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Fig. S1 Cyclic voltammogram of 30 mM tetrakis(dimethylamino)ethylene (TDAE) in DMSO containing

100 mM NaNO; as the supporting electrolyte. The scan rate was 0.01 V s,

Fig. S2 Ten-fold dilutions of the solutions: (a) 6 mM cytidine/3 mM TDAE in DMSO and the supernatant
fluids obtained from the centrifugation of cytidine:AgNO3:TDAE molar ratios: (b) 0:1:1, (c) 0.5:1:1, (d)
1:1:1, (e) 2:1:1, (f) 4:1:1, and (g) 8:1:1. The solutions before dilution are shown in Fig. 2.
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Fig. S3 (a) Chemical structures of 1, 4-DMP and its proposed oxidation states. (b) Cyclic voltammogram

of 30 mM 1, 4-DMP in DMSO containing 100 mM NaNOj3 as a supporting electrolyte with a scan rate 0.01
Vst
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Fig. S4 Solution of (a) 30 mM 1, 4-DMP, (b) 30 mM AgNOs /30 mM 1, 4-DMP, and (c) 60 mM cytidine/30
mM AgNOs /30 mM 1, 4-DMP in DMSO.
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Fig. S5 UV-Vis spectra of the 10-fold diluted samples, which were obtained from solutions (b) and (c)
(Fig. S4). The cytidine:AgNOs:1, 4-DMP molar ratios were 0:1:1 (blue) and 2:1:1 (red).
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Fig. S6 1D '"H NMR spectra (500 MHz) of (a) 30 mM TDAE and (b) the supernatant fluid that was obtained
from centrifuging the 30 mM AgNO3/30 mM TDAE solution in DMSO-ds. In the presence of Ag®, two
new methyl proton signals appeared at 3.18 and 3.45 ppm. The 1D '"H NMR spectra were measured on a
JEOL ECA 500 spectrometer at 298 K with 64 scans and 16,384 points for a spectral width of 15,024.04
Hz.
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Fig. S7 1D '"H NMR spectra (500 MHz) of (a) 60 mM cytidine/30 mM TDAE and (b) the supernatant fluid
that was obtained from centrifuging the 60 mM cytidine/30 mM AgNO3/30 mM TDAE in DMSO-ds. In
the presence of Ag’, two new methyl proton signals appeared at 3.18 and 3.45 ppm. The 1D 'H NMR
spectra were measured by on a JEOL ECA 500 spectrometer at 298 K with 64 scans and 16,384 points for
a spectral width of 15,024.04 Hz.
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Fig. S8 '3C NMR signals of the -N(Me): carbons that were observed in the 1D *C NMR spectra (126
MHz) of (a) 240 mM TDAE and (b) the supernatant fluid that was obtained from centrifuging the 240 mM
AgNO03/240 mM TDAE solution in DMSO-ds. In the presence of Ag*, two new methyl carbon signals
appeared at 42.1 and 42.7 ppm. The 1D '3C NMR spectra were measured on a JEOL ECA 500 spectrometer
at 298 K with 2,048 scans and 32,768 points for a spectral width of 47,348.48 Hz.
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Fig. S9 13C NMR signals that were observed in the 1D *C NMR spectra (126 MHz) of (a) 240 mM TDAE
and (b) the supernatant fluid that was obtained from centrifuging the 240 mM AgNO3/240 mM TDAE
solution in DMSO-ds. In the presence of Ag®, a new carbon signal appeared at 154.7 ppm. The 1D *C
NMR spectra were measured on a JEOL ECA 500 spectrometer at 298 K with 2,048 scans and 32,768
points for a spectral width of 47,348.48 Hz.
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Fig. S10 1D '"H NMR spectra (500 MHz) of (a) 30 mM tetramethylurea and (b) 30 mM AgNO3/30 mM
tetramethylurea in DMSO-ds. The methyl proton signals of tetramethylurea were observed at 2.69 ppm.
The 1D 'H NMR spectra were measured on a JEOL ECZ 500 spectrometer at 298 K with 64 scans and

16,384 points for a spectral width of 15,024.04 Hz.
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Fig. S11 BC NMR signals of the -N(Me): carbons that were observed in the 1D '3C NMR spectra (126
MHz) of (a) 30 mM tetramethylurea and (b) 30 mM AgNO3/30 mM tetramethylurea in DMSO-ds. The
methyl carbon signal of tetramethylurea was observed at 38.1 ppm. The 1D '3C NMR spectra were
measured on a JEOL ECA 500 spectrometer at 298 K with 512 scans and 16,384 points for a spectral width
of 41,118.42 Hz.
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Fig. S12 3C NMR signals of the C=0 carbon, as observed in the 1D 3C NMR spectra (126 MHz) of (a)

-~

30 mM tetramethylurea and (b) 30 mM AgNO3/30 mM tetramethylurea in DMSO-ds. The C=O carbon
signal of tetramethylurea was observed at 164.5 ppm. The 1D '3C NMR spectra were measured on a JEOL
ECA 500 spectrometer at 298 K employing 512 scans and 16,384 points for a spectral width of 41,118.42
Hz.
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Fig. S13 1D N NMR spectrum (51 MHz) of 1 M tetramethylurea in DMSO-ds. The —N(Me): nitrogen
signal of tetramethylurea was observed at 63.1 ppm. The measurements were performed at 298 K utilising

28,902 scans and 32,768 points for a spectral width of 25,406.5 Hz.
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Fig. S14 Cyclic voltammogram of 30 mM tetramethylurea in DMSO containing 100 mM NaNOs as the

supporting electrolyte. The scan rate was 0.01 V s\,
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