Co_{0.85}Se Particles Encapsulated in the Inner Wall of Nitrogen-Doped Carbon Matrix Nanotube with Rational Interfacial Bonds for High-Performance Lithium-Ion Batteries

Qi Chen,^a Qichen Liang,^a Shu-Ang He,^a Zhe Cui,^a Qian Liu,^{*,b} Jinqi Zhu^a and Rujia Zou^{*,a}

^a State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620,

China. E-mail: rjzou@dhu.edu.cn

^b Department of Physics, College of Science, Donghua University, 201620, China. Email: qianliu@dhu.edu.cn

Fig. S1 (a) and (b) SEM and TEM image of Se nanowires. (c) XRD pattern of Se nanowires.

Fig. S2 (a) and (b) SEM image of Se@Co precursor and Se@Co precursor@PDA.

N-doped carbon with defects

partially coated $Co_{0.85}Se$ particle

Fig. S3 The detailed composition of $Co_{0.85}Se@NCMT$.

Fig. S4 TEM image of $Co_{0.85}$ Se nanoparticle and N-doped carbon matrix.

Fig. S5 (a) and (b) SEM image of NCMT@Co $_{0.85}$ Se and Co $_{0.85}$ Se NPs.

Fig. S6 The survey XPS spectrum of the Co_{0.85}Se@NCMT.

Fig. S7 The XRD pattern of Co₃O₄ after TG analysis.

Fig. S8 Discharge-charge profiles at different current densities of $Co_{0.85}Se@NCMT$ (a), NCMT@ $Co_{0.85}Se$ (b) and $Co_{0.85}Se$ NPs (c).

Fig. S9 GITT voltage profiles of the Co_{0.85}Se@NCMT (a) and NCMT@Co_{0.85}Se (b).

Fig. S10 Nyquist plot of the Co_{0.85}Se@NCMT electrodes after different cycles.

Fig. S11 (a) NCMT@Co_{0.85}Se electrode after 100 cycles. (b) $Co_{0.85}$ Se NPs electrode after 100 cycles.

Fig. S12 The TEM image of NCMT@ $Co_{0.85}$ Se electrode after 100 cycles.

Table S1. Comparison of the cycle performances of $Co_{0.85}Se@NCMT$ electrode with
other $CoSe_x$ -based anode materials reported in the literature.ElectrodesCurrentCycleInitialReversibleCapacityRef.densitynumbercapacitycapacityretention(MAh g -1)(%)(%)

	density	number	capacity	capacity	retention	
	(A g ⁻¹)		(mAh g ⁻	$(mAh g^{-1})$	(%)	
			1)			
Co _{0.85} Se@NCMT	0.2	100	775.5	884.7	114.1	This
	5	800	465.1	462.9	99.5	work
CoSe ₂ /NC	0.1	100		438		Ref. 41
	1	500		282.1		
CoSe/NC	1	100	808	796	98.5	Ref. 22
CoSe/Co@NC	0.2	100		630		Ref. 42
	1	500		640		
ZnCoSe@NC	1	1000	610	768	125.9	Ref. 43
CoSe–rGO	2	500	954.9	764.8	80.1	Ref. 23
CoSe@PCP	0.2	100		675		Ref. 35
CoSe@carbon	0.2	100	796	860	108.1	Ref. 44
nanoboxes	0.5	100	752	711	94.5	
	1	100	721	660	91.6	
Pure Co _{0.85} Se	0.2	50	650	516	79	Ref. 18
nanosheets	0.5	50	576	295	51	
NC@Co _{0.85} Se	0.2	100	890	636	71.5	Ref. 45
	5	500	610	399	65.4	
Co _{0.85} Se-2/NPC-5	1	200	663.6	638.4	96.2	Ref. 21
Co _{0.85} Se/NC	1	300	890	726	81.6	Ref. 46