<Supporting Information>

Ru(III)-based polyoxometalate tetramer as highly efficient heterogeneous catalyst for alcohol oxidation reactions at room temperature

Yan Zou, Huafeng Li, Xue Zhao, Junpeng Song, Yaqiong Wang, Pengtao Ma, Jingyang Niu* and Jingping Wang*

Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng Henan 475004 (P.R. China)

Table of Contents

Fig. S1 The thermogravimetric curves of 1.

Fig. S2 Ball-and-stick representation of polyanion 1.

Fig. S3 (a) Ball-and-stick representation of the $\{WO_6\}$ octahedron; (b) Ball-and-stick representation of the polyanion $[(AsW_9O_{33})_4(WO_2)_4]^{28}$ with the S2 sites.

Fig. S4 Ball-and-stick representation of the polyanion of $\{Ru_{1.6}(C_3H_3N_2)\}^{3.8+}$, and the distance of Ru…Ru is 5.945 Å. **Fig. S5** (a) Combined polyhedral/Ball-and-stick representation of polyanion **1**; (b) Combined polyhedral/Ball-and-stick representation of $[As_4W_{40}O_{140}\{Ru_2(CH_3COO)\}_2]^{28-}$; (c) Combined polyhedral/Ball-and-stick representation of $[Pd_2Na_2K(AsW_9O_{33})_4(WO_2)_4(H_2O)]^{21-}$.

Fig. S6 The UV-Vis spectra of compound 1 with time intervals.

Fig. S7 Catalyst **1** dissolved in water. (a) Zoom-in of the peaks at around m/z 2166.67; (b) The simulated isotope pattern (bluish violet) and experimental data (black) at around m/z 2166.67.

Fig. S8 After catalysis **1** dissolved in water (a) ESI mass spectrum corresponding to the intact cluster at around 1511.38, 1766.60 and 2132.52; (b) Simulated (blue) and experimental (black) patterns at around m/z 2132.52.

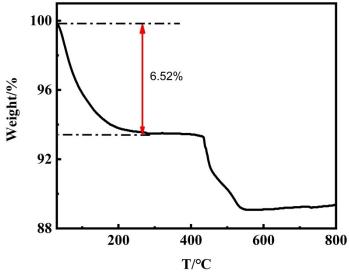
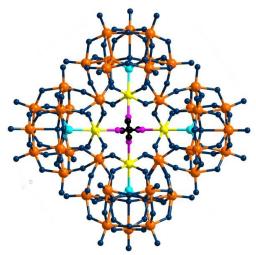
Fig. S9 The ¹HNMR spectrum of post-catalyzed solution.

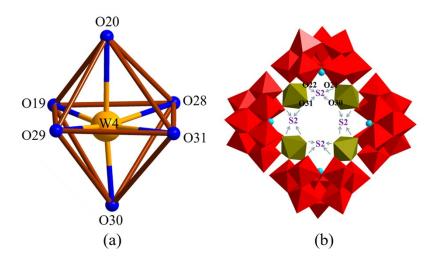
 Table S1 Crystallographic data parameters for 1.

Table S2 Selected bonds distances of compound 1.

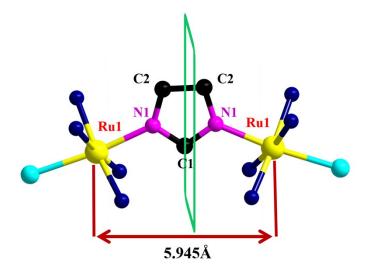
 Table S3 Bond valence sum calculations of Ru, As and W of compound 1.

Table S4 Assignment of peaks in negative mode mass spectra of 1 before and after catalysis and simulation.


Fig. S1 The thermogravimetric curves of 1.

TG analysis


The thermal stability of **1** has been explored under a nitrogen flow between room temperature and 800 °C by thermogravimetric analysis (TGA). The TGA curve reveals two-step weight loss process. The first weight loss of 6.52% from 30 to 240 °C is attributed to forty-two lattice water molecules (calc. 6.59%). The second weight loss corresponds to the partial collapse of POM skeleton and the oxidation of imidazole ligands.

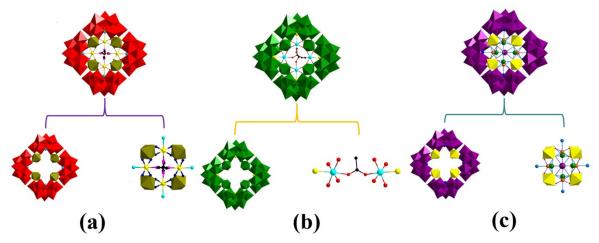
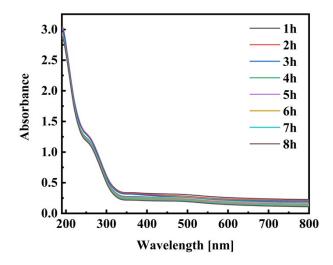
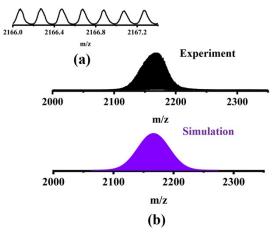
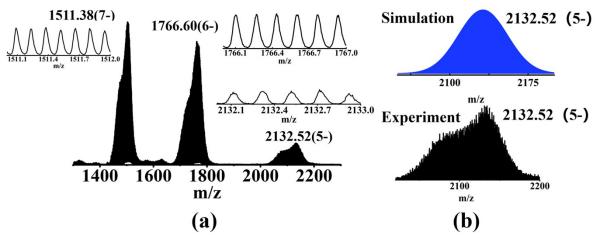

Fig. S2 Ball-and-stick representation of polyanion **1**. Color code: Ru, yellow; As, aqua; O, dark blue; C, black; N, pink; all hydrogen atoms have been omitted for clarity.

Fig. S3 (a) Ball-and-stick representation of the $\{WO_6\}$ octahedron. Color code: W, light orange; O, blue; (b) Balland-stick representation of the polyanion $[(AsW_9O_{33})_4(WO_2)_4]^{28}$ with the S2 sites. S2 means the remaining vacant site. Color code: WO_6 octahedron, red; bridging group WO_6 octahedron, dark yellow; As, aqua; O, dark blue; all hydrogen atoms have been omitted for clarity.

Fig. S4 Ball-and-stick representation of the polyanion of $\{Ru_{1.6}(C_3H_3N_2)\}^{3.8+}$, and the distance of Ru…Ru is 5.945 Å. Color code: Ru, yellow; As, aqua; O, dark blue; C, black; N, pink; all hydrogen atoms have been omitted for clarity.

Fig. S5 (a) Combined polyhedral/Ball-and-stick representation of polyanion **1**. Color code: WO₆ octahedron, red; bridging group WO₆ octahedron, dark yellow; Ru, yellow; As, aqua; O, dark blue; C, black; N, pink; all hydrogen atoms have been omitted for clarity; (b) Combined polyhedral/Ball-and-stick representation of $[As_4W_{40}O_{140}{Ru_2(CH_3COO)}_2]^{28}$. Color code: WO₆ octahedron, green; As, yellow; Ru, aqua; C, black; O, red; (c) Combined polyhedral/Ball-and-stick representation of $[Pd_2Na_2K(AsW_9O_{33})_4(WO_2)_4(H_2O)]^{21}$. Color code: WO₆ octahedron, yellow; K, violet; Na, green; Pd, orange; As, blue; O, red.

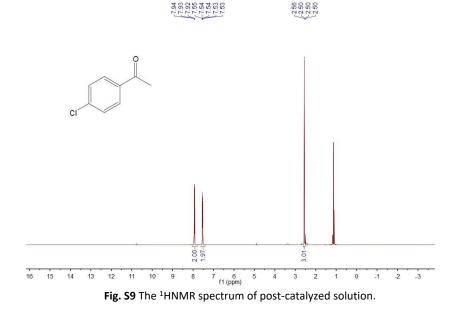

Fig. S6 The UV-Vis spectra of compound 1 with time intervals.

Fig S7 Catalyst **1** dissolved in water: (a) Zoom-in of the peaks at around m/z 2166.67; (b)The simulated isotope pattern (bluish violet) and experimental data (black) at around m/z 2166.67.

Fig. S8 After catalysis **1** dissolved in water (a) ESI mass spectrum corresponding to the intact cluster at around 1511.38, 1766.60 and 2132.52; (b) Simulated (blue) and experimental (black) patterns at around m/z 2132.52.

	1		
empirical formula	$C_6H_6As_4K_4N_4Na_9O_{158}Ru_{3.2}W_{40}$		
formula weight	11004.08		
temperature (K)	150.0		
crystal system	tetragonal		
space group	I-4		
<i>a</i> /Å	19.7922(4)		
b/Å	19.7922(4)		
<i>c</i> /Å	26.1324(6)		
α /deg	90		
<i>6</i> /deg	90		
γ/deg	90		
V/Å ³	10236.9(5)		
Ζ	2		
$ ho_{ m calc}$ /g cm ⁻³	3.570		
μ /mm ⁻¹	23.427		
2∂ range/deg	4.858 to 56.612		
index ranges	-24 ≤ h ≤ 26		
	-22 ≤ k ≤ 26		
	-34 ≤ I ≤ 34		
refins collected	41367		
independent reflens	12357		
R _{int}	0.0612		
data/restraints/parameters	12357/198/519		
GOF on F ²	1.079		
$R_{1}, wR_{2} [l > 2\sigma(l)]$	0.0409, 0.0946		
R_1 , wR_2 [all data]	0.0441, 0.0959		

 Table S1 Crystallographic data parameters for 1.

 $R_{1}=\Sigma ||F_{o}|-|F_{c}||/\Sigma |F_{o}|. wR_{2}=\{\Sigma [w(F_{o}^{2}-F_{c}^{2})^{2}]/\Sigma [w(F_{o}^{2})^{2}]\}^{1/2}$

Bond	Bond length	Bond	Bond length
Ru1–O21	2.072 (13)	W4–019	2.097 (12)
Ru1–O22	2.071 (14)	W4–O20	2.067 (13)
Ru1–O30	2.031 (13)	W4–O28	1.977 (14)
Ru1–O31	2.049 (13)	W4–029	1.907 (13)
Ru1–As1	2.394 (3)	W4–O30	1.767 (15)
Ru–N1	2.07 (2)	W4–031	1.721 (13)

Table S3 Bond valence sum calculations of Ru, As and W of compound 1.

Atom Code	Bond Valence	Valence State	Atom Code	Bond Valence	Valence State
Ru1/Ru2/Ru3/Ru4	3.271	+3	W5	6.199	+6
As1/As2/As3/As4	2.297	+3	W6	6.102	+6
W1	6.351	+6	W7	6.123	+6
W2	5.774	+6	W8	6.259	+6
W3	6.411	+6	W9	6.481	+6
W4	6.358	+6	W10	5.960	+6

 Table S4 Assignment of peaks in negative mode mass spectra of 1 before and after catalysis and simulation.

Entry	Charge	Observed M/z	Calculated M/z	Polyanion
1	-7	1513.23	1513.19	KNa ₇ H _{5.4} [(AsW ₉ O ₃₃) ₄ (WO ₂) ₄ {Ru _{3.2} (C ₃ H ₃ N ₂) ₂ }(H ₂ O) ₂] ⁷⁻
2	-6	1782.90	1782.93	K ₃ Na ₅ H _{6.4} [(AsW ₉ O ₃₃) ₄ (WO ₂) ₄ {Ru _{3.2} (C ₃ H ₃ N ₂) ₂ }(H ₂ O) ₆] ⁶⁻
3	-5	2166.67	2166.53	$K_3Na_7H_{5,4}[(AsW_9O_{33})_4(WO_2)_4[Ru_{3,2}(C_3H_3N_2)_2](H_2O)_{11}]^{5-}$
4	-7	1511.38	1511.45	$Na_9H_{4,4}[(AsW_9O_{33})_4(WO_2)_4[Ru_{3,2}(C_3H_3N_2)_2](H_2O)]^{7-2}$
5	-6	1766.60	1766.53	$Na_9H_{5.4}[(AsW_9O_{33})_4(WO_2)_4\{Ru_{3.2}(C_3H_3N_2)_2\}(H_2O)_2]^{6-1}$
6	-5	2132.52	2132.52	$K_3Na_5H_{7.4}[(AsW_9O_{33})_4(WO_2)_4\{Ru_{3.2}(C_3H_3N_2)_2\}(H_2O)_4]^{5-}$