Supporting Information

Dual crystalline-amorphous salen-metal complexes behave like nematic droplets with AIEgens vistas

Madalin Damoc, Alexandru-Constantin Stoica, Mihaela Dascalu, Mihai Asandulesa, Sergiu Shova, Maria Cazacu*

Structural characterization

Figure S1. FTIR spectrum for CuL¹.

Figure S2. FTIR spectrum for ZnL¹.

Figure S3. FTIR spectrum for CoL¹.

Figure S5. FTIR spectrum for NiL².

Figure S6. FTIR spectrum for CuL³.

Crystallographic analysis

Tabel S1.	Crystal	data and	l details	of data	collection	for compl	exes.
-----------	---------	----------	-----------	---------	------------	-----------	-------

Compound	NiL ¹	CuL ¹	CoL ¹
empirical formula	$C_{48}H_{60}CI_8N_4Ni_2O_6Si_4$	$C_{49}H_{62}CI_{10}Cu_2N_4O_6Si_4$	$C_{73}H_{92}Cl_{14}Co_3N_6O_9Si_6$
Fw	1302.38	1396.96	2039.15
space group	P2 ₁ /c	P2 ₁ /c	P-1
<u>a [Å]</u>	15.2553(12)	20.1918(12)	15.6932(7)
<u>b [Å]</u>	23.7162(17)	12.5700(9)	17.4257(10)
<u>c [Å]</u>	17.6798(13)	26.0592(14)	19.5315(9)
<u>α[°]</u>	90	90	99.440(4)
<u>β[</u> °]	108.105(9)	103.639(6)	104.592(4)
γ [°]	90	90	109.205(5)
<u>V</u> [Å ³]	6079.8(8)	6427.6(7)	4699.7(4)
Ζ	4	4	2
$\rho_{\rm calcd}$ [g cm ⁻³]	1.423	1.444	1.441
Crystal size [mm]	$0.5 \times 0.4 \times 0.2$	$0.6 \times 0.15 \times 0.05$	0.5 × 0.05 × 0.03
T [K]	293(2)	180.05(10)	180.1(2)
_μ [mm ⁻¹]	1.097	1.198	1.051
20 range	2.97 to 50.05	3.216 to 50.054	3.622 to 50.052
Reflections collected	31505	31162	37110
Independent	10737 [R _{int} = 0.0686]	11343 [R _{int} = 0.0558]	16537 [R _{int} = 0.0720]
Data/restraints/para	10737/9/653	11343/2/686	16537/0/1012

<i>R</i> ₁ ^[a]	0.0731	0.0598	0.0515	
$wR_2^{[b]}$	0.1486	0.1239	0.0845	
GOF ^[c]	1.037	1.039	0.838	
Largest	diff. 0.46/-0.39	0.77/-0.89	0.57/-0.55	

Compound	ZnL ¹	NiL ²	CuL ³
empirical formula	$C_{73}H_{92}Cl_{14}Zn_3N_6O_9Si_6$	$C_{48}H_{60}Br_8N_4Ni_2O_6Si_4$	$C_{48}H_{68}Cu_2N_4O_{10}Si_4$
Fw	2058.47	1658.06	1100.50
space group	P-1	P2 ₁ /c	P2 ₁ /c
a [Å]	15.6914(9)	15.4499(13)	14.9833(18)
b [Å]	17.4652(7)	23.9712(14)	14.3565(11)
c [Å]	19.6006(8)	17.9196(12)	26.913(2)
α [°]	99.587(3)	90	90
β [°]	104.598(4)	109.483(8)	96.812(10)
Γ[°]	109.175(4)	90	90
V [Å ³]	4723.6(4)	6256.6(8)	5748.3(9)
Z	2	4	4
ρ_{calcd} [g cm ⁻³]	1.447	1.760	1.272
Crystal size [mm]	$0.4 \times 0.15 \times 0.08$	$0.2 \times 0.15 \times 0.05$	$0.15 \times 0.15 \times 0.04$
T [K]	180.05(10)	180.00(10)	293(2)
μ [mm ⁻¹]	1.280	5.833	0.877
20 range	3.028 to 50.054	3.398 to 50.054	3.22 to 50.054
Reflections collected	35173	30414	21695
Independent	16648 [R _{int} = 0.0547]	11048 [R _{int} = 0.0666]	10133 [R _{int} = 0.1250]
Data/restraints/para	16648/2/1019	11048/3/652	10133/24/625
<i>R</i> ₁ ^[a]	0.0823	0.0514	0.0676
<i>wR</i> ₂ ^[b]	0.1753	0.0843	0.1265
GOF ^[c]	1.099	0.888	0.845
Largest diff.	0.73/-0.75	0.87/-1.17	0.33/-0.36
	$b_{1} = (\nabla [/ \Gamma] 2 = 2)21/2$	$\sqrt{5}$ [/ $= 2)21)1/2$ (COL = [$\nabla [/ \Gamma]^2 = \Gamma 2 \sqrt{21} / ($

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}||/\Sigma |F_{o}|. {}^{b}wR_{2} = \{\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}]/\Sigma [w(F_{o}^{2})^{2}]\}^{1/2}. {}^{c}GOF = \{\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}]/(n - p)\}^{1/2},$ where n is the number of reflections and p is the total number of parameters refined.

 Tabel S2.
 Selected bond lengths [Å] and angles [°] for complexes.

	NiL ¹		CuL ¹		NiL ²		CuL ³	
	Α	В	Α	В	Α	В	Α	В
M1-01	1.834(4)	1.848(4)	1.893(3)	1.896(3)	1.827(5)	1.852(4)	1.897(4)	1.897(5)
M1-02	1.845(4)	1.826(4)	1.896(3)	1.905(3)	1.856(4)	1.832(4)	1.918(5)	1.898(5)
M1-N1	1.909(4)	1.913(5)	1.965(4)	1.971(4)	1.901(5)	1.889(6)	1.956(6)	1.979(6)
M1-N2	1.895(5)	1.890(4)	1.955(4)	1.971(4)	1.897(5)	1.905(6)	1.973(6)	1.982(6)
Si1-03	1.607(4)	1.598(5)	1.616(3)	1.623(4)	1.616(5)	1.625(5)	1.590(5)	1.601(5)
Si2-03	1.612(4)	1.602(5)	1.627(4)	1.626(4)	1.599(5)	1.614(5)	1.618(6)	1.606(6)
01-M1-02	168.96(16)	92.8(2)	163.43(15)	162.33(13)	165.9(2)	94.1(2)	156.1(2)	157.2(2)
01-M1-N1	92.27(19)	88.94(19)	92.25(15)	93.12(14)	93.1(2)	87.2(2)	93.2(2)	93.0(3)
01-M1-N2	88.70(19)	167.25(18)	89.30(14)	88.82(14)	87.3(2)	169.03(18)	90.5(2)	91.1(3)

02-M1-N1	86.81(19)	87.5(2)	90.01(14)	92.73(15)	89.5(2)	87.9(2)	94.7(3)	93.4(3)
02-M1-N2	94.09(19)	93.28(18)	92.47(13)	91.38(14)	93.1(2)	92.8(2)	92.4(3)	92.7(3)
N2-M1-N1	170.17(17)	168.41(19)	165.97(17)	159.92(15)	167.7(2)	170.3(2)	153.2(3)	154.1(3)
Si1-03-Si2	161.7(3)	163.7(4)	160.9(3)	154.5(2)	166.0(5)	159.9(3)	157.1(4)	163.9(4)
$\tau_4{}^{'a}$	0.144	0.169	0.209	0.260	0.182	0.143	0.351	0.336

	CoL ¹			ZnL ¹		
	Α	В	С	Α	В	С
M1-01	1.904(3)	1.899(3)	1.906(3)	1.908(5)	1.924(4)	1.921(5)
M1-02	1.901(3)	1.902(3)	1.911(3)	1.903(4)	1.917(5)	1.940(5)
M1-N1	1.999(3)	1.988(3)	1.981(3)	1.999(5)	1.994(5)	1.989(5)
M1-N2	1.984(3)	1.979(3)	1.998(3)	2.010(5)	1.985(5)	2.018(5)
Si1-O3	1.612(3)	1.622(3)	1.627(3)	1.617(6)	1.626(5)	1.638(5)
Si2-O3	1.613(3)	1.614(3)	1.625(3)	1.622(6)	1.616(5)	1.614(5)
01-M1-02	125.37(12)	124.51(13)	123.62(12)	122.9(2)	120.8(2)	120.3(2)
01-M1-N1	95.25(14)	96.34(13)	96.41(13)	95.2(2)	96.4(2)	97.1(2)
01-M1-N2	103.54(13)	104.16(13)	108.62(13)	101.9(2)	104.4(2)	108.8(2)
02-M1-N1	106.42(13)	107.02(12)	107.02(13)	107.4(2)	106.7(2)	106.6(2)
02-M1-N2	95.87(13)	97.47(13)	95.69(14)	95.5(2)	97.8(2)	96.2(2)
N2-M1-N1	134.40(13)	130.57(14)	128.35(13)	137.4(2)	133.4(2)	130.0(2)
Si1-O3-Si2	163.3(2)	159.0(2)	155.6(2)	160.9(4)	159.4(3)	155.6(3)
τ ₄ ΄	0.683	0.725	0.752	0.662	0.711	0.748
$\beta = \alpha$	180 – <i>B</i>					

 $r'_4 = \frac{\beta - \alpha}{360 - \theta} + \frac{180 - \beta}{180 - \theta}$, where α and β are the two largest valence angles at the M atom, and $\theta = 109.5^{\circ}$.

Figure S9. 2D supramolecular layers in NiL^1 (a) and ZnL^1 (b), viewed along plane.

Figure S10. 2D supramolecular layers in CuL¹ viewed along plane.

Figure S11. Intermolecular hydrogen bonding in the crystal structure of CuL³ (right side). Hbond parameters: O2A-H…O4B [O2A-H 0.87Å, H…O4B 2.03Å, O2A…O4B 2.765(7)Å, \angle O2AHO4B 142.5]; O5A-H…O2B [O5A-H 0.84Å, H…O2B 2.21Å, O5A…O2B 3.048(9)Å, \angle O5AHO2B 176.2]; O2B-H…O4A [O2B-H 0.82Å, H…O4A 2.18Å, O2B…O4A 2.957(7)Å, \angle O2BHO4A 158.1]; O5B-H…O2A [O5B-H 0.82Å, H…O2A 2.20Å, O5B…O2A 3.017(8)Å, \angle O5BHO2A 174.9].

Figure S12. PXRD data for metal complexes: CoL¹ (a), CuL¹ (b), ZnL¹ (c), NiL¹ (d), NiL² (e) and CuL³ (f).

Thermal analysis

Figure S13. Thermogravimetric analysis for all complexes presenting three main degradation stages starting with 300 °C. The small mass changes until 200 °C, are assigned due the solvent losses.

Compound	Stage of thermal degradation	T _{onset}	T _{peak}	T _{endset}	Mass losses %	The residue amount at 700 °C %
	I	29.52	51.18	73.91	15.41	
7nl ¹	II	143.65	178.51	188.66	2.28	10.00
211L	III	316.7	331.03	339.02	10.68	49.09
	IV	432.48	492.17	573.95	22.22	
	I	31.53	43	79.07	7.43	
Nii 1	II	142.84	153.68	165.39	2.15	54 09
INIL	III	286.88	308.68	322.96	23.45	54.08
	IV	453.02	486.64	538.5	11.94	
	I	33.08	45.11	80.14	1.71	
	II	125.77	134.37	143.01	3.56	
CuL ¹	III	299.97	307.42	312.65	8.74	55.85
	IV	314	338.96	374.81	17.11	
	V	441.62	446.3	487.95	12.58	
	I	31.42	41.98	88.74	5	
Col ¹	II	127.03	148.1	180.73	1.76	64.27
COL	III	341.86	350.31	359.56	17.91	04.37
	IV	455.09	514.96	583.16	10.35	
	I	32.1	38.1	64.9	1.56	
	II	151.7	164.7	170.8	5.93	
NiL ²	III	272.7	284.4	292.4	4.23	52.15
	IV	312.0	345.2	401.4	21.46	
		456.5	542.8	568.8	19.79	
Cu13	I	29.29	50.71	92.5	1.1	
		129.07	154.1	168.99	1.01	
		237.59	251.92	263.99	3.98	73.96
CUL	IV	321.36	344.39	369.68	7.28	/3.90
	V	421.43	464.39	485.78	6.09	
	VI	573.09	596.76	636.41	4.84	

Table S3. Thermal degradation stages extracted from thermogravimetric analysis.

Liquid crystalline behavior

Figure S14. Nematic liquid crystals for CuL³ (a) and NiL¹ (b).

Figure S15. Nematic liquid crystals for NiL² (a) and CuL¹ (b).

Figure S16. Nematic defects in solid state of NiL² (the biggest ones) (a) and NiL² purely crystals (b).

Figure S17. Nematic droplets of CoL¹ (a) and ZnL¹ (b).

Figure S18. NiL¹ nematic glass turning in solid state at room temperature (a) and solid state purely crystals (b).

Figure S19. First heating on DSC showing three endothermic transitions: glass transition, nematic mesophase and isotropization (a); Third heating on DSC showing two endothermic transitions: glass transition and mesophase (b).

Figure S20. Cooling on DSC showing two exothermic phase transitions due to the nematic mesophase and crystallization.

Figure S21. Arrhenius plot of β - and nematic-relaxations of complexes.

Figure S22. Phase transitions highlighted by dielectric spectroscopy for CuL¹ (a) and CoL¹ (b): Tg (glass transition), Nu (nematic uniaxial) and isotropisation. It should be noted that frequencies values have been chosen in order to provide a clearly distinction between the phase transitions.

Figure S23. Phase transitions highlighted by dielectric spectroscopy for CuL³ (a) and NiL² (b): Tg (glass transition), Nu (nematic uniaxial) and isotropisation. It should be noted that frequencies values have been chosen in order to provide a clearly distinction between the phase transitions.

Figure S24. Phase transitions highlighted by dielectric spectroscopy for NiL¹ (a) and ZnL¹ (b): Tg (glass transition), Nu (nematic uniaxial) and isotropisation. It should be noted that frequencies values have been chosen in order to provide a clearly distinction between the phase transitions.

Tabel S4. Activation energies (eV) determinate by conductivity (S/cm) for crystal to nematic uniaxial phase transitions.

Frequency	CuL ¹ First heating	CuL ¹ Second heating	CuL ³ First heating	CuL ³ Second heating
(112)	Ea Cr-Nu (eV)	Ea Cr-Nu (eV)	Ea Cr-Nu (eV)	Ea Cr-Nu (eV)
1	1.32	1.41	0.42	0.48
10 ¹	1.25	1.37	0.41	0.44
10 ²	1.09	1.12	0.32	0.41
10 ³	0.88	2.02	0.20	0.39
104	0.61	2.10	1.55	0.60
10 ⁵	0.42	1.45	1.54	0.58
10 ⁶	0.37	1.01	1.42	0.46

	CoL ¹ First heating	CoL ¹ Second heating	NiL ¹ First heating	NiL ¹ Second heating
Frequency (Hz)	Ea Cr-Nu (eV)	Ea Cr-Nu (eV)	Ea Cr-Nu (eV)	Ea Cr-Nu (eV)
1	1.24	2.55	2.15	1.29
10 ¹	1.04	2.34	2.07	1.17
10 ²	1.03	2.18	2.06	1.10
10 ³	0.71	1.95	1.53	0.95
10 ⁴	0.44	1.61	1.33	0.81
10 ⁵	0.60	1.27	1.17	0.69
10 ⁶	0.66	1.06	0.45	0.33

Tabel S5. Activation energies, **Ea (eV)**, determined by conductivity σ (S/cm) for crystal to nematic uniaxial phase transitions.

Tabel S6. Activation energies, **Ea (eV)**, determinate by conductivity σ (S/cm) for crystal to nematic uniaxial phase transitions.

Frequency	NiL ² First heating	NiL ² Second heating	ZnL ¹ First heating	ZnL ¹ Second heating
(П2)	Ea Cr-Nu (eV)	Ea Cr-Nu (eV)	Ea Cr-Nu (eV)	Ea Cr-Nu (eV)
1	0.92	3.37	3.37	2.53
10 ¹	0.85	2.05	2.05	2.36
10 ²	0.84	1.37	1.4	2.15
10 ³	0.66	1.38	1.39	1.96
10 ⁴	1.10	1.77	1.66	1.72
10 ⁵	1.49	1.07	1.11	1.49
10 ⁶	1.24	1.07	-	1.22

Amorphous vs crystalline statement

Tabel S7. Dielectric constant ϵ' and conductivity σ (S/cm) for complexes (25 °C, 1Hz) highlighting the higher values for second heating, respectively amorphous state.

Compound	First	heating	Second heating		
compound	ε'	σ (S/cm)	ε'	σ (S/cm)	
CuL ¹	2.67	1.15x10 ⁻¹⁵	2.31	7.83x10 ⁻¹⁶	
CoL ¹	1.93	8.91x10 ⁻¹⁶	4.63	3.11x10 ⁻¹⁵	
NiL ¹	2.23	4.97x10 ⁻¹⁵	1.19x10 ²	1.25x10 ⁻¹⁰	
ZnL ¹	2.76	9.12x10 ⁻¹⁵	2.97	3.39x10 ⁻¹⁵	
NiL ²	2.27	3.83x10 ⁻¹⁵	2.99	4.12x10 ⁻¹⁵	
CuL ³	2.04	2.81x10 ⁻¹⁵	2.91	3.32x10 ⁻¹⁴	

Compound	First h	leating	Second heating			
compound	ε'	σ (S/cm)	ε'	σ (S/cm)		
CuL ¹	7.98	1.52x10 ⁻¹¹	7.46	4.67x10 ⁻¹¹		
CoL ¹	3.25	2.81x10 ⁻¹²	5.96x10 ¹	2.21x10 ⁻¹⁰		
NiL ¹	1.56x10 ¹	6.82x10 ⁻¹¹	3.66x10 ³	2.96x10 ⁻⁸		
ZnL ¹	2.06x10 ¹	2.85x10 ⁻¹⁰	5.31x10 ⁴	3.3x10 ⁻⁴		
NiL ²	5.44	1.08x10 ⁻¹¹	7.76	2.04x10 ⁻¹¹		
CuL ³	3.97x10 ²	9.26x10 ⁻⁹	4.18x10 ³	3.64x10 ⁻⁸		

Tabel	S8.	Dielectric	constant	ε'	and	conductivity	σ	(S/cm)	for	complexes	(150	٥C,	1Hz)
highlig	htin	g the highe	r values fo	or se	econo	d heating, resp	bec	tively ar	norp	hous state.			

Tabel S9. Phase transition enthalpies, ΔH (J/g), on first heating and second heating (DSC). It can be observed the higher transition enthalpy for first heating, respectively crystalline state.

Compound		Heating		Cooling					
	Fir	st Heating	Second						
	ΔH (J/g)								
	Cr-Nu	Nu-l	Cr-Nu	Nu-Cr	I-Nu				
CoL ¹	3.19	8.22	0.72	-0.25	-1.20				
CuL ¹	74	4.37	1.39	-4.16	-4.42				
ZnL ¹	38	6.3	0.65	-0.90	-0.50				
NiL ¹	4.25	10.57	1.28	-0.47	-1.19				
NiL ²	1.11	4.88	0.54	-0.84	-1.11				
CuL ³	0.85	3.01	0.62	-	-				

Figure S25. Comparison PXRD diffractograms of NiL¹ amorphous vs crystalline. The degree of crystallinity is 22.64% for crystalline powder and 2.35% for amorphous oil.

Figure S26. Comparison PXRD diffractograms of CoL¹ amorphous vs crystalline. The degree of crystallinity is 25.45% for crystalline powder and 5.64% for amorphous oil.

Figure S28. ¹HNMR spectrum for ZnL¹ after its izotropisation.

AIE features based on Thermotropic and Lyotropic LCs

Figure S29. Absorption spectrum exemplified for CuL^3 in $5x10^{-5}$ M DMF solution. Upper right is observed d-d transition at higher concentration.

Figure S30. Excitation (a) and emission (b) spectra for NiL¹ DMF solution 10⁻³M.

Figure S31. Excitation-emission matrix for thermotropic LC of CoL¹ (a) and CuL¹ (b). It should be noted that the minor signals in the range 600-700 nm have been removed for clarity.

Figure S32. Excitation-emission matrix for thermotropic LC of NiL¹ (a) and NiL² (b). It should be noted that the minor signals in the range 600-700 nm have been removed for clarity.

Figure S33. Excitation-emission matrix for thermotropic LC of CuL³ (a) and ZnL¹ (b); It should be noted that the minor signals in the range 600-700 nm have been removed for clarity.

Figure S34. Excitation-emission matrix for lyotropic liquid crystals of CoL^1 (a) and of NiL² (b) 10^{-3} M. It should be noted that the minor signals in the range 600-700 nm have been removed for clarity and for correction of the inner effect absorbance was acquired.

Figure S35. Excitation-emission matrix for lyotropic liquid crystals of NiL¹ (a) and of ZnL¹ (b) 10^{-3} M. It should be noted that the minor signals in the range 600-700 nm have been removed for clarity and for correction of the inner effect absorbance was acquired.

Figure S36. Mirror image of the ZnL¹ solid crystalline powder indicating a vibronic structure.

		Lyotropic LCs	Thermotropic LCs		
Compound	۸ex (nm)	λem (nm)	۸ex (nm)	Λem (nm)	
CoL ¹	533	573; 609; 626; 697	534	585; 604; 622; 660; 724	
CuL ¹	535	573; 610; 681	538	583; 597; 644; 696	
NiL ¹	532	569; 623; 656	533	594; 608; 681; 733	
ZnL ¹	533	574; 609; 628; 679	533	577; 607; 625; 672; 734	
NiL ¹	533	572; 609; 626; 679	531	572; 605; 643; 687; 719	
CuL ³	533	572; 608; 626; 682	532	568; 607; 644; 720	

Tabel S10. Excitation a	nd emission wa	velengths in the	case of thermotro	pic and ly	otropic LCs
-------------------------	----------------	------------------	-------------------	------------	-------------

Supramolecular alignment

Figure S37. NiL¹ lyotropic liquid crystals excitation spectra with vertically and horizontally polarized light at room temperature (a) and by heating (b).

Figure S38. NiL² lyotropic liquid crystals excitation spectra with vertically and horizontally polarized light at room temperature (a) and by heating (b).

Figure S39. CoL¹ lyotropic liquid crystals excitation spectra with vertically and horizontally polarized light at room temperature (a) and by heating (b).

Figure S40. Anisotropy and excitation spectra exemplified for NiL¹ at high temperatures around 90 °C showing randomly distribution of molecules without any orientational order.