Supporting Information

Iridium(I) Complexes Bearing Hemilabile Coumarin-Functionalised N-Heterocyclic Carbene Ligands with Application as Alkyne Hydrosilylation Catalysts

Mert Olgun Karataş,^{a,b,c} Bülent Alıcı,^{b,c} Vincenzo Passarelli,^a Ismail Özdemir,^{b,c} Jesús J. Pérez-Torrente,^{*a} and Ricardo Castarlenas,^{*a}

^aDepartamento de Química Inorgánica – Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza – CSIC, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain

^bDepartment of Chemistry, Faculty of Sciences, Inonu University, 44280, Malatya, Turkey

^cCatalysis Reseach and Application Center, İnönü University, 44280 Malatya (Turkey)

E-mail: rcastar@unizar.es, perez@unizar.es

Table of contents

1. Synthesis of (4-chloromethylene)coumarin derivatives (1a-c)	S2
2. Synthesis of imidazolium and benzimidazolium chlorides (2a-e and 3a-c)	S2
3. Calculation of thermodynamic parameters	S4
4. Variable-temperature NMR spectra	S6
5. NMR spectra of coumarin-functionalized azolium salts and Ir-NHC complexes	S 8
6. References	S29

1. Synthesis of (4-chloromethylene)coumarin derivatives (1a-c)

1a-c were prepared according to the procedure described by Frasinyuk *et al.*¹ Compound **1a** was available from our previous study.²

Chart S1. (4-chloromethylene)coumarin derivatives used in this study.

Chloromethylene-6,7-dimethyl-2*H***-chromene-2-one (1b)**. White solid, (69%), mp: 216-218 °C (lit. 215-217 °C).¹ IR (cm⁻¹): 1717 (C=O), 1638 (C=C). ¹H NMR (300 MHz, DMSO-d₆, 298 K): δ 7.62 (s, 1H, H_{Ar}), 7.27 (s, 1H, H_{Ar}), 6.59 (s, 1H, C=C<u>H</u>), 5.00 (s, 2H, C<u>H</u>₂Cl), 2.33 and 2.31 both (s, 6H, H_{ArCH}₃). ¹³C NMR (75 MHz, DMSO-d₆, 298 K): δ 159.9 (C=O), 151.7, 150.7, 142.3, 132.9, 125.0, 117.1, 114.6, 114.2, 41.2, 19.6, 18.9.

4-Chloromethylene-6-methoxy-2*H***-chromene-2-one (1c).** Green solid, (49%), mp: 122-123 °C. IR (cm⁻¹): 1718 (C=O), 1622 (C=C). ¹H NMR (300 MHz, DMSO-d₆, 298 K): δ 7.41 (m, 1H, H_{Ar}), 7.32 (m, 1H, H_{Ar}), 7.27 (m, 1H, H_{Ar}), 6.69 (s, 1H, C=C<u>H</u>), 5.07 (s, 2H, C<u>H</u>₂Cl), 3.85 (s, 3H, H_{ArOCH3}). ¹³C NMR (75 MHz, DMSO-d₆, 298 K): δ 160.2 (C=O), 156.0, 150.9, 148.1, 119.9, 118.3, 118.0, 116.2, 108.7, 56.3, 41.8.

2. Synthesis of imidazolium and benzimidazolium chlorides (2a-e and 3a-c)

Coumarin-functionalized imidazolium and benzimidazolium salts, **2a-b** and **3b-c**, respectively, were prepared according to the procedure described by us for the synthesis of **2c-e** and **3a**.²

General method. A DMF solution (5 mL) of **1** (5 mmol) and the corresponding *N*-alkylimidazole or *N*-alkylbenzimidazole (5 mmol) was heated for 3 days at 363 K. The mixture was allowed to cool to room temperature and then acetone (20 mL) was added to give a white precipitate which was collected by filtration. The crude product was washed with acetone (2 x 10 mL) and diethyl ether (2x10 mL), and dried under reduced pressure to afford the salts as white solids. Chemical shifts (expressed in parts per million) are referenced to residual solvent peaks (¹H, ¹³C{1H}). Coupling constants, *J*, are given in Hz. Spectral assignments were achieved by combination of ¹H-¹H COSY, ¹³C{¹H}-APT and ¹H-¹³C HSQC/HMBC experiments.

Chart S2. Coumarin-functionalized carbene precursors used in this study.

1-Methyl-3-((**7**,**8**-dimethyl-2*H*-chromene-2-one-4-yl)methyl)imidazolium chloride (2a). White solid, 1.1 g (72%). IR (cm⁻¹): 1710 (C=O), 1629 (C=C), 1606 (C=N). ¹H NMR (300 MHz, DMSO-d₆, 298 K): δ 9.48 (s, 1H, NC<u>H</u>N), 7.94 and 7.86 (both m, 2H, H₁₀ and H₁₁), 7.63 (d, *J*_{H-H}= 8.1 Hz, 1H, H₅), 7.26 (d, *J*_{H-H}= 8.1 Hz, H₆), 6.07 (s, 1H, H₃), 5.89 (s, 2H, H₉), 3.91 (s, 3H, NC<u>H</u>₃), 2.38 (s, 3H, H_{ArCH}3-at-7-pos.), 2.29 (s, 3H, H_{ArCH}3-at-8-pos.). ¹³C{¹H}-APT NMR (75 MHz, DMSO-d₆, 298 K): δ 160.0 (C=O), 151.6 (C_{8a}), 150.0 (C₄), 142.7 (C₇), 138.3 (NCHN), 126.3 (C₆), 124.7 and 123.5 (C₁₀ and C₁₁), 124.5 (C₈), 121.8 (C₅), 115.0 (C_{4a}), 113.6 (C₃), 48.8 (C₉), 36.6 (-NCH₃), 20.4 (ArCH₃-at-7-pos.), 11.7 (ArCH₃-at-8-pos.).

1-Methyl-3-((6-methoxy-2*H*-chromene-2-one-4-yl)methyl)imidazolium chloride (2b). White solid, 0.90 g (59%). IR (cm⁻¹): 1708 (C=O), 1626 (C=C), 1573 (C=N). ¹H NMR (300 MHz, DMSO-d₆, 298 K): δ 9.53 (s, 1H, NC<u>H</u>N), 7.98 and 7.88 (both m, 2H, H₁₀ and H₁₁), 7.43, 7.37 and 7.29 (all m, 3H, H₅, H₇ and H₈), 6.16 (s, 1H, H₃), 5.98 (s, 2H, H₉), 3.93 (s, 3H, NC<u>H</u>₃), 3.87 (s, 3H, ArOC<u>H₃</u>). ¹³C{¹H}-APT NMR (75 MHz, DMSO-d₆, 298 K): δ 160.0 (C=O), 156.3 (C₆), 149.5 (C₄), 147.8 (C_{8a}), 138.3 (NCHN), 124.7 and 123.4 (C₁₀ and C₁₁), 120.3, 118.4 and 108.1 (C₅, C₇ and C₈), 117.8 (C_{4a}), 114.8 (C₃), 56.6 (ArOCH₃), 48.8 (C₉), 36.6 (-NCH₃).

1-(4-Methylbenzyl)-3-(6,7-dimethyl-2*H***-chromene-2-one-4-yl)methyl)benzimidazolium chloride (3b).** White solid, 1.85 g (83%). IR (cm⁻¹): 1732 (C=O), 1609 (C=C), 1562 (C=N). ¹H NMR (300 MHz, DMSO-d₆, 298 K): δ 10.18 (s, 1H, NCHN), 8.04 (m, 2H, H₁₂ and H₁₅), 7.70 (s, 1H, H₅), 7.68 (m, 2H, H₁₃ and H₁₄), 7.48 (d, *J*_{H-H}= 8.0 Hz, 2H, H_{o-tol}.), 7.32 (s, 1H, H₈), 7.24 (d, 2H, *J*_{H-H}=8.0 Hz, H_{m-tol}.), 6.21 (s, 2H, H₉), 5.96 (s, 1H, H₃), 5.78 (s, 2H, NC<u>H</u>₂Ph), 2.36 and 2.34 (both s, 6H, HArC<u>H</u>₃), 2.30 (s, 3H, C<u>H</u>_{3tol}). ¹³C{¹H} NMR (75 MHz, DMSO-d₆, 298 K): δ 159.6 (C=O), 151.4 (C_{8a}), 148.5 (C₄), 143.5 (NCHN), 142.7 (C₇), 138.3 (C_{q,p-tol}.), 133.2 and 131.4 (C₁₀ and C₁₁), 131.1 (C₆), 130.6 (NCH₂C_q), 129.5 (C_{m-tol}.), 128.6 (C_{o-tol}.), 127.1 and 126.9 (C₁₃ and C₁₄), 124.5 (C₈), 117.2 (C₅), 114.5 (C_{4a}), 114.2 and 113.9 (C₁₂ and C₁₅), 111.9 (C₃), 50.1 (NCH₂Ph), 46.5 (C₉), 20.7 (ArCH_{3-tol}.), 19.7 (ArCH_{3-coumarin-7-pos}.), 18.9 (ArCH_{3-coumarin-6-pos}.).

1-Butyl-3-((**6**,7-**dimethyl-**2*H*-**chromene-2-one-4-yl**)**methyl**)**benzimidazolium chloride** (**3c**). White solid, 1.70 g (85%). IR (cm⁻¹): 1726 (-C=O), 1609 (-C=C-), 1566 (-C=N-). ¹H NMR (300 MHz, DMSO-d₆, 298 K): δ 10.32 (s, 1H, NCHN), 8.21 and 8.05 (both m, 2H, H₁₂ and H₁₅), 7.75 (s, 1H, H₅), 7.72 (m, 2H, H₁₃ and H₁₄), 7.32 (s, 1H, H₈), 6.25 (s, 2H, H₉), 5.96 (s, 1H, H₃), 4.57 (t, $J_{\text{H-H}}$ = 7.2 Hz, 2H, NC<u>H</u>₂CH₂), 2.36 and 2.34 (both s, 6H, ArCH₃), 1.96 (m, 2H, NCH₂C<u>H</u>₂), 1.39 (m, 2H, C<u>H</u>₂CH₃), 0.95 (t, $J_{\text{H-H}}$ = 7.3 Hz, 3H, CH₂C<u>H</u>₃). ¹³C{¹H} NMR (75 MHz, DMSO-d₆, 298 K): δ 159.6 (C=O), 151.4 (C_{8a}), 148.5 (C₄), 143.4 (NCHN), 142.6 (C₇), 133.2 and 131.4 (C₁₀ and C₁₁), 131.2 (C₆), 126.9 and 126.8 (C₁₃ and C₁₄), 124.8 (C₈), 117.1 (C₅), 114.5 (C_{4a}), 114.0 and 113.8 (C₁₂ and C₁₅), 111.9 (C₃), 46.8 (C₉), 46.4 (NCH₂), 30.3 (NCH₂C<u>H₂</u>), 19.7 (ArCH_{3-coumarin-7-pos.}), 19.1 (<u>C</u>H₂CH₃), 18.8 (ArCH_{3-coumarin-6-pos.}), 13.4 (CH₂<u>C</u>H₃).

3. Calculation of thermodynamic parameters

The thermodynamic parameters of the equilibria **TBPY-5** \leftrightarrows **SP-4** for **4a**, **4e** and **5b** (Scheme S1) were obtained analysing the dependence of the ¹H chemical shift of the H-3 hydrogen atom of the pyrone moiety in **4a**, **4e** and **5b** on the temperature (Table S1).

4a, imidazolin, R = Me, R' = 7,8-Me₂
4e, imidazolin, R = benzyl, R' = 7,8-Me₂
5b, benzimidazolin, R = benzyl-4-Me, R' = 6,7-Me₂

Scheme S1. Equilibrium TBPY-5 ≒ SP-4 for 4a, 4e, and 5b.

Table S1. ¹H chemical shifts (δ_{obs}) of the H-3 hydrogen atom of the pyrone moiety vs. temperature for **4a**, **4e** and **5b** in CDCl₃.

T (K)	$\delta_{obs}(4a)$	δ_{obs} (4e)	$\delta_{obs}(\mathbf{5b})$
213	3.41	3.52	3.75
303	4.65	5.17	5.17
313	4.87	5.39	5.32
323	5.05	5.5	5.45
333	5.21	5.61	5.54
343	5.38	5.7	5.61
353	-	-	5.66

Given the equilibrium **TBPY-5** \leftrightarrows **SP-4** depicted in Scheme S1, the equilibrium constant K_{eq} is

$$K_{eq} = \frac{[TBPY - 5]}{[SP - 4]} = \frac{\chi_{TBPY - 5}}{\chi_{SP - 4}}$$

Provided that above 283 K the equilibrium is in fast exchange regime, the observed chemical shift δ_{obs} of the H-3 hydrogen atom of the pyrone moiety at temperature higher than 283 K is:

$$\delta_{obs} = \chi_{TBPY-5} \cdot \delta_{TBPY-5} + \chi_{SP-4} \cdot \delta_{SP-4} \quad (a)$$

where δ_{TBPY-5} and δ_{SP-4} are the ¹H chemical shift of the hydrogen atom H-3 of the pyrone moiety in the **TBPY-5** and the **SP-4** species, respectively. δ_{TBPY-5} is straightforwardly observed in the ¹H NMR spectrum at 213 K of **4a** (3.41 ppm), **4e** (3.52 ppm), and **5b** (3.75 ppm), where the equilibrium is in slow exchange regime and only the pentacoordinated isomer **TBPY-5** is detected. On the contrary, δ_{SP-4} was obtained as a result of the fitting analysis (*vide infra*). Thus, δ_{obs} can be expressed as a function of K_{eq} :

$$\delta_{obs} = \chi_{TBPY-5} \cdot \delta_{TBPY-5} + \chi_{SP-4} \cdot \delta_{SP-4} = \frac{1}{1 + K_{eq}} \cdot \left(\delta_{TBPY-5} + K_{eq} \cdot \delta_{SP-4}\right) \quad (b)$$

and eventually as a function of ΔH_r and ΔS_r .

$$\delta_{obs} = \frac{1}{1 + e^{\left(-\frac{\Delta H_r}{RT} + \frac{\Delta S_r}{R}\right)}} \cdot \left(\delta_{TBPY-5} + \delta_{SP-4} \cdot e^{\left(-\frac{\Delta H_r}{RT} + \frac{\Delta S_r}{R}\right)}\right) \quad (c)$$

Figure S1 shows the plot δ_{obs} vs. T for **4a**, **4e**, and **5b** and the fitting curves (equation *c*) along with the calculated parameters ΔH_r , ΔS_r and δ_{SP-4} , taking $\delta_{TBPY-5} = 3.75$ ppm (**5b**), 3.41 (**4a**), 3.52 (**4e**) ppm (*cf*. Table S1).

Figure S1. Scatter plot of the ¹H chemical shifts (δ_{obs}) of the H-3 hydrogen atom of the pyrone moiety vs. temperature for **4a** (red), **4e** (green) and **5b** (black) along with the fitted curves according to equation *c* (*vide infra*).

For the sake of comparison, Table S2 shows the calculated K_{eq} in the range 213-353 K along with the calculated molar fraction of the **TBPY–5** and **SP–4** isomers for **4a**, **4e**, and **5b**. Remarkably, in all the cases, at 213 K the **TBPY–5** isomer is almost the only species present in solution ($\chi_{TBPY-5} \ge 0.98$) whereas at 343 K the **SP–4** isomer is the major species.

Table S2. Calculated K_{eq} , χ_{TBPY-5} and χ_{SP-4} for the equilibrium **TBPY-5** \Rightarrow **SP-4** at different temperatures.

	4 a			4 e			5b		
T (K)	Keq	<i>X TBPY</i> -5	X SP-4	Keq	<i>X TBPY</i> -5	X SP-4	Keq	χ <i>TBPY</i> -5	X SP-4
213	0.018	0.98	0.02	0.008	0.99	0.01	0.016	0.98	0.02
243	0.084	0.92	0.08	0.081	0.92	0.08	0.122	0.89	0.11
293	0.562	0.64	0.36	1.38	0.42	0.58	1.46	0.41	0.59
333	1.704	0.37	0.63	7.19	0.12	0.88	6.23	0.14	0.86
353	2.701	0.27	0.73	14.3	0.07	0.93	11.4	0.08	0.92

4. Variable-temperature NMR spectra

Figure S2. Stacked ¹H NMR spectra of 4a≓4a' in CDCl₃ at different temperatures.

Figure S3. Staked ¹H NMR spectra of 4e≓4e' in CDCl₃ at different temperatures.

Figure S4. Stacked ¹H NMR spectra of **5b≓5b'** in C₂D₂Cl₄ at different temperatures.

5. NMR spectra of coumarin-functionalized azolium salts and Ir-NHC complexes

Figure S5. ¹H NMR spectrum of **2a** in DMSO- d_6 at 298 K.

Figure S6. ${}^{13}C{}^{1}H$ -APT NMR spectrum of **2a** in DMSO- d_6 at 298 K.

Figure S7. ¹³C-¹H HSQC spectrum of **2a** in DMSO- d_6 at 298 K.

Figure S8. 13 C- 1 H HMBC spectrum of **2a** in DMSO- d_6 at 298 K.

Figure S10. ${}^{13}C{}^{1}H$ -APT NMR spectrum of **2b** in DMSO- d_6 at 298 K.

Figure S11. ¹H-¹H COSY spectrum of 2b in DMSO-*d*₆ at 298 K.

Figure S12. ¹³C-¹H HSQC spectrum of **2b** in DMSO-*d*₆ at 298 K.

Figure S14. ¹H NMR spectrum of **3b** in DMSO-*d*₆ at 298 K.

Figure S15. ${}^{13}C{}^{1}H$ NMR spectrum of **3b** in DMSO-d₆ at 298 K.

Figure S16. ¹H NMR spectrum of 3c in DMSO-*d*₆ at 298 K.

Figure S17. ${}^{13}C{}^{1}H$ NMR spectrum of **3c** in DMSO-*d*₆ at 298 K.

Figure S18. ¹H NMR spectrum of 4a in CDCl₃ at 213 K.

Figure S19. ${}^{13}C{}^{1}H$ -APT NMR spectrum of 4a in CDCl₃ at 213 K.

Figure S20. ¹H-¹H COSY spectrum of 4a in CDCl₃ at 213 K.

Figure S21. ¹³C-¹H HSQC spectrum of 4a in CDCl₃ at 213 K.

Figure S22. ¹³C-¹H HMBC spectrum of 4a in CDCl₃ at 213 K.

Figure S25. ¹H-¹H COSY spectrum of 4b in CDCl₃ at 213 K.

Figure S27. ¹³C-¹H HMBC spectrum of **4b** in CDCl₃ at 213 K.

Figure S29. ${}^{13}C{}^{1}H$ -APT NMR spectrum of 4c in CDCl₃ at 213 K.

Figure S30. ¹H-¹H COSY spectrum of 4c in CDCl₃ at 213 K.

Figure S33. ¹H NMR spectrum of 4d in CDCl₃ at 213 K.

Figure S34. ${}^{13}C{}^{1}H$ -APT NMR spectrum of 4d in CDCl₃ at 213 K.

Figure S35. ¹H-¹H COSY spectrum of 4d in CDCl₃ at 213 K.

Figure S36. ¹³C-¹H HSQC spectrum of 4d in CDCl₃ at 213 K.

Figure S37. ¹³C-¹H HMBC spectrum of 4d in CDCl₃ at 213 K.

Figure S38. ¹H NMR spectrum of 4e in CDCl₃ at 213 K.

Figure S39. ${}^{13}C{}^{1}H$ -APT NMR spectrum of 4e in CDCl₃ at 213 K.

Figure S40. ¹H-¹H COSY spectrum of 4e in CDCl₃ at 213 K.

Figure S41. ¹³C-¹H HSQC spectrum of 4e in CDCl₃ at 213 K.

Figure S42. ¹³C-¹H HMBC spectrum of 4e in CDCl₃ at 213 K.

Figure S45. ¹H-¹H COSY spectrum of **5a** in CDCl₃ at 213 K.

Figure S46. ¹³C-¹H HSQC spectrum of **5a** in CDCl₃ at 213 K.

Figure S47. ¹³C-¹H HMBC spectrum of **5a** in CDCl₃ at 213 K.

Figure S48. ¹H NMR spectrum of **5b** in CDCl₃ at 213 K.

Figure S49. ${}^{13}C{}^{1}H$ -APT NMR spectrum of **5b** in CDCl₃ at 213 K.

Figure S50. ¹H-¹H COSY spectrum of 5b in CDCl₃ at 213 K.

Figure S51. ¹³C-¹H HSQC spectrum of **5b** in CDCl₃ at 213 K.

Figure S52. ¹³C-¹H HMBC spectrum of 5b in CDCl₃ at 213 K.

S24

Figure S55. $^{13}C^{-1}H$ HSQC spectrum of 5b' in $C_2D_2Cl_4$ at 363 K.

Figure S56. ¹³C-¹H HMBC spectrum of 5b' in C₂D₂Cl₄ at 363 K.

Figure S57. ¹H NMR spectrum of 5c in CDCl₃ at 213 K.

Figure S58. $^{13}C{^{1}H}$ -APT NMR spectrum of 5c in CDCl₃ at 213 K.

Figure S59. ¹H-¹H COSY spectrum of 5c in CDCl₃ at 213 K.

Figure S60. ¹³C-¹H HSQC spectrum of 5c in CDCl₃ at 213 K.

Figure S64. ¹³C-¹H HSQC spectrum of 6 in CDCl₃ at 213 K.

Figure S65. ¹³C-¹H HMBC spectrum of 6 in CDCl₃ at 213 K.

Figure S66. Representative ¹H NMR spectrum (CDCl₃) for the identification of hydrosilylation reaction products: hydrosilylation of phenylacetylene with HSiMe₂Ph catalyzed by **6** after 24 h (entry 9, Table 1).

References

1 M. S. Frasinyuk, S. P. Bondarenko, V. P. Khilya, *Chem. Nat. Compd.*, 2006, 42, 142-14.

2 M. O. Karataş, A. Di Giuseppe, V. Passarelli, B. Alıcı, J. J. Perez-Torrente, L. A. Oro, I. Özdemir, R. Castarlenas, *Organometallics*, 2018, **37**, 191-202.