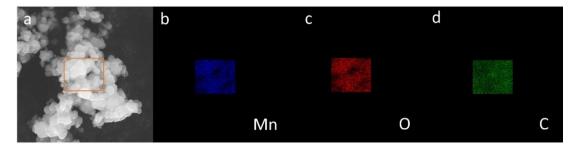

Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021

Supporting Information


- 2 Xiaole Zhang, Song Li*, Shenghe Wang, Zhenxu Wang, Zhongsheng Wen, Shijun Ji,
- 3 Juncai Sun
- 4 Institute of Materials and Technology, Dalian Maritime University, Dalian 116026,
- 5 China
- 6 *Corresponding author. E-mail: lisong@dlmu.edu.cn (S Li).

2 **Fig. S1.** High-resolution Mn 3s of a-MnO₂/AB.

- 4 Fig. S2. SEM images of (a) a-MnO₂, (b) a-MnO₂/AB and (c) a-MnO₂-500/AB, (d)TEM and (e)
- 5 HRTEM images and corresponding SEAD pattern (f) of a-MnO₂/AB.
- 6 As shown in **Fig. S2**, a-MnO₂ nanosheets are interlinked to form a hierarchical porous sphere.
- 7 The HRTEM image of a-MnO₂ exhibits no observable lattice fringing, confirming the present of
- 8 amorphous phase. Furthermore, the selected area diffraction (SAED) of a-MnO₂/AB shows faint
- 9 diffraction rings due to the amorphous nature.

1

2

5

Fig. S3. EDS mappings of Mn, O and C in a-MnO₂/AB.

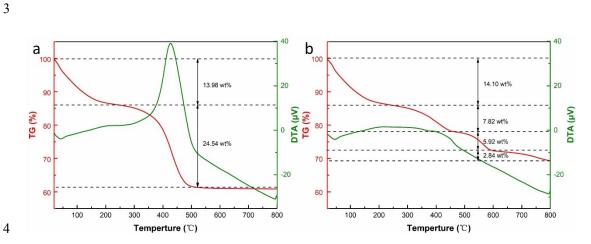


Fig. S4. TGA results under air (a) and N₂ (b) conditions for a-MnO₂/AB.

The weight loss from room temperature to 250 °C under air is associated with
the evaporation of water, and the apparent mass reduction between 250 °C and 500 °C
side to the complete oxidation of AB. The results indicate that the percentage of AB
in a-MnO₂/AB composite is 24.54 wt%. In addition, the weight loss is negligible from
500 °C to 800 °C. In contrast, the weight loss from room temperature to 250 °C in N₂
was similar to that in air. The decrease in weight loss (7.82 wt%) in the range of 250
°C ~ 470 °C is mainly due to the incomplete oxidation of AB in N₂, indicating some
amount of AB can be retained after the heat treatment in N₂. There are still weight
loss of 5.92 wt% and 2.84 wt% between 500 °C and 800 °C, which may be related to
the continuous loss of oxygen of MnO₂ in N₂. It demonstrates that the MnO₂ is more

1 crystalline MnO₂ is adopted at 500 °C.

Table S1. BET surface area and porosity of a-MnO₂/AB and a-MnO₂-500/AB samples.

Sample	BET surface area	Pore volume	Pore width	
	(m^2/g)	(cm ³ /g)	(nm)	
a-MnO ₂ /AB	165.95	0.28	6.788	
a-MnO ₂ -500/AB	146.38	0.27	7.388	

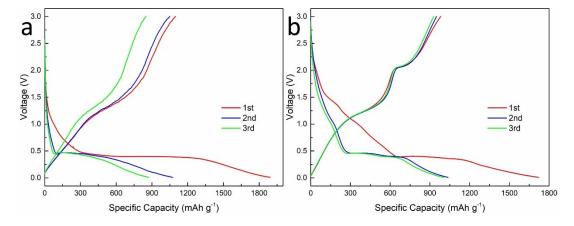


Fig. S5. Galvanostatic discharge/charge curves of a-MnO $_2$ and a-MnO $_2$ -500/AB at 0.1A g⁻¹.

Table S2. A summary of the electrochemical performance of the a-MnO₂/AB sample and other

oxide/carbon materials.

Materials	Initial coulomb efficiency	Reversible capacity (mAh g ⁻¹) [C-rate A g ⁻¹]	Capacity retention (mAh g ⁻¹) (after n cycles) [C-rate A g ⁻¹]	Ref.
Amorphous MnO ₂	-	180 [1.6]	530	[14]
			(n=50)[0.1]	
Amorphous MnO ₂ /RGO	53.0%	295 [2]	784	[21]
			(n=500)[1]	
$MnO_2@TiO_2$	86.0%	87 [6]	938	[3]
			(n=200) [0.3]	

β-MnO ₂ /RGO	50.5%	159 [1]	420	[18]
			(n=50)[0.1]	
NiO@MnO ₂	75.8%	787 [5]	1000	[32]
			(n=160)[1]	
$MnO_2@Fe_3O_4/CNT$	58.0%	300 [10]	873	[33]
			(n=500) [2]	
3D δ-MnO ₂	72.0%	135 [2]	1150	[45]
			(n=200) [1]	
SnS ₂ /C	-	150 [1]	428	[34]
			(n=50)[1]	
SiO ₂ /Fe ₃ O ₄ /C	62.7%	50 [1.6]	140	[35]
			(n=100) [0.1]	
Fe_2O_3/Mn_2O_3	62.0%	435 [2]	400	[37]
			(n=500)[1]	
$a-MnO_2/AB$	72.3%	318 [9.6]	1300	This
			(n=300) [1]	work

Table S3. The R_{ct} of the a-MnO₂/AB and a-MnO₂-500/AB samples.

Sample	After 1 cycle $R(_{sf+ct})/\Omega$	After 5 cycle $R(_{sf+ct})/\Omega$	After 10 cycle R(_{sf+ct})/Ω	After 50 cycle R(_{sf+ct})/Ω	After 100 cycle $R(_{sf+ct})/\Omega$	After 200 cycle $R(_{sf+ct})/\Omega$
a-MnO ₂ /AB	37.16	22.05	32.04	31.55	28.13	30.30
$a-MnO_2-500/AB$	38.44	42.21	69.24	102.01	237.86	462.19

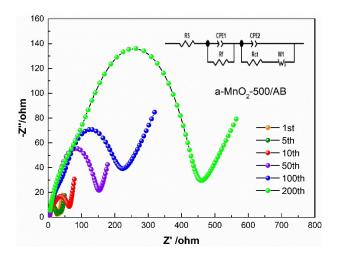
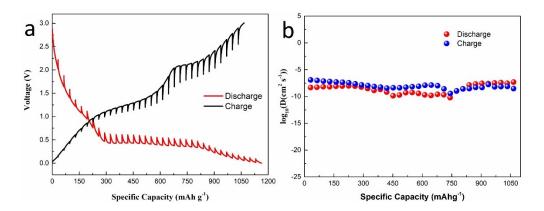


Fig. S6. Impedance measurements of a-MnO₂-500/AB after 1st, 5th, 10th, 50th, 100th and

200th cycle at 1 A g⁻¹.


- The reaction kinetics of the a-MnO₂/AB electrode were further explored in detail
- 2 by CV measurements. The relationship between the current (i) and the sweep rate (v),
- 3 as shown in the following equation: 1

$$i = av^b (1)$$

- Where a and b are two changeable parameters. It is well-known that b-value of
- 6 0.5 means total diffusion control behavior and b-value of 1 indicates capacitive
- 7 process. ² In addition, the capacity contribution from capacitive and diffusion-
- 8 controlled charge can be calculated on the basis of the relationship:

$$_{9} i = k_{1}v + k_{2}v^{1/2} (2)$$

Where k_1v and $k_2v^{1/2}$ represent the capacitive process and diffusion-controlled process, respectively.

Fig. S7. (a) GITT curves and (b) corresponding D_{Li}^+ diffusion coefficients of a-MnO₂-

14 500/AB electrodes.

The lithium-ion diffusion coefficient (D_{Li}^+) is calculated GITT (Fig. S6) according to the following equations: ³

$$D_{Li+} = \frac{4}{\pi \tau} \left(\frac{m_B V_M}{M_B S}\right)^2 \left(\frac{\Delta E_S}{\Delta E_\tau}\right)^2$$

18 (3)

17

12

- $\,\,$ Where $m_{B_s}\,V_M$ and M_B are the active mass loading, molar volume and molar
- 2 mass, respectively, S is the area of the electrode-electrolyte interface, τ is the constant
- 3 current pulse duration and $\Delta E \tau$ is the total change in the battery voltage during a
- 4 constant current pulse τ . ΔE_S is the change in steady-state voltage during constant
- 5 current titration.

6

7 References

- 8 1. X. Liu, X. Zhang, S. Ma, S. Tong, X. Han and H. Wang, *Electrochimica Acta*,
- 9 2020, **333**, 135568.
- 10 2. K. Liu, J.a. Wang, J. Yang, D. Zhao, P. Chen, J. Man, X. Yu, Z. Wen and J.
- Sun, Chemical Engineering Journal, 2021, 407, 127190.
- 12 3. M. Liao, J. Wang, L. Ye, H. Sun, Y. Wen, C. Wang, X. Sun, B. Wang and H.
- Peng, Angew Chem Int Ed Engl, 2020, **59**, 2273-2278.