Fe1-N6	88.05(5)	90.81(7)	N3-Fe1-N5	176.07(10)	176.41(5)
N4-Fe1-N8	88.46(5)	97.63(7)	N3-Fe1-N7	87.85(10)	90.80(5)
N4-Fe1-N9	94.99(5)	94.72(7)	N3-Fe1-N9	96.45(10)	96.86(4)
N4-Fe1-N10	173.63(5)	164.73(6)	N3-Fe1-N10	89.01(10)	88.10(4)
N6-Fe1-N8	88.44(5)	86.29(7)	N5-Fe1-N7	89.66(10)	88.65(5)
N6-Fe1-N9	87.75(5)	87.34(6)	N5-Fe1-N9	86.26(10)	84.56(5)
N6-Fe1-N10	97.06(5)	97.00(6)	N5-Fe1-N10	94.23(10)	95.47(5)
N8-Fe1-N9	174.77(5)	166.17(6)	N7-Fe1-N9	174.09(10)	163.85(5)
N8-Fe1-N10	95.46(5)	95.96(6)	N7-Fe1-N10	94.72(10)	93.27(5)
N9-Fe1-N10	81.46(5)	72.66(6)	N9-Fe1-N10	81.35(10)	72.88(4)
CShMs ^a	7.452	7.944	CShMs ^a	7.973	8.843
Σ^{b}	44.63	64.12	Σ^{b}	42.14	60.49

Table S1 Selected bond lengths (Å), angles (°) and structural parameters for ${\bf 4}$ and ${\bf 5}$

^a CShMs: continuous shape measure values. ^b Σ is the sum of the deviation from 90° of the 12 *cis* angles of the FeN₆ octahedron.

Table S2. Supramolecular interaction involving C-H···O, π ··· π stacking interactions as well as C-H··· π interactions for 4 and 5

Туре	Complex	D-H···A (Å)	H…A(Å)	$D \cdots A(Å)$	D-H···A(∘)	Symmetry code
С-Н…О	4	С2-Н2…О2	2.6688(12)	3.5305(2)	151.02(10)	x, -y, -0.5+z
		C33-H33A…O3	2.5532(26)	3.3023(15)	146.78(92)	-x, y, 0.5-z
	5	C8-H8…O1	2.6967(22)	3.5762(4)	157.99(20)	x, 1-y, 0.5+z
		C33-H33A…O3	2.5532(26)	3.3561(4)	140.34(20)	1-x, 1-y, 2-z
$\pi \cdots \pi$ stacking (Type A)		Centre ··· Centre (Å)				
	4	3.347				
	5	3.330				
С-Н…π (Туре В)		C-H…Centre (Å)				
	4	3.348				
	5	3.338				

Fig. S1 IR spectra of powdered samples 3-5.

Fig. S2 X-ray powder diffraction patterns at 298 K for 3.

Fig. S3 Temperature-dependent $\chi_M T$ plots for 4. The red solid curve corresponds to data fitting using the ideal solution model.¹

Reference :

[1] O. Kahn. Molecular Magnetism, Wiley-VCH, New York, 1993.