Supporting Information

Design, synthesis, structural, spectral, redox properties and phenoxazinone synthase activity of tripodal pentacoordinate Mn(II) complexes with impressive turnover numbers

Figure captions

Fig. S1 X-ray crystal structures of the non-equivalent cations in the asymmetric unit of the crystals of 1 and 2 respectively; Ellipsoids are drawn with 50% probability. Hydrogen atoms and counter anions are omitted for better clarity.

Fig. S2 ESI-MS spectra of (a) 1 and (b) simulated mass spectra.

Fig. S3 ESI-MS spectra of (a) 2 and (b) simulated mass spectra.

Fig. S4 ¹H NMR spectra of L^2 in (CD₃)₂SO in room temperature.

Fig. S5 FT-IR (solid) spectra of (a) L^1 , (b) L^2 , (c) 1 and (d) 2 respectively.

Fig. S6 Cyclic voltammograms (black) and differential pulse voltammograms (red) for 1 (left) and 2 (right) in dry DMF using 0.1 M TBAP as supporting electrolyte versus SCE, CV scan rate 100 mV s⁻¹.

Fig. S7 *o*-aminophenol oxidation in methanol by 2.

Fig. S8 Increase in phenoxazinone absorbance during the catalytic oxidation of *o*aminophenol (a) 0.25×10^{-2} M, (b) 0.5×10^{-2} M, (c) 0.75×10^{-2} M and (d) 1.0×10^{-2} M in the presence of complex **1** (left) and respective rate constant determination (right).

Fig. S9 Increase in phenoxazinone absorbance during the catalytic oxidation of *o*-aminophenol (a) 0.1×10^{-2} M, (b) 0.3×10^{-2} M, (c) 0.5×10^{-2} M and (d) 1.0×10^{-2} M in the presence of complex **2** (left) and respective rate constant determination (right).

Fig. S10 Initial rate versus substrate concentration plot for the oxidation of *o*-aminophenol catalyzed by **2**.

Fig. S11 Lineweaver-Burk plots for the oxidation of *o*-aminophenol catalyzed by 2.

Fig. S12 Evidence of adduct formation found *via* mass spectrometry (a) and (c) for **1** and **2** with their simulated mass spectra (b) and (d).

Fig. S13 Evidence of peroxide attachment found *via* mass spectrometry (a) and (c) for 1 and 2 with their simulated mass spectra (b) and (d).

Fig. S1 X-ray crystal structures of the non-equivalent cations in the asymmetric unit of the crystals of **1** and **2** respectively; Ellipsoids are drawn with 50% probability. Hydrogen atoms and counter anions are omitted for better clarity.

Fig. S2 ESI-MS spectra of (a) 1 and (b) simulated mass spectra.

(a)

Fig. S3 ESI-MS spectra of (a) 2 and (b) simulated mass spectra.

(a)

Fig. S4 ¹H NMR spectra of L^2 in DMSO-d⁶ in room temperature

Fig. S5 FT-IR (solid) spectra of (a) L^1 , (b) L^2 , (c) 1 and (d) 2 respectively.

Fig. S6 Cyclic voltammograms (black) and differential pulse voltammograms (red) for 1 (up) and 2 (down) in dry DMF using 0.1 M TBAP as supporting electrolyte versus SCE, CV scan rate 100 mV s⁻¹.

Fig. S7 *o*-aminophenol oxidation in methanol by 2.

Fig. S8 Increase in phenoxazinone absorbance during the catalytic oxidation of *o*-aminophenol (a) 0.25×10^{-2} M, (b) 0.5×10^{-2} M, (c) 0.75×10^{-2} M and (d) 1.0×10^{-2} M in the presence of complex **1** (left) and respective rate constant determination (right).

Fig. S9 Increase in phenoxazinone absorbance during the catalytic oxidation of *o*-aminophenol (a) 0.1×10^{-2} M, (b) 0.3×10^{-2} M, (c) 0.5×10^{-2} M and (d) 1.0×10^{-2} M in the presence of complex **2** (left) and respective rate constant determination (right).

Fig. S10 Initial rate versus substrate concentration plot for the oxidation of *o*-aminophenol catalyzed by **2**.

Fig. S11 Lineweaver-Burk plots for the oxidation of *o*-aminophenol catalyzed by 2.

(a)

Fig. S12 Evidence of adduct formation found *via* mass spectrometry (a) and (c) for 1 and 2 with their simulated mass spectra (b) and (d).

Fig. S13 Evidence of peroxide attachment found via mass spectrometry (a) and (c) for 1 and 2 with their simulated mass spectra (b) and (d).

647

648.222

649

648

m/z

650

(c)

(d)

40

20

0

646