Supporting Information

An azido-bridged [Fe^{II}₄] grid-like molecule showing spin crossover behaviour

Zhilin Guo,^{a, b} Maolin You,^{a, c} Yi-Fei Deng,^a Qiang Liu,^d Yin-Shan Meng,^d Zoe Pikramenou,^{*b} and Yuan-Zhu Zhang^{*a}

^a Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.

^b School of Chemistry, The University of Birmingham, Edgbaston B15 2TT, United Kingdom.

^c Department of Chemistry, National University of Singapore, Science Drive 3, Singapore 117543

^d State Key Laboratory of Fine Chemicals, Dalian University of Technology,2 Linggong Rd, Dalian 116024, P. R. China

Email: z.pikramenou@bham.ac.uk; zhangyz@sustech.edu.cn

Crystallography. X-ray data for **1** and **2** were collected on a Bruker D8 VENTURE diffractometer with graphite monochromated Mo K α (I = 0.71073 Å) and Cu K α (I = 1.54178 Å) radiation, respectively. Lorentz/polarization corrections were applied during data reduction and the structures were solved with the SHELXT solution program using Intrinsic Phasing.^[1] Refinements were performed by full-matrix least squares minimization (SHELXL) on F².^[2] Anisotropic thermal parameters were used for the non-hydrogen atoms. Hydrogen atoms were added at calculated positions and refined using a riding model. Weighted R factors (wR) and the goodness-of-fit (S) values are based on F²; conventional R factors (R) are based on F, with F set to zero for negative F². Since the solvent molecules in **1** could not be completely modelled due to the disorder, a part of Q peaks were subtracted by the SQUEEZE program implemented in Olex2. As a result, 272.6 electrons were found in a total solvent accessible volume of 1035.3 Å³ for **1** per unit cell. Combined with the definition in the residual density map, we attribute this to the presence of four CHCl₃ and two CH₃OH per unit cell which account for 268 electrons that is consistent with the SQUEEZE calculations.

References

[1] Sheldrick, G.M. Acta Cryst. 2015, A71, 3-8.

[2] Sheldrick, G.M. Acta Cryst. 2015, C71, 3-8.

Compound	1	2						
Empirical formula	$C_{168}H_{173}B_4CI_{15}Fe_4N_{40}O_3$	C156H126B4Fe4N30						
Formula weight	3598.85	2687.50						
Radiation	ΜοΚα (λ = 0.71073)	CuKα (λ = 1.54178)						
Crystal size/mm ³	$0.30 \times 0.25 \times 0.15$	0.25 imes 0.25 imes 0.20						
Crystal system	Triclinic	Tetragonal						
Space group	P-1	I41/a						
Temp.	100 K	100 K	150 K	200 K	300 K			
CCDC deposit	2015661	2015655	2078512	2015657	2015660			
a/Å	18.0455(8)	17.2401(3)	17.2652(8)	17.3036(3)	17.4466(3)			
b/Å	19.1164(8)	17.2401(3)	17.2652(8)	17.3036(3)	17.4466(3)			
c/Å	28.9018(12)	42.898(1)	43.062(3)	43.1803(10)	43.6969(13)			
α/°	89.217(2)	90	90	90	90			
β/°	72.662(2)	90	90	90	90			
γ/°	62.820(2)	90	90	90	90			
Volume/Å ³	8377.7(6)	12750.2(5)	12836.1(15)	12928.8(5)	13300.6(6)			
Z	2	4	4	4	4			
ρ _{calc} g/cm ³	1.212	1.400	1.391	1.381	1.342			
µ/mm ⁻¹	0.449	4.124	4.097	4.067	3.954			
F(000)	3192.0	5584.0	5584.0	5584.0	5584.0			
2θ range /°	2.628 to 55.018	8.03 to 136.6	5.51 to 130.3	10.2 to 136.8	7.91 to 130.3			
Reflections collected/unique	200308/37755	37412/5831	26305/5831	26305/5831	26215/5667			
R _{int}	0.0545	0.0565	0.0794	0.0490	0.0622			
Rsigma	0.0473	0.0307	0.0739	0.0325	0.0590			
Goodness-of-fit on F ²	1.030	1.068	0.996	1.057	1.024			
Final R indexes	R ₁ = 0.0493,	R ₁ = 0.0369,	R ₁ = 0.0660,	R ₁ = 0.0335,	$R_1 = 0.0479,$			
[I>2ơ(I)]	wR ₂ = 0.1181	wR ₂ = 0.0965	$wR_2 = 0.1707$	$wR_2 = 0.0904$	wR ₂ = 0.1238			
Final R indexes	R ₁ = 0.0759,	R ₁ = 0.0459,	R ₁ = 0.1027,	$R_1 = 0.0466,$	$R_1 = 0.0748,$			
[all data]	wR ₂ = 0.1322	wR ₂ = 0.1011	$wR_2 = 0.1994$	$wR_2 = 0.0958$	$wR_2 = 0.1408$			
Largest diff. peak/hole / e Å ⁻³	0.59/-0.98	0.70/-0.23	0.54/-0.31	0.34/-0.27	0.28/-0.14			

 Table S1. Selected Crystallographic data of 1 and 2.

Fe1-N1	2.159(2)	Fe4-N16	2.183(2)	N4-Fe2-N9	175.68(7)
Fe1-N3	2.209(1)	Fe4-N18	2.179(2)	N4-Fe2-N7	109.20(7)
Fe1-N19	2.154(1)	Fe4-N22	2.196(1)	N4-Fe2-N34	93.30(7)
Fe1-N21	2.220(1)	Fe4-N24	2.160(2)	N4-Fe2-N25	84.63(7)
Fe1-N25	2.084(1)	Fe4-N28	2.103(1)	N4-Fe2-N6	72.48(7)
Fe1-N28	2.123(1)	Fe4-N31	2.121(2)	N15-Fe3-N10	172.34(7)
Fe2-N4	2.223(2)	N3-Fe1-N21	175.14(7)	N15-Fe3-N12	108.78(7)
Fe2-N6	2.151(2)	N3-Fe1-N19	111.02(7)	N15-Fe3-N34	93.04(7)
Fe2-N7	2.159(2)	N3-Fe1-N28	91.64(7)	N15-Fe3-N31	85.95(7)
Fe2-N9	2.222(1)	N3-Fe1-N25	86.10(7)	N15-Fe3-N13	72.48(7)
Fe2-N25	2.125(1)	N3-Fe1-N1	72.37(7)	Fe1-N25-Fe2	120.86(9)
Fe2-N34	2.079(2)	N16-Fe4-N22	173.87(7)	Fe1-N28-Fe4	118.79(9)
Fe3-N10	2.212(1)	N16-Fe4-N24	113.55(7)	Fe3-N34-Fe2	120.40(9)
Fe3-N12	2.157(2)	N16-Fe4-N31	86.97(7)	Fe3-N31-Fe4	118.89(9)
Fe3-N13	2.179(2)	N16-Fe4-N28	87.41(7)		
Fe3-N15	2.221(2)	N16-Fe4-N18	72.64(7)		
Fe3-N31	2.120(1)				
Fe3-N34	2.079(2)				

 Table S2. Selected bond distance [Å] and angles [deg] of 1 at 100 K.

Table S3. Selected bond distance [Å] an	d angles	[deg] of	f 2 at	different ten	nperatures.
------------------------------------	-------	----------	----------	---------------	---------------	-------------

	100 K	150 K	200 K	300 K
Fe1-N1	1.976(0)	1.999(4)	1.985(8)	2.150(3)
Fe1-N2	1.920(9)	1.940(4)	1.938(7)	2.141(2)
Fe1-N3C	1.930(6)	1.938(4)	1.945(8)	2.140(3)
Fe1-N4C	1.989(8)	1.986(4)	2.003(4)	2.179(3)
Fe1-N5	2.005(7)	2.002(3)	2.003(4)	2.069(3)
Fe1-N5C	2.011(8)	2.008(3)	2.017(4)	2.080(3)
N1-Fe1-N2	80.96(6)	80.60(15)	80.60(6)	74.84(10)
N1-Fe1-N3C	99.47(6)	98.04(15)	99.63(6)	103.44(9)
N1-Fe1-N4C	83.66(6)	83.35(14)	83.36(6)	81.89(10)
N1-Fe1-N5	166.43(6)	165.09(15)	165.88(7)	158.05(10)
N1-Fe1-N5C	93.42(6)	94.47(15)	93.49(6)	94.13(10)
N5-Fe1-N5C	91.80(9)	91.9(2)	92.24(9)	98.66(14)

Fig. S1. The experimental and simulated PXRD patterns of 2 at 300 K.

Fig. S2. The packing diagram of **1**. Hydrogen atoms, counter ions and lattice solvents are omitted for clarity.

Fig. S3. The packing diagram of **2**. Hydrogen atoms, counter ions and lattice solvents are omitted for clarity.

Fig. S4. Temperature dependence of average Fe-N bond distances for complex **2**. Solid lines are guided to the eye.

Fig. S5. Solid state (left) and acetonitrile solution (right) UV-vis spectra of **2** (solid line) and pydz ligand (dashed line) at room temperature (* is an artifact due to lamp change at 800 nm).

Fig. S6. *M* vs *H* data for **1** at 2-5 K. The solid lines represent the simulations using the spin Hamiltonian parameters from the χT fit.

Fig. S7. AC magnetic susceptibility measurement of **1** under zero (a) and 1000 Oe (b) applied dc field.

Fig. S8. Time evolution of the χT products of **2** at 10 kOe under light irradiation (808 nm, 10 mW) at 10 K.