Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Xiaole Zhang, Song Li*, Shenghe Wang, Zhenxu Wang, Zhongsheng Wen, Shijun Ji,

Juncai Sun

Institute of Materials and Technology, Dalian Maritime University, Dalian 116026,

China

*Corresponding author. E-mail: lisong@dlmu.edu.cn (S Li).

Fig. S1. High-resolution Mn 3s of a-MnO₂/AB.

Fig. S2. SEM images of (a) a-MnO₂, (b) a-MnO₂/AB and (c) a-MnO₂-500/AB, (d)TEM and (e)

HRTEM images and corresponding SEAD pattern (f) of a-MnO₂/AB.

As shown in **Fig. S2**, a-MnO₂ nanosheets are interlinked to form a hierarchical porous sphere. The HRTEM image of a-MnO₂ exhibits no observable lattice fringing, confirming the present of amorphous phase. Furthermore, the selected area diffraction (SAED) of a-MnO₂/AB shows faint diffraction rings due to the amorphous nature.

Fig. S3. EDS mappings of Mn, O and C in a-MnO₂/AB.

Fig. S4. TGA results under air (a) and N₂ (b) conditions for a-MnO₂/AB.

The weight loss from room temperature to 250 °C under air is associated with the evaporation of water, and the apparent mass reduction between 250 °C and 500 °C is due to the complete oxidation of AB. The results indicate that the percentage of AB in a-MnO₂/AB composite is 24.54 wt%. In addition, the weight loss is negligible from 500 °C to 800 °C. In contrast, the weight loss from room temperature to 250 °C in N₂ was similar to that in air. The decrease in weight loss (7.82 wt%) in the range of 250 °C ~ 470 °C is mainly due to the incomplete oxidation of AB in N₂, indicating some amount of AB can be retained after the heat treatment in N₂. There are still weight loss of 5.92 wt% and 2.84 wt% between 500 °C and 800 °C, which may be related to the continuous loss of oxygen of MnO₂ in N₂. It demonstrates that the MnO₂ is more prone to oxygen loss in N₂. Therefore, the heat treatment temperature for obtaining crystalline MnO2 is adopted at 500 °C.

Sample	BET surface area	Pore volume	Pore width	
	(m²/g)	(cm ³ /g)	(nm)	
a-MnO ₂ /AB	165.95	0.28	6.788	
a-MnO ₂ -500/AB	146.38	0.27	7.388	

Table S1. BET surface area and porosity of a-MnO₂/AB and a-MnO₂-500/AB samples.

Fig. S5. Galvanostatic discharge/charge curves of a-MnO₂ and a-MnO₂-500/AB at 0.1A g^{-1} .

Table S2. A summary of the electrochemical performance of the a-MnO₂/AB sample and other

oxide/carbon materials.

Materials	Initial coulomb efficiency	Reversible capacity (mAh g ⁻¹) [C-rate A g ⁻¹]	Capacity retention (mAh g ⁻¹) (after n cycles) [C-rate A g ⁻¹]	Ref.
Amorphous MnO ₂	-	180 [1.6]	530	[14]
			(n=50) [0.1]	
Amorphous MnO ₂ /RGO	53.0%	295 [2]	784	[21]
			(n=500) [1]	
MnO ₂ @TiO ₂	86.0%	87 [6]	938	[3]
			(n=200) [0.3]	

β-MnO ₂ /RGO	50.5%	159 [1]	420	[18]
			(n=50) [0.1]	
NiO@Mro	75 00/	707 [5]	1000	[20]
NIO@MINO ₂	/3.8%	/8/[3]	1000	[32]
			(n=160) [1]	
$MnO_2(a)Fe_3O_4/CNT$	58.0%	300 [10]	873	[33]
20 0 0			(n-500) [2]	
			(II-300) [2]	
$3D \delta - MnO_2$	72.0%	135 [2]	1150	[45]
			(n=200) [1]	
SnS ₂ /C	-	150 [1]	428	[34]
			(n=50)[1]	
	62 70/	50[16]	140	[25]
SIO ₂ /Fe ₃ O ₄ /C	02./%	30[1.0]	140	[33]
			(n=100) [0.1]	
Fe ₂ O ₃ /Mn ₂ O ₃	62.0%	435 [2]	400	[37]
			(n=500) [1]	
a-MnO ₂ /AB	72.3%	318 [9 6]	1300	This
	12.370	510[5.0]		11115
			(n=300) [1]	work

Table S3. The R_{ct} of the a-MnO_2/AB and a-MnO_2-500/AB samples.

Sample	After 1 cycle R(_{sf+ct})/Ω	After 5 cycle R(_{sf+ct})/Ω	After 10 cycle R(_{sf+ct})/Ω	After 50 cycle R(_{sf+ct})/Ω	After 100 cycle R(_{sf+ct})/Ω	After 200 cycle R(_{sf+ct})/Ω
a-MnO ₂ /AB	37.16	22.05	32.04	31.55	28.13	30.30
a-MnO ₂ -500/AB	38.44	42.21	69.24	102.01	237.86	462.19

Fig. S6. Impedance measurements of a-MnO₂-500/AB after 1st, 5th, 10th, 50th, 100th and

200th cycle at 1 A g⁻¹.

The reaction kinetics of the a-MnO₂/AB electrode were further explored in detail by CV measurements. The relationship between the current (i) and the sweep rate (v), as shown in the following equation: ¹

$$i = av^b \tag{1}$$

Where a and b are two changeable parameters. It is well-known that b-value of 0.5 means total diffusion control behavior and b-value of 1 indicates capacitive process. 2 In addition, the capacity contribution from capacitive and diffusion-controlled charge can be calculated on the basis of the relationship:

$$i = k_1 v + k_2 v^{1/2} \tag{2}$$

Where $k_1 v$ and $k_2 v^{1/2}$ represent the capacitive process and diffusion-controlled process, respectively.

Fig. S7. (a) GITT curves and (b) corresponding D_{Li}^+ diffusion coefficients of

a-MnO₂-500/AB electrodes.

The lithium-ion diffusion coefficient (D_{Li}^+) is calculated GITT (Fig. S6) according to the following equations: ³

$$D_{Li+} = \frac{4}{\pi\tau} \left(\frac{m_B V_M}{M_B S}\right)^2 \left(\frac{\Delta E_S}{\Delta E_\tau}\right)^2 \tag{3}$$

Where m_B, V_M and M_B are the active mass loading, molar volume and molar mass, respectively, S is the area of the electrode-electrolyte interface, τ is the constant current pulse duration and $\Delta E\tau$ is the total change in the battery voltage during a constant current pulse τ . ΔE_S is the change in steady-state voltage during constant current titration.

References

- X. Liu, X. Zhang, S. Ma, S. Tong, X. Han and H. Wang, *Electrochimica Acta*, 2020, **333**, 135568.
- K. Liu, J.a. Wang, J. Yang, D. Zhao, P. Chen, J. Man, X. Yu, Z. Wen and J. Sun, Chemical Engineering Journal, 2021, 407, 127190.
- M. Liao, J. Wang, L. Ye, H. Sun, Y. Wen, C. Wang, X. Sun, B. Wang and H. Peng, Angew Chem Int Ed Engl, 2020, 59, 2273-2278.