Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information

#### for

# 3d-4f magnetic exchange interactions and anisotropy in a series of heterobimetallic vanadium(IV)-lanthanide(III) Schiff base complexes

Kamil Kotrle,<sup>a</sup> Ivan Nemec,<sup>a</sup> Jan Moncol,<sup>b</sup> Erik Čižmár, <sup>c</sup> Radovan Herchel \*<sup>a</sup>

<sup>a</sup> Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic , E-mail: radovan.herchel@upol.cz, www.agch.upol.cz

<sup>b</sup> Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia

<sup>c</sup> Institute of Physics, Faculty of Science, P.J. Šafárik University in Košice, Park Angelinum 9, SK-041 54 Košice, Slovakia

# Table S1: List of selected published complexes of Cu(II) – Ln(III)

| Structure                                      | J (cm⁻¹)  | τ <sub>0</sub> (s <sup>-1</sup> ) | U <sub>eff</sub> (K) | Ref      |
|------------------------------------------------|-----------|-----------------------------------|----------------------|----------|
| [Cu2Tb2L42(NO3)4]                              | > 0       | 1.7.10-10                         | 32                   | 1        |
| [Cu2Dy2L42(NO3)4]                              | > 0       |                                   |                      | 1        |
| [CuGd(L5)(NO3)3]                               | 4.38/6.59 |                                   |                      | 2        |
| [DyCuL(CH3COO)2(NO3)]                          | > 0       |                                   |                      | 3        |
| [CuGd(L6)Cl3(CH3OH)2]                          | 7.78      |                                   |                      | 4        |
| [CuGd(S,S-L7)(NO3)3(CH3OH)]n                   | 12.57     |                                   |                      | 5        |
| [CuGd(R,R-L7)(NO3)3(CH3OH)]n                   | 14.816    |                                   |                      | 5        |
| [CuGd(L8)(CF3SO3)3(H2O)2]                      | 8.0(2)    |                                   |                      | 6        |
| [CuGd(L7)(CF3SO3)2(H2O)2](CF3SO3)·H2O·CH3COCH3 | 8.6(2)    |                                   |                      | 6        |
| [CuGd(L9)(NO3)2]2                              | 6.94      |                                   |                      | 7        |
| [CuGd(L4)(NO3)2]2                              | 7.26      |                                   |                      | 7        |
| [CuGd(L10)(NO3)2]2                             | 3.94      |                                   |                      | 7        |
| [CuGd(L11)(NO3)2(H2O)]2                        | 2.80      |                                   |                      | 7        |
| [CuGd(L12)(NO3)2(H2O)]2                        | 4.16      |                                   |                      | 7        |
| [CuGd(L13)(NO3)2(H2O)]2                        | 5.89      |                                   |                      | 7        |
| [CuGd(L13)(C7H6NO2)2]2                         | 2.56      |                                   |                      | 7        |
| [CuGd(L7)(NO3)3(H2O]                           | 12.6      |                                   |                      | 8        |
| [CuGd(L14)(NO3)3]                              | 10.8      |                                   |                      | 8        |
| [CuGd(L15)(NO3)3]                              | 8.08      |                                   |                      | 9        |
| [CuGd(L16)(NO3)2.5(OH)0.5(H2O)]·0.5 H2O        | 3.3       |                                   |                      | 10       |
| [CuGd(L17)(NO3)3]                              | 1.3       |                                   |                      | 10       |
| [CuGd(L18)(CF3COO)3(CH3OH)2]                   | 4.42(1)   |                                   |                      | 11       |
| [CuGd(L19)(NO3)3(CH3COCH3)]                    | 5.6       |                                   |                      | 12       |
| [CuGd(L3)(Cl)2(H2O)4]Cl·2H2O                   | 10.1      |                                   |                      | 13       |
| [CuGd(L3)(Cl)3(H2O)6]                          | 8.8(4)    |                                   |                      | 13       |
| [CuGd(L2)(N3C2)3(H2O)                          | 7.8(1)    |                                   |                      | 13       |
| [CuGd(L2)(CF3COO)3(H2O)                        | 6.3(1)    |                                   |                      | 1313     |
| [CuGd(L20)(NO3)(H2O)3]                         | 11.4      |                                   |                      | 14       |
| [CuGd(L3)(NO3)3(CH3COCH3)]                     | 6.9       |                                   |                      | 15       |
| [CuTb(L3)(NO3)3(CH3COCH3)]                     | >3.3      | 7.1(9)·10 <sup>-10</sup>          | 42.3(4)              | 15       |
| [CuDy(L3)(NO3)3(CH3COCH3)]                     | 1.63(1)   | 4(2)·10 <sup>-10</sup>            | 11.5(10)             | 15       |
| [CuHo(L3)(NO3)3(CH3COCH3)]                     | 1.09(2)   |                                   |                      | 15Error! |
|                                                |           |                                   |                      | Bookmark |
|                                                |           |                                   |                      | not      |
|                                                |           |                                   |                      | defined. |
| [CuEr(L3)(NO3)3(CH3COCH3)]                     | 0.24(1)   |                                   |                      | 15       |
| [CuGd(L3)(CH3)3(CH3COCH3)]                     | 5.2       |                                   |                      | 16       |
| [CuGd(L6)(CH3COO)(CF3COCH2COCF3)2]             | 5.2       |                                   |                      | 17       |
| [CuTb(L3)(MeOH)(NO3)2(sal)]                    | 4.2(2)    | 3.0(8)·10 <sup>-8</sup>           | 32.9(4)              | 18       |
| [CuDy(L3)(MeOH)(NO3)2(sal)]                    | 2.0(2)    | 1.02(11)·10 <sup>-5</sup>         | 26.0(5)              | 18       |
| [CuHo(L3)(MeOH)(NO3)2(sal)]                    | 1.3(1)    |                                   |                      | 18       |
| [CuGd(L21)(NCS)3(H2O)(CH3COCH3)]               | 9.20      |                                   |                      | 19       |
| [CuGd(L22)(NCS)3(H2O)]·2(CH3COCH3)             | 5.5       |                                   |                      | 19       |
| [CuGd(L23)(NO3)2(H2O)3]NO3                     | 5.08      |                                   |                      | 20       |
| [CuTb(L23)(NO₃)₃(MeOH)]                        |           | 2.1·10 <sup>-8</sup>              | 24.6                 | 20       |

Hsal = salicylaldehyde, for L1 – L23 see Figure S1

## Table S2 Crystallographic data for the reported compounds 1-4.

|                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                          | 3                    | 4                          |
|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------|----------------------------|
| Formula                                                                 | $C_{19}H_{22}GdN_5O_{15}V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $C_{19}H_{22}N_5O_{15}TbV$ | C19DyH22N5O15V       | $C_{19}ErH_{22}N_5O_{15}V$ |
| $M_{ m r}$                                                              | 768.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 770.27                     | 773.85               | 778.61                     |
| Crystal system                                                          | Monoclinic, $P2_1/c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Monoclinic, $P2_1/c$       | Monoclinic, $P2_1/c$ | Monoclinic, $P2_1/c$       |
| a /Å                                                                    | 15.27250(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15.30291(19)               | 15.0536(3)           | 15.7195(3)                 |
| <i>b</i> / Å                                                            | 16.9735(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16.9273(2)                 | 16.8695(3)           | 16.4891(3)                 |
| <i>c</i> / Å                                                            | 10.05404(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.05128(12)               | 9.9480(2)            | 10.0565(2)                 |
| β/°                                                                     | 95.3475(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 95.0619(12)                | 96.3710(10)          | 93.312(2)                  |
| V / Å <sup>3</sup>                                                      | 2594.94(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2593.50(6)                 | 2510.66(8)           | 2602.29(9)                 |
| Ζ                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                          | 4                    | 4                          |
| T/K                                                                     | 293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 293                        | 100                  | 293                        |
| X-ray wavelength /Å                                                     | CuKa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CuKa                       | AgKα                 | CuKa                       |
| $D_{\rm c}$ / g cm <sup>-3</sup>                                        | 1.967                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.973                      | 2.047                | 1.987                      |
| $\mu/\mathrm{mm}^{-1}$                                                  | 20.139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17.019                     | 1.814                | 9.583                      |
| F(000)                                                                  | 1512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1516                       | 1520                 | 1528                       |
| Reflections collected/unique                                            | 14284/4716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13202/4716                 | 44181/5130           | 15025/4732                 |
| Data/restraints/parameters                                              | 4716/39/392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4716/39/392                | 5130/4/399           | 4732/24/383                |
| Goodness-of-fit (GOF) on $F^2$                                          | 1.045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.025                      | 1.049                | 1.088                      |
| $R_1, wR_2 (I > 2\sigma(I))^{a, b}$                                     | 0.0612/0.1627                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0359/0.0942              | 0.0214/0.0553        | 0.0417/0.1078              |
| $R_1$ , w $R_2$ (all data) <sup><i>a</i>, <i>b</i></sup>                | 0.0667/0.1659                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0381/0.0958              | 0.0237/0.0560        | 0.0440/0.1092              |
| CCDC number                                                             | 2089692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2089693                    | 2089694              | 2089695                    |
| $a \mathbf{R}_{1} = \sum ( F_{o}  -  F_{c} ) / \sum  F_{o} , b w R_{2}$ | $= \{\sum [w(F_{\rm o}^2 - F_{\rm c}^2)^2] / \sum [w(F_{\rm o}^2 - F_{\rm c}^2)^$ | $F_{o}^{2})^{2}]\}^{1/2}$  |                      |                            |

# Table S3 Deviations from ideal geometry shapes for Ln<sup>III</sup> atoms calculated by SHAPE software

| Structure [ML10]                        | 1      | 2      | 3      | Structure [ML9]                    | 4      |
|-----------------------------------------|--------|--------|--------|------------------------------------|--------|
| Decagon                                 | 36.353 | 36.120 | 36.099 | Enneagon                           | 35.601 |
| Enneagonal pyramid                      | 25.387 | 25.535 | 25.022 | Octagonal pyramid                  | 22.268 |
| Octagonal bipyramid                     | 16.247 | 16.373 | 16.107 | Heptagonal bipyramid               | 17.310 |
| Pentagonal prism                        | 11.574 | 11.505 | 11.730 | Johnson triangular cupola J3       | 15.204 |
| Pentagonal antiprism                    | 10.847 | 10.843 | 10.634 | Capped cube J8                     | 10.188 |
| Bicapped cube J15                       | 9.807  | 9.716  | 9.126  | Spherical-relaxed capped cube      | 8.339  |
| Bicapped square antiprism J17           | 4.995  | 4.847  | 4.039  | Capped square antiprism J10        | 2.880  |
| Metabidiminished icosahedron J62        | 7.737  | 7.708  | 7.310  | Spherical capped square antiprism  | 1.631  |
| Augmented tridiminished icosahedron J64 | 18.845 | 18.531 | 18.850 | Tricapped trigonal prism J51       | 4.338  |
| Sphenocorona J87                        | 3.032  | 2.946  | 3.019  | Spherical tricapped trigonal prism | 2.655  |
| Staggered Dodecahedron (2:6:2)          | 3.510  | 3.536  | 3.789  | Tridiminished icosahedron J63      | 11.448 |
| Tetradecahedron (2:6:2)                 | 2.673  | 2.681  | 2.909  | Hula-hoop                          | 10.344 |
| Hexadecahedron (2:6:2) or (1:4:4:1)     | 6.851  | 6.906  | 6.497  | Muffin                             | 1.910  |
|                                         |        |        |        |                                    |        |

Table S4 Deviations from ideal geometry shapes for  $V^{IV}$  atoms calculated by SHAPE software

| Structure [ML6]               | 1      | 2      | 3      | 4      |
|-------------------------------|--------|--------|--------|--------|
| Hexagon                       | 33.213 | 33.224 | 33.313 | 33.240 |
| Pentagonal pyramid            | 25.613 | 25.609 | 25.457 | 25.580 |
| Octahedron                    | 0.975  | 0.979  | 0.996  | 1.001  |
| Trigonal prism                | 13.498 | 13.498 | 13.345 | 13.674 |
| Johnson pentagonal pyramid J2 | 29.546 | 29.536 | 29.317 | 29.434 |

### **Table S5** The parameters of O-H···O hydrogen bonds in 1-4.

| D–H…A      | <i>d</i> (D-H)/Å | <i>d</i> (H…A)/Å | <i>d</i> (D…A)/Å | <(DHA) | Symmetry operation |  |
|------------|------------------|------------------|------------------|--------|--------------------|--|
|            | 1                |                  |                  |        |                    |  |
| 03–H3A…015 | 0.86             | 2.08             | 2.851(9)         | 148.9  | x, y, -1+z         |  |
| O3–H3B…O9  | 0.86             | 2.36             | 3.186(12)        | 161.1  | 1-x, 1-y, -z       |  |
| 03–H3B…07  | 0.86             | 2.74             | 3.286(9)         | 123.4  | x, y, z            |  |
|            |                  |                  | 2                |        |                    |  |
| 03–H3A…015 | 0.86             | 2.07             | 2.835(5)         | 148.0  | x, y, -1+z         |  |
| O3–H3B…O9  | 0.86             | 2.41             | 3.236(7)         | 161.7  | 1-x, 1-y, -z       |  |
| 03–H3B…07  | 0.86             | 2.69             | 3.237(5)         | 122.9  | x, γ, z            |  |
|            |                  |                  | 3                |        |                    |  |
| 03–H3A…012 | 0.85             | 1.97             | 2.809(3)         | 169.0  | x, y, -1+z         |  |
| O3–H3B…O9  | 0.84             | 2.18             | 3.014(3)         | 173.0  | 1-x, 1-y, -z       |  |
|            |                  |                  | 4                |        |                    |  |
| 03–H3A…015 | 0.95             | 1.99             | 2.933(10)        | 168.9  | x, y, -1+z         |  |
| 03–H3B…011 | 0.95             | 2.35             | 2.962(9)         | 121.2  | x, y, -1+z         |  |
| O3–H3B…O9  | 0.97             | 2.25             | 3.075(6)         | 143.2  | x, y, z            |  |

Table S6 Fitted parameters derived from DC magnetic data

|                                   | <b>2</b> (Tb)   <i>J</i> > | <b>3</b> (Dy)   <i>J</i> > | <b>4</b> (Er)   <i>J</i> > | <b>2</b> (Tb)   <i>LS</i> > | <b>3</b> (Dy)   <i>LS</i> > | <b>4</b> (Er)   <i>LS</i> > |
|-----------------------------------|----------------------------|----------------------------|----------------------------|-----------------------------|-----------------------------|-----------------------------|
| J (V-Ln) (cm <sup>-1</sup> )      | 0.245                      | -0.254                     | -0.140                     | 0.775                       | -0.698                      | -1.56                       |
| g <sub>xy</sub> (Ln)              | 1.49                       | 1.28                       | 1.29                       |                             |                             |                             |
| g₂ (Ln)                           | 1.46                       | 1.46                       | 0.86                       |                             |                             |                             |
| <i>D</i> (Ln) (cm <sup>-1</sup> ) | -6.51                      | 7.45                       | -1.51                      | 52.2                        | 24.1                        | 98.4                        |
| <i>E/D</i> (Ln)                   | 0.0326                     | 0.0268                     | 0.248                      | 0.248                       | 0.021                       | 0.007                       |
| σ (Ln)                            |                            |                            |                            | 0.949                       | 0.960                       | 0.970                       |

**Table S7.** The zero-field splitting and g-tensor parameters calculated by OpenMOLCAS/ SINGLE\_ANISO for pseudospin J of  $Ln^{III}$  in compounds **2-4** 

| JM>                          | Tb <sup>III</sup> , <i>J</i> = 5 | Dy <sup>III</sup> , J = 15/2 | Er <sup>™</sup> , <i>J</i> = 15/2 |
|------------------------------|----------------------------------|------------------------------|-----------------------------------|
| <i>D</i> (cm <sup>-1</sup> ) | 6.796                            | 4.367                        | -2.544                            |
| <i>E</i> (cm <sup>-1</sup> ) | -1.518                           | 0.755                        | 0.458                             |
| g <sub>×</sub>               | 1.486                            | 1.328                        | 1.195                             |
| $g_{y}$                      | 1.491                            | 1.325                        | 1.195                             |
| gz                           | 1.500                            | 1.323                        | 1.194                             |

**Table S8** Structures of studied compounds with optimized hydrogen atoms, which were used fortheoretical method inputs

| Gd     | 4.23031589380655  | 8.80421610434115                     | 2.61130519853841  |
|--------|-------------------|--------------------------------------|-------------------|
| V      | 2.24729847669359  | 7.35314954053888                     | 5.09536525677989  |
| 0      | 3.85571410723178  | 6.92591980300138                     | 4.03478378427166  |
| 0      | 2.79940786795862  | 9.17079806260417                     | 4.49579585548380  |
| 0      | 5.89165878952986  | 6.89643482764832                     | 2.43610189119907  |
| 0      | 3.67952750547476  | 11.21700781409789                    | 3.13984558050621  |
| 0      | 1.05711548389845  | 7.01197657659352                     | 4.11786707778699  |
| 0      | 3,89542306813103  | 7,65103560296233                     | 6,69670957126963  |
| Ĥ      | 4.68709344882997  | 7,91962770656217                     | 6,17829258201702  |
| н      | 3 72908993608264  | 8 41791752681752                     | 7 27596298975652  |
| 0      | 5 70750782975520  | 9 35757722523311                     | 4 55707390078245  |
| õ      | 6 38496003672556  | 9 91148941654147                     | 2 61338628771168  |
| 0<br>0 | 7 62817838429698  | 10 31201407515425                    | 4 34383561658187  |
| 0      | 5 26246554595326  | 8 50035404704006                     | 0 1911/81118//66  |
| 0      | 1 12262009108501  | 10 100513/3818153                    | 0 55228470266220  |
| 0      | 4.12202090190391  | 0 90022056090127                     | 1 42500600602825  |
| 0      | 2 00055022084422  | 7 14006222967079                     | 1 20145902191674  |
| 0      | 2.99055925964422  | /.1409055280/9/8                     | 1, 20143093101074 |
| 0      | 1.88558502500515  | 0.0/49/0/9144/12<br>7 17751044070470 | 1.78571440030135  |
| U      | 0.86/250/312/428  | 7.17751844279478                     | 0.89329609032408  |
| N      | 2.2621941/91/211  | 5.44516605014039                     | 5.94204308927269  |
| N      | 1.10698184752592  | 8.22284456022387                     | 6.59443221692883  |
| N      | 6.6088/634561161  | 9.86815656715816                     | 3.8/506333261989  |
| N      | 4./2935192682/5/  | 9.50008484294589                     | -0.25524/51629093 |
| N      | 1.88721393416720  | 7.71479746757967                     | 1.32319022144722  |
| C      | 2.26278978674067  | 10.35086943090988                    | 4.77847792517976  |
| С      | 2.67498093502549  | 11.48013921311532                    | 4.08173854837297  |
| С      | 2.15052680837512  | 12.73329047115247                    | 4.29945232674237  |
| Н      | 2.49270804968889  | 13.59169314185891                    | 3.71474217614852  |
| С      | 1.15502396330559  | 12.88605147858770                    | 5.25714470863404  |
| Н      | 0.71469031085436  | 13.87687145001610                    | 5.42052392780990  |
| С      | 0.74036601025270  | 11.82290364594974                    | 5.99905286332650  |
| Н      | -0.02944339932608 | 11.95453078444491                    | 6.77108070234065  |
| С      | 1.27963857187523  | 10.53065145379304                    | 5.80225498159399  |
| С      | 0.80857435448979  | 9.46569654196301                     | 6.66041860938243  |
| Н      | 0.07352161440832  | 9.78981972095824                     | 7.42392397110268  |
| С      | 0.28027660263431  | 7.25518005045657                     | 7.48667136018126  |
| Н      | -0.09621922673525 | 7.84957890939954                     | 8.34170687822052  |
| Н      | -0.59350480811798 | 6.96946602598383                     | 6.86863265578614  |
| С      | 1.01887896550231  | 6.06329585358766                     | 7.93623017793100  |
| Н      | 1.96973055528148  | 6.35282074893810                     | 8.42888274021209  |
| Н      | 0.41219100866394  | 5.60645143051412                     | 8.74506758358992  |
| С      | 1.23530213210309  | 5.07174295326698                     | 6.93191915956788  |
| Н      | 0.29798978360047  | 4.88034589975315                     | 6.36597586472633  |
| Н      | 1.52548028696788  | 4.09996074348963                     | 7.38082746816493  |
| С      | 3.02596105256738  | 4.51610983362299                     | 5.55113566033656  |
| Н      | 2.89533550342618  | 3.51029608559175                     | 5.99837128149079  |
| С      | 4.10349548797422  | 4.57539359814327                     | 4.58560806155949  |
| C      | 4.81281726321532  | 3.40343186327933                     | 4.35156758942472  |
| Ĥ      | 4.51146038608323  | 2.49366217536036                     | 4.88834418307752  |
| C      | 5.85402349571165  | 3,36246567390003                     | 3.48105070872763  |
| H      | 6.39098313639384  | 2,42288800556874                     | 3.30474436454957  |
|        |                   |                                      |                   |

| С        | 6.25091413662334  | 4.50358240334237      | 2.81840482832758  |
|----------|-------------------|-----------------------|-------------------|
| Н        | 7.09634395208984  | 4.47191904286630      | 2.12411544022592  |
| С        | 5.57262689761978  | 5.68062354501146      | 3.03035515869965  |
| С        | 4.47706789647701  | 5.75566782889430      | 3.87804209231736  |
| С        | 4.40770203881129  | 12.36915065794697     | 2.64558264928736  |
| Н        | 5.23488011777449  | 11.96687453489540     | 2.04592618507372  |
| Н        | 4.79438242542688  | 12.96094228113947     | 3.49433611017369  |
| н        | 3.76009259368946  | 12.98335284611760     | 1.99646477180323  |
| C        | 7.25002796077816  | 7.00200129035281      | 1.90842014695188  |
| н        | 7.38381424191964  | 8.05716583664322      | 1.63620954300954  |
| н        | 7 35348630159420  | 6 38046790138826      | 1 00320428797841  |
| Н        | 7.97304721281180  | 6.69876325961725      | 2.68587117039771  |
|          |                   |                       |                   |
| Тb       | 10.60947042051786 | 8.13640733843592      | 2.38405082876606  |
| V        | 12.5868/1/388/926 | 9.596/4449918/16      | -0.08240522537432 |
| 0        | 10.96818563/92/11 | 10.0120503/220605     | 0.9/5/96963/5244  |
| 0        | 12.04347331096572 | 7.77430761039490      | 0.52020248117289  |
| 0        | 13.77488081761629 | 9.95462788955077      | 0.90344839856378  |
| 0        | 10.93458128411027 | 9.28582215046200      | -1.68355556775034 |
| Н        | 11.10114876117609 | 8.52700046342021      | -2.27324387389638 |
| Н        | 10.15455522863361 | 9.00014508732195      | -1.15516090762408 |
| 0        | 8.93636600928995  | 10.01825525213805     | 2.57425148872587  |
| 0        | 11.16504626502937 | 5.73375338765614      | 1.86618973051959  |
| 0        | 11.82760145717940 | 9.78453945451218      | 3.69710825052842  |
| 0        | 13.95557608301026 | 9.74364065345853      | 4.12487954864301  |
| 0        | 12.94203107980828 | 8.04697370029137      | 3.21153629229587  |
| 0        | 10.11994982893973 | 7.15979308635356      | 6.45447679895697  |
| 0        | 9.55779160187337  | 8.44722640109629      | 4.82713510998793  |
| 0        | 8.46685421045309  | 7.03036914379827      | 2.38519693121791  |
| 0        | 9.16047622322216  | 7.60078452745768      | 0.43546329258335  |
| 0        | 7.23395923218609  | 6.62398902228983      | 0.65873428345799  |
| 0        | 10.70769105967172 | 6.77562205941553      | 4.42760757996823  |
| Ν        | 12.55869799479536 | 11.49828781918787     | -0.92560835664059 |
| Ν        | 13.74363730074898 | 8.72814531120795      | -1.58284576746316 |
| Ν        | 8.25232374091829  | 7.06815894446835      | 1.13116962728093  |
| Ν        | 12.94709908992024 | 9.20634939294280      | 3.69644914961661  |
| Ν        | 10.12556318733224 | 7.46651453671681      | 5.27612872494844  |
| С        | 10.34984064693852 | 11.18645184557174     | 1.12168993750443  |
| С        | 9.25168878697171  | 11.24132009159437     | 1.98619513821776  |
| С        | 8.56538012638195  | 12.41322076187340     | 2.20332494724978  |
| Н        | 7.72136421442534  | 12.43829429223334     | 2.89953559720608  |
| С        | 8.95525110156146  | 13,56751639248204     | 1,54499832576240  |
| H        | 8.41163743610460  | 14.50148845104068     | 1.73054998723636  |
| C        | 9,98992958550522  | 13.53640466446730     | 0.67163140776792  |
| н        | 10.29106224654906 | 14.44594508784914     | 0.13544601817996  |
| C        | 10.70873436753029 | 12.35094025875683     | 0.43239720973687  |
| c        | 11.77791113680300 | 12.43154684683951     | -0.53813123316909 |
| н        | 11.90090247965155 | 13,43556299736757     | -0.98797825644513 |
| c        | 13 58684941335132 | 11 88701219510958     | -1 91397765262706 |
| н        | 13,2939988918861/ | 12,85805518852145     | -2.36157915157/16 |
| н        | 14,52875787475677 | 12,06894826331298     | -1.35542448173818 |
| Ċ        | 13 79394926553439 | 10 87318486012291     | -7 94097503875577 |
| <u> </u> |                   | TO . 0, DIO -000IZZDI |                   |

| Н      | 14.39179662009941 | 11.32063654120680  | -3.75936928179392 |
|--------|-------------------|--------------------|-------------------|
| Н      | 12.83786462099003 | 10.56072504197610  | -3.40366918994991 |
| С      | 14.56812994648617 | 9.67560905388325   | -2.43943926300894 |
| Н      | 15.41381550534469 | 10.00578987973516  | -1.80533693632662 |
| н      | 14.99032166964048 | 9.09132456808415   | -3.28093278984932 |
| С      | 14.02897907263228 | 7,48883633305668   | -1.63990968905563 |
| H      | 14.76771586384887 | 7.15858307131227   | -2.39816086317211 |
| C      | 13.55626309598694 | 6.42257698140179   | -0.78313239092212 |
| c      | 13,66186405902272 | 4.06605267038550   | -0.25841913210488 |
| н      | 14,09616170849489 | 3,07398456458520   | -0.43193529996089 |
| c      | 12 68132407697502 | 4 21558455342799   | 0 69796192113080  |
| н      | 12 33950683814960 | 3 35326625673787   | 1 27785942807851  |
| Ċ      | 12 15455404976351 | 5 46690120115804   | 0 92877755297021  |
| c      | 12 58051635223555 | 6 59578794058226   | 0.22077755257021  |
| c      | 7 5877000/100107  | 0.015331/6068100   | 3 11687785709504  |
| ц      | 6 85538601656681  | 10 2262132/19/6/0  | 2 35107990592265  |
| LI LI  | 7 40608170040888  | 10.5210/529007256  | 4 02751446640106  |
| ц      | 7 45160558412872  | 8 8503644558557250 | 3 38388565086054  |
| Ċ      | 10 /330285//1/510 | 1 5702888516873    | 2 37609802621262  |
| с<br>u | 11 00050702270072 | 4.3/9200003100/3   | 2.37009802021202  |
|        | 10 02047000177560 | 2 09707572606040   | 1 52121175461920  |
|        | 0 61510026017261  | 4 09072901600520   | 1.55121175401029  |
| п<br>С | 9.01510950017301  | 4.98972891090520   | 2.98199641646641  |
|        | 14.08//3810320594 | 5.13231861203525   | -0.99/950809/8968 |
| п      | 14.8540/519000/85 | 5.00025045947011   | -1.//210085504/55 |
| Dy     | 9.82817962583761  | 8.13119197828618   | 7.30984530938112  |
| V      | 11.83217918839269 | 9.53108473126220   | 4.84125349456290  |
| С      | 11.77663776953551 | 6.54869164276579   | 5.16316565906655  |
| С      | 11.33517809158155 | 5.43336257447515   | 5.89817219364560  |
| С      | 11.85969383528148 | 4.17379302216061   | 5.70646949424462  |
| Н      | 11.50767840907331 | 3.32590644144968   | 6.30107149878074  |
| С      | 12.86903075384630 | 3.99139869786682   | 4.75983909898466  |
| Н      | 13.30741489854448 | 2.99680907271023   | 4.61898109795154  |
| С      | 13.30364081153832 | 5.05598398810682   | 4.00698221910849  |
| Н      | 14.08141874221712 | 4.91157873809076   | 3.24575539469754  |
| С      | 12.75780550798398 | 6.34749275480809   | 4.17801316540565  |
| С      | 13.22605287170166 | 7.38540903344612   | 3.27971368840816  |
| Н      | 13.96294640384970 | 7.04205078089739   | 2.52688090152707  |
| С      | 13.81798156632948 | 9.59175662985697   | 2.47567214208546  |
| Н      | 14.67031435583718 | 9.86233182558228   | 3.12725504912770  |
| Н      | 14.21143603797143 | 9.00444636468932   | 1.62352659251129  |
| С      | 13.08659911310343 | 10.81976593782521  | 2.01032673441955  |
| Н      | 13.69131185146914 | 11.25316858043456  | 1.18803761376271  |
| Н      | 12.11772622603922 | 10.54793161621253  | 1.54748717911231  |
| С      | 12.92332710713639 | 11.82249070966266  | 3.03432708774848  |
| Н      | 12.65452179707334 | 12.80688249243010  | 2.60194773071979  |
| Н      | 13.87014004314462 | 11.97133725712544  | 3.59455429551019  |
| С      | 11.11430339607168 | 12.39370122118419  | 4.39946571115726  |
| Н      | 11.26284063808311 | 13.39659835982472  | 3.95537201447543  |
| С      | 10.02191204019389 | 12.33125260428426  | 5.35088672978890  |
| С      | 9.29180023317513  | 13.52158438838264  | 5.54591229805790  |
| Н      | 9.60861863452372  | 14.42521852282682  | 5.00918065411792  |
| c      | 8 21321257598068  | 13 55931265757517  | 6 38077718060011  |

| н      | 7 65912967747111   | 14 49361314786790 | 6 52935281442095  |
|--------|--------------------|-------------------|-------------------|
| Ċ      | 7 79962147129617   | 12 40793500568131 | 7 05042251857141  |
| L<br>L | 6 02921165960272   | 12.40755500508151 | 7 710942251057141 |
| Ċ      | 9 40000612550017   | 11 22220674942462 | 6 97407057541490  |
| c      | 0 6212209012559017 | 11 172726221/1001 | 6 0422260766140   |
| c      | 0 6160017109032    | 4 59525032141091  | 7 25005207810202  |
|        | 9.010091/1884385   | 4.58525998522408  | 7.33905297810302  |
|        | 9.23544860549587   | 5.95800052558811  | 0.5352/90080/089  |
| н      | 8./8584062130699   | 5.002/4114923422  | /.94285492564814  |
| H      | 10.2/423///5/613/  | 4.00520563235430  | 8.02815067746503  |
| C      | 6.80424478818182   | 9.93645073549150  | 7.95780721872849  |
| н      | 6.6936/314492886   | 10.56691745934608 | 8.856191/5405568  |
| н      | 6.6503/2592166/0   | 8.88684426970462  | 8.239/5821852206  |
| Н      | 6.09546674944825   | 10.242391/3006853 | /.1680850143/836  |
| Ν      | 12.93804901592471  | 8.63322417091579  | 3.32752673175395  |
| Ν      | 11.88311783720499  | 11.44463295800977 | 4.02178420340330  |
| Ν      | 7.46160590604274   | 7.07501054730623  | 6.10860854565572  |
| Ν      | 9.27621494682733   | 7.47011659895749  | 10.16362128732239 |
| Ν      | 12.16049050202983  | 9.18088918986665  | 8.59854456911457  |
| 0      | 11.22316873445755  | 7.73042207451074  | 5.43411576088598  |
| 0      | 10.24934119131428  | 9.99154171543958  | 5.93000845072385  |
| 0      | 10.20128977355990  | 9.31220493138461  | 3.25337913966400  |
| 0      | 13.04818983601155  | 9.83230780953903  | 5.82331116066720  |
| 0      | 10.33322351043367  | 5.72763169845692  | 6.81597109000383  |
| 0      | 8.16411017322108   | 10.01902817486349 | 7.45191021303936  |
| 0      | 8.35940127689335   | 7.59236704993407  | 5.39155881115608  |
| 0      | 7.70363380873644   | 7.03889555363387  | 7.37173422405762  |
| 0      | 6.41753386171151   | 6.63821598579704  | 5.66045985893902  |
| 0      | 9.99181294647297   | 6.81592153268537  | 9.34650456203030  |
| 0      | 8.64593586304024   | 8.44729911806959  | 9.70759792847742  |
| 0      | 9.21928121698564   | 7.13505779263971  | 11.35462344543094 |
| 0      | 10.99990146231621  | 9.71941158160318  | 8.69179078131124  |
| 0      | 12.18697583282354  | 8.04207267674152  | 8.04427059854779  |
| 0      | 13.15619906978699  | 9.73637511205781  | 9.02125719926378  |
| H      | 10.36404729756046  | 8,55473700471149  | 2.66067344167432  |
| Н      | 9.39949361213803   | 9.04502559188742  | 3.75699440175707  |
|        |                    |                   |                   |
| Er     | 4.43336607130122   | 7.81030530400441  | 2.78047291420480  |
| V      | 2.43160067202685   | 9.41904537554727  | 5.06354386783605  |
| 0      | 4.09327159857136   | 9.72072569009611  | 4.03840530113895  |
| 0      | 2.91801135533878   | 7.57333430125829  | 4.51722418897326  |
| 0      | 6.07284905579019   | 9.60087055774205  | 2.38984628052661  |
| 0      | 3.81092751621486   | 5.49128056553736  | 3.26055038348932  |
| 0      | 2.21814088822485   | 7.58707549526519  | 1.81983636726380  |
| 0      | 3.32199779563541   | 9.35709591959302  | 1.32796446201846  |
| 0      | 5.76581297516685   | 7.38571289142119  | 4.77798504620680  |
| 0      | 6.52116073803832   | 6.68583701121407  | 2.90861748405090  |
| 0      | 4.96217758853557   | 6.91807596786917  | 0.78434445654104  |
| Ν      | 2.20441802081907   | 8.73164537422782  | 1.27012636974625  |
| Ν      | 6.68884440936070   | 6.79684084565644  | 4.17466189937863  |
| 0      | 1.28956956332659   | 9.80525045274262  | 4.03205029789821  |
| 0      | 4.01821366432477   | 9.03779753347649  | 6.69768092470960  |
| Ν      | 2.55653026659083   | 11.33854172176684 | 5.86187037444465  |
| Ν      | 1.17379235796841   | 8.64265613663941  | 6.53958005136832  |
|        |                    |                   |                   |

| С | 4.74618674584100  | 10.87761136698346 | 3.82953796509621  |
|---|-------------------|-------------------|-------------------|
| С | 2.38911383596480  | 6.41069406262651  | 4.88267059174854  |
| С | 5.81578252479276  | 10.84537499442285 | 2.91947200364506  |
| С | 7.38120023526442  | 9.42718292297423  | 1.78564443400392  |
| С | 2.83692128581905  | 5.25142362446250  | 4.23006479295079  |
| С | 4.48860690083445  | 4.33960098559747  | 2.73678337392580  |
| Ν | 4.87206779361766  | 7.36826082769295  | -0.36912593595784 |
| 0 | 1.23441370051335  | 9.21514616317975  | 0.73258005056980  |
| 0 | 7.67997496119752  | 6.39326267896436  | 4.70766658926515  |
| Н | 4.79841256174619  | 8.69496183513507  | 6.20047226924026  |
| Н | 3.81107187136024  | 8.31695849522244  | 7.32088005902956  |
| С | 3.38536645727207  | 12.21868178475556 | 5.46227390630246  |
| С | 1.53273707173685  | 11.78307565077784 | 6.83540836369434  |
| С | 0.42300092983968  | 9.58729741311357  | 7.40855892466232  |
| С | 0.92092129424090  | 7.39546310858109  | 6.67700635783851  |
| С | 4.42686464529330  | 12.07176756896354 | 4.47311273843395  |
| С | 1.42345322637486  | 6.28453556082865  | 5.90800101120361  |
| С | 6.52558440018592  | 12.00529003600990 | 2.63951246537146  |
| Н | 8.16377576320499  | 9.71832556230401  | 2.50850177698314  |
| Н | 7.45120011525118  | 10.01828301038048 | 0.85760124173052  |
| Н | 7.45760234736478  | 8.36201264204550  | 1.53082938543679  |
| С | 2.32961220954929  | 4.00627277862449  | 4.53663873831840  |
| Н | 5.26323744981049  | 4.72435411177368  | 2.05899799152148  |
| Н | 3.78688968492348  | 3.70788347374164  | 2.16343277459015  |
| Н | 4.95190252085168  | 3.76059742199853  | 3.55610939057573  |
| 0 | 5.74836332001179  | 8.08033843617618  | -0.82762908404192 |
| 0 | 3.86972810305150  | 7.29632355678858  | -1.08220637956279 |
| Н | 3.31833309526229  | 13.23499826258124 | 5.89731759944241  |
| Н | 0.60930168567676  | 12.00843501166906 | 6.26319107594014  |
| Н | 1.86722927204686  | 12.73094505582865 | 7.30126228812238  |
| С | 1.24459437483268  | 10.75182593891758 | 7.88353449495421  |
| Н | 0.00711715672167  | 9.02557283315316  | 8.26880718042083  |
| Н | -0.43858754091519 | 9.95532604210293  | 6.81453242722780  |
| Н | 0.19716106638073  | 7.10107082338154  | 7.46353460384788  |
| С | 5.17610257379407  | 13.22564371750241 | 4.17476761210672  |
| С | 0.92020713919788  | 5.00517321787051  | 6.19372767831727  |
| Н | 7.34802683339037  | 11.98327797261541 | 1.91722009193619  |
| С | 6.18823317290737  | 13.18235453079939 | 3.26286990948148  |
| С | 1.35467736456864  | 3.89825771384967  | 5.52338877725651  |
| Н | 2.67840897060372  | 3.11362997809947  | 4.00884760329271  |
| Н | 0.66862409885810  | 11.24789613641184 | 8.68924581592662  |
| Н | 2.18508426205845  | 10.40710357871145 | 8.35557436004418  |
| Н | 4.92178831872008  | 14.16610379423142 | 4.68018050756735  |
| Н | 0.15802172939104  | 4.90569408263936  | 6.97831088328616  |
| Н | 6.75250338494894  | 14.09281168530454 | 3.02689030043618  |
| Н | 0.93933654840652  | 2.91203840614738  | 5.76154032402169  |

| Compound | g <sub>x</sub> | $g_{ m y}$ | <b>g</b> z | Energy of first excited state (cm <sup>-1</sup> ) |  |
|----------|----------------|------------|------------|---------------------------------------------------|--|
| 2        | 1.981          | 1.976      | 1.930      | 15495                                             |  |
| 3        | 1.981          | 1.978      | 1.930      | 15292                                             |  |
| 4        | 1.983          | 1.981      | 1.929      | 15553                                             |  |

**Table S9.** The g-values of  $V^{IV}$  ions in **2-4** calculated by OpenMOLCAS/SINGLE\_ANISO.

**Table S10**. The splitting of the lowest multiplet for Tb<sup>III</sup> ion in **2** calculated by OpenMOLCAS/ SINGLE\_ANISO together with g-values for selected pseudo-doublets and respective tunneling rates.

| <i>E</i> (cm <sup>-1</sup> ) |                                            |
|------------------------------|--------------------------------------------|
| 0.000                        | $g_x = 0.000, g_y = 0.000, g_z = 17.726$   |
| 0.651                        | $\Delta_{ m tun}$ = 0.651 cm <sup>-1</sup> |
| 89.501                       | $g_x = 0.000, g_y = 0.000, g_z = 16.147$   |
| 93.846                       | $\Delta_{ m tun}$ = 4.345 cm <sup>-1</sup> |
| 108.891                      |                                            |
| 121.934                      |                                            |
| 163.741                      |                                            |
| 178.307                      |                                            |
| 192.549                      |                                            |
| 257.802                      |                                            |
| 258.184                      |                                            |
| 321.839                      |                                            |
| 322.995                      |                                            |

**Table S11.** The splitting of the lowest multiplet for Dy<sup>III</sup> ion in **3** calculated by OpenMOLCAS/ SINGLE\_ANISO together with g-values for each Kramers doublets and respective transition magnetic moments within each doublet quantifying probability for the quantum tunneling (QTM).

| <i>E</i> (cm <sup>-1</sup> ) | g <sub>x</sub> | $g_{\scriptscriptstyle Y}$ | gz     | QTM    |
|------------------------------|----------------|----------------------------|--------|--------|
| 0.000                        | 0.222          | 0.368                      | 18.941 | 0.0985 |
| 23.392                       | 0.029          | 0.148                      | 18.007 | 0.1491 |
| 111.912                      | 0.547          | 0.714                      | 17.573 | 0.8288 |
| 130.534                      | 1.786          | 3.261                      | 11.982 | 1.5705 |
| 185.411                      | 8.694          | 5.841                      | 1.911  | 1.7658 |
| 221.276                      | 0.183          | 1.458                      | 14.732 | 0.4392 |
| 245.258                      | 0.929          | 3.766                      | 13.144 | 1.0938 |
| 400.088                      | 0.012          | 0.148                      | 19.018 | 0.4337 |

| <i>E</i> (cm <sup>-1</sup> ) | g <sub>x</sub> | $g_{\scriptscriptstyle Y}$ | gz     | QTM    |
|------------------------------|----------------|----------------------------|--------|--------|
| 0.000                        | 1.643          | 3.634                      | 12.603 | 0.8796 |
| 47.547                       | 7.192          | 6.243                      | 2.807  | 1.6710 |
| 107.675                      | 0.213          | 3.121                      | 11.756 | 0.7747 |
| 166.728                      | 0.207          | 3.055                      | 8.518  | 1.1241 |
| 213.253                      | 1.407          | 4.060                      | 9.693  | 2.2595 |
| 248.201                      | 0.881          | 3.191                      | 8.006  | 1.4929 |
| 319.477                      | 0.648          | 3.192                      | 11.203 | 1.6391 |
| 368.499                      | 1.207          | 3.615                      | 12.732 | 1.1355 |

**Table S12.** The splitting of the lowest multiplet for Er<sup>III</sup> ion in **4** calculated by OpenMOLCAS/ SINGLE\_ANISO together with g-values for each Kramers doublets and respective transition magnetic moments within each doublet quantifying probability for the quantum tunneling (QTM).

**Table S13** NEVPT2 energy difference ( $E(M_{max})-E(M_{max}-2)$ ) between states with different multiplicities, and exchange interaction constants

| State | ΔE ( <b>2</b> ) | ΔE <b>(3)</b> | ΔE <b>(4)</b> | J <sub>(Tb-V)</sub> (2) | J <sub>(Dy-V)</sub> ( <b>3</b> ) | J <sub>(Er-V)</sub> (4) |
|-------|-----------------|---------------|---------------|-------------------------|----------------------------------|-------------------------|
| 1     | 5.217           | 6.371         | 3.035         | 2.12                    | 1.49                             | 1.52                    |
| 2     | 0.317           | 4.514         | 0.672         | 1.50                    | 0.09                             | 0.34                    |
| 3     | 1.217           | 1.514         | 0.572         | 0.50                    | 0.35                             | 0.29                    |
| 4     | 0.317           | 6.714         | -1.828        | 2.24                    | 0.09                             | -0.91                   |
| 5     | 0.617           | 2.914         | 2.072         | 0.97                    | 0.18                             | 1.04                    |
| 6     | 4.217           | 2.914         | -0.228        | 0.97                    | 1.20                             | -0.11                   |
| 7     | -0.183          | 3.514         | -7.128        | 1.17                    | -0.05                            | -3.56                   |
| 8     |                 | 1.214         | 0.272         | 0.40                    |                                  | 0.14                    |
| 9     |                 |               | 1.572         |                         |                                  | 0.79                    |
| 10    |                 |               | -1.228        |                         |                                  | -0.61                   |
| 11    |                 |               | 0.872         |                         |                                  | 0.44                    |
| 12    |                 |               | 1.372         |                         |                                  | 0.69                    |
| 13    |                 |               | 0.672         |                         |                                  | 0.34                    |
| Avg   |                 |               |               | 1.23                    | 0.48                             | 0.03                    |
|       |                 |               |               |                         |                                  |                         |



Figure S1: Ligand structures for literature research in Table 1 and Table S1



Figure S2 FTIR spectra of prepared compounds



Figure S3 XPD powder pattern of prepared compounds, compared with patterns calculated for structure 1



**Figure S4** XPD powder pattern of prepared compounds, compared with patterns calculated for structure **2** 



Figure S5 XPD powder pattern of prepared compounds, compared with patterns calculated for structure 3



Figure S6 XPD powder pattern of prepared compounds, compared with patterns calculated for structure 4



Fig. S7 A perspective view on O-H…O hydrogen bonds (black dashed lines) in 1.



Fig. S8 A perspective view on O-H···O hydrogen bonds (black dashed lines) in 2.



Fig. S9 A perspective view on O-H…O hydrogen bonds (black dashed lines) in 3.



Fig. S10 A perspective view on O-H···O hydrogen bonds (black dashed lines) in 4 (major disorder site).



**Fig. S11** Magnetic data for **1**. Temperature dependence of the effective magnetic moment  $\mu_{eff}$  calculated from the mean susceptibility measured at B = 0.2 T and the isothermal magnetizations measured at T = 2, 5 and 10 K. Experimental data – full symbols, calculated data with Eq. 3 and parameters in text – full line.



Fig. S12 Magnetic data for 1. The isothermal magnetic moments measured at T = 300 K.



**Fig S13** Magnetic data and fit for **2** in JM basis. Temperature dependence of the effective magnetic moment  $\mu_{eff}$  calculated from the mean susceptibility measured at B = 0.2 T and the isothermal magnetizations measured at T = 2 K. Experimental data – full symbols, calculated data with Eq. 4 and parameters in text – full line.



**Fig S14** Magnetic data and fit for **3** in JM basis. Temperature dependence of the effective magnetic moment  $\mu_{eff}$  calculated from the mean susceptibility measured at B = 0.2 T and the isothermal magnetizations measured at T = 2 K. Experimental data – full symbols, calculated data with Eq. 4 and parameters in text – full line.



**Fig S15** Magnetic data and fit for **4** in JM basis. Temperature dependence of the effective magnetic moment  $\mu_{eff}$  calculated from the mean susceptibility measured at B = 0.2 T and the isothermal magnetizations measured at T = 2 K. Experimental data – full symbols, calculated data with Eq. 4 and parameters in text – full line.



**Fig S16** Magnetic data and fit for **2** in LS basis. Temperature dependence of the effective magnetic moment  $\mu_{eff}$  calculated from the mean susceptibility measured at B = 0.2 T and the isothermal magnetizations measured at T = 2 K. Experimental data – full symbols, calculated data with Eq. 5 and parameters in text – full line.



**Fig S17** Magnetic data and fit for **3** in LS basis. Temperature dependence of the effective magnetic moment  $\mu_{eff}$  calculated from the mean susceptibility measured at B = 0.2 T and the isothermal magnetizations measured at T = 2 K. Experimental data – full symbols, calculated data with Eq. 5 and parameters in text – full line.



**Fig S18** Magnetic data and fit for **4** in LS basis. Temperature dependence of the effective magnetic moment  $\mu_{eff}$  calculated from the mean susceptibility measured at B = 0.2 T and the isothermal magnetizations measured at T = 2 K. Experimental data – full symbols, calculated data with Eq. 5 and parameters in text – full line.



**Fig. S19** AC susceptibility data for **4**. The field dependence of real and imaginary molar susceptibilities at T = 2 K.



**Fig. S20** AC susceptibility data for **3**. The temperature dependence of real and imaginary molar susceptibilities at B = 0.4 T.



**Fig. S21** The molecular structure of **2** derived from the experimental X-ray geometry used for CASSCF calculations overlaid with principal axes of g-tensors of the first Kramers doublet (x/y/z-axes colored as red/green/blue arrows) of V<sup>IV</sup> and Tb<sup>III</sup>. The molecular g-tensor axes of the ground state resulting from POLY\_ANISO are located in the midpoint of metal atoms and are plotted with longer arrows.



**Fig. S22** The molecular structure of **3** derived from the experimental X-ray geometry used for CASSCF calculations overlaid with principal axis of g-tensors of the first Kramers doublet (x/y/z-axes colored as red/green/blue arrows) of V<sup>IV</sup> and Dy<sup>III</sup>. The molecular g-tensor axes of the ground state resulting from POLY\_ANISO are located in the midpoint of metal atoms and are plotted with longer arrows.



**Fig. S23** The molecular structure of **4** derived from the experimental X-ray geometry used for CASSCF calculations overlaid with principal axis of g-tensors of the first Kramers doublet (x/y/z-axes colored as red/green/blue arrows) of V<sup>IV</sup> and Er<sup>III</sup>. The molecular g-tensor axes of the ground state resulting from POLY\_ANISO are located in the midpoint of metal atoms and are plotted with longer arrows.



**Fig. S24** The best-fits of experimental magnetic data (temperature dependence of mean susceptibility measured at B = 0.2 T and the isothermal molar magnetization measured at T = 2 K) of **2-5** utilizing POLY\_ANISO module.



Scheme 1: Expected structure of intermediate product [(VO)L]

#### Additional literature:

<sup>1</sup> Y.-A. Liu, C.-Y. Wang, M. Zhang and X.-Q. Song, *Polyhedron*, 2017, **127**, 278–286.

<sup>2</sup> H.-R. Wen, J. Bao, S.-J. Liu, C.-M. Liu, C.-W. Zhang and Y.-Z. Tang, *Dalt. Trans.*, 2015, 44, 11191–11201.

<sup>3</sup> P. Zhang, L. Zhang, S.-Y. Lin and J. Tang, *Inorg. Chem.*, 2013, **52**, 6595–6602.

<sup>4</sup> L. Xu, Q. Zhang, G. Hou, P. Chen, G. Li, D. M. Pajerowski and C. L. Dennis, *Polyhedron*, 2013, **52**, 91–95.

<sup>5</sup> Y. Sui, D.-S. Liu, R.-H. Hu and J.-G. Huang, *Inorganica Chim. Acta*, 2013, **395**, 225–229.

<sup>6</sup> J.-P. Costes, B. Donnadieu, R. Gheorghe, G. Novitchi, J.-P. Tuchagues and L. Vendier, *Eur. J. Inorg. Chem.*, 2008, **2008**, 5235–5244.

<sup>7</sup> J.-P. Costes, M. Auchel, F. Dahan, V. Peyrou, S. Shova and W. Wernsdorfer, *Inorg. Chem.*, 2006, **45**, 1924–1934.

<sup>8</sup> R. Koner, G.-H. Lee, Y. Wang, H.-H. Wei and S. Mohanta, *Eur. J. Inorg. Chem.*, 2005, **2005**, 1500–1505.

<sup>9</sup> R. Koner, H.-H. Lin, H.-H. Wei and S. Mohanta, Inorg. Chem., 2005, 44, 3524–3536..

<sup>10</sup>O. Margeat, P. G. Lacroix, J. P. Costes, B. Donnadieu, C. Lepetit and K. Nakatani, *Inorg. Chem.*, 2004, **43**, 4743–4750.

<sup>11</sup> G. Novitchi, S. Shova, A. Caneschi, J.-P. Costes, M. Gdaniec and N. Stanica, *Dalt. Trans.*, 2004, 1194–1200.

<sup>12</sup> H. Kara, Y. Elerman and K. Prout, *Zeitschrift für Naturforsch. B*, 2000, **55**, 1131–1136.

<sup>13</sup> J.-P. Costes, F. Dahan and A. Dupuis, *Inorg. Chem.*, 2000, **39**, 165–168.

<sup>14</sup> M. Sakamoto, M. Hashimura, K. Matsuki, N. Matsumoto, K. Inoue and H. Okawa, *Bull. Chem. Soc. Jpn.*, 1991, **64**, 3639–3641.

<sup>15</sup> T. Ishida, R. Watanabe, K. Fujiwara, A. Okazawa, N. Kojima, G. Tanaka, S. Yoshii and H. Nojiri, *Dalt. Trans.*, 2012, **41**, 13609.

<sup>16</sup> L. M. Lilley, K. Du, M. D. Krzyaniak, G. Parigi, C. Luchinat, T. D. Harris and T. J. Meade, *Inorg. Chem.*, 2018, **57**, 5810–5819..

<sup>17</sup> M. Towatari, K. Nishi, T. Fujinami, N. Matsumoto, Y. Sunatsuki, M. Kojima, N. Mochida, T. Ishida, N. Re and J. Mrozinski, *Inorg. Chem.*, 2013, **52**, 6160–6178.

<sup>18</sup> T. Kajiwara, M. Nakano, K. Takahashi, S. Takaishi and M. Yamashita, *Chem. - A Eur. J.*, 2011, **17**, 196–205.

<sup>19</sup> G. Novitchi, J.-P. Costes and B. Donnadieu, *Eur. J. Inorg. Chem.*, 2004, **2004**, 1808–1812.

<sup>20</sup> F. Z. Chiboub Fellah, S. Boulefred, A. Chiboub Fellah, B. El Rez, C. Duhayon and J.-P. Sutter, *Inorganica Chim. Acta*, 2016, **439**, 24–29.