Electronic Supplementary Information (ESI)

Coupling 6-chloro-3-methyluracil with copper: Structural features, theoretical analysis, and bio-functional properties

Brajesh Kumar^a, Tushar Das^a, Subhadeep Das^b, Waldemar Maniukiewicz^c, Dmytro S. Nesterov^d, Alexander Kirillov^{*d,e}, Subrata Das^{*a}

Electronic Supplementary Information (ESI) contains: supporting Figures S1-S23, Tables S1-S14, and Listings S1-S9 with additional experimental data and details.

Fig. S1 Solid-state IR spectra of Hcmu (black line) and complex 1 (red line).

Fig. S2 Ball-and-stick representation of the structure of 1 showing the numbering scheme.

 Table S1 Hydrogen bonding parameters for 1.

D–H…A	d(D–H)	d(HA)	d(DA)	<(DHA)	
O(3)-H(3W)O(4)	0.84(3)	1.82(3)	2.663(2)	174(2)	
O(3)-H(4W)O(2) ^{#1}	0.70(3)	1.99(3)	2.687(2)	180(4)	
O(4)-H(9)O(1) ^{#2}	0.72(4)	2.22(3)	2.918(2)	167(3)	
O(4)-H(10)O(5)#3	0.93(3)	1.86(3)	2.784(3)	173(3)	
O(5)-H(11)O(1)#4	0.86(3)	2.03(3)	2.870(3)	166(3)	
O(5)-H(12)O(2) ^{#5}	0.80(3)	2.18(3)	2.974(3)	169(3)	

*Symmetry code: (#1) x,-1+y,z; (#2) 1+x,y,z; (#3) x,y,-1+z; (#4) 1-x,1-y,1-z; (#5) 1-x,1-y,-z

Fig. S3 Fingerprint plots (FP) of the most significant noncovalent interactions in 1; (*a*) the full twodimensional fingerprint plot and delineated versions into (*b*) $O \cdots H$, (*c*) $H \cdots H$, (*d*) $C I \cdots H$, (*e*) $C \cdots H$, and (*f*) $C \cdots C$ contacts, respectively.

Fig. S4 The 0.02 au isosurfaces of the frontier orbitals of the HCMU ligand. The inset shows the experimental and calculated UV spectra of HCMU in methanol media.

Fig. S5 Optimized geometry of the DMF-substituted **1** (center), the 0.04 au isosurfaces of the spindown HOMO and LUMO frontier orbitals (right) and calculated UV-Vis spectrum (bottom).

Fig. S6 Experimental UV-spectra of 1 in various solvents.

Fig. S7 Experimental fluorescence spectra of **1** and Hcmu in DMF solution upon excitation at 266 and 278 nm, respectively.

Solvent	Hexane	DCM	CHCl ₃	EtOAc	CH ₃ OH	DMF	DMSO	Ac. acid	CH ₃ CN
λ _{max}	266	265	260	257	278	289	288	263	259
		Ę.	1 · 1			-			
		0			1				
		-5E-6							
	ent (A)							- - -	
	1).Curre	-12-5						-	
	WE	-1.5E-5							
		-2E-5							
		2 5 5 5			V			-	
			-1.4 -1.2	-1 Po	-0.8 tential applie	-0.6 -4 ed (V)	0.4 -0.2	0	

Table S2 The solvatochromic shift of 1 in various solvents.

Fig. S8 Cyclic voltammetry of 1 in DMF at a scan rate of 100 mV s⁻¹. The concentration of the metal complex is 0.2 mM along with 0.1 M [n-Bu₄N]PF₆ supporting electrolyte.

Fig. S9 (a) Docked structure of **1** in the uracil binding site. (b) Docked structure of the pre-existing 5-chlorouracil in the uracil binding motif of UNG enzyme (PDB: 4WS7).

Table S3. Tabulated data showing the interactions	between 1,	the reference	ligand and	the active	site
of UNG enzyme (PDB: 4WS7).					

		HYDROP	HOBIC IN	TERACTIONS OF 5	-CHLOROURACIL		
RESNR	RESTYPE	RESCHAIN	DIST	LIGCARBONIDX	PROTCARBONIDX	LIGCOO	PROTCOO
67	GLN	A	3.80	1713	488	135.942, 2.050, 78.063	136.179, 5.841, 78.151
68	ASP	A	3.41	1709	497	135.187, 1.112, 79.290	134.977, 3.294, 81.907

	HYDROGEN BONDING INTERACTIONS OF 5-CHLOROURACIL										
RESNR	RESTYPE	RESCHAIN	DIST (H-A)	DIST (D-A)	DONANGLE	PROTISDON	PROTCARBONID X	ACCEPTORTYPE			
138	ALA	A	1.52	2.33	135.92	True	1713	N2			

	HYDROPHOBIC INTERACTIONS OF 1										
RESNR	RESTYPE	RESCHAIN	DIST	LIGCARBONIDX	PROTCARBONIDX	LIGCOO	PROTCOO				
70	TYR	A	3.88	1722	514	137.220, -4.765, 76.475	139.871, - 3.219, 78.851				
71	PRO	A	2.52	1705	525	135.247, -4.970, 78.159	134.062, - 4.234, 80.253				

	HYDROGEN BONDING INTERACTIONS OF 1											
RESNR	RESTYPE	RESCHAIN	D(H-A)	D(D-A)	DONANGLE	PROTISDON	PROTCARBONIDX	ACCEPTORTYPE				
69	PRO	А	3.62	4.07	110.71	False	1716	02				
92	ARG	А	2.13	2.57	105.39	True	675	02				
93	SER	A	3.34	3.77	108.96	True	691	02				
93	SER	A	2.37	3.27	150.91	True	686	02				

 Table S4. The calculated ADME parameters for 1 using SWISS ADME.

Molecule	H-bond acceptors	H-bond donors	Heavy atoms	MR	TPSA	BBB permeability	iLOGP	Silicos-IT LogSw	Silicos-IT class	GI absorption	Lipinski	Bioavailability Score
1	4	1	20	73.31	76.45	No	0	-2.03	Soluble	High	0	0.55

Fig. S10 Antibacterial activity against *E. coli* (**A**), *S. aureus* (**B**), *P. aeruginosa* (**C**), and *B. cereus* (**D**) in the presence of control test concentrations of DMSO (8%).

Fig. S11 Antibacterial activity against E. coli at different concentrations of 1: (A) 0 µg/mL, (B) 5 µg/mL,

μg/mL, (C) 10 μg/mL, (D) 25 μg/mL, (E) 50 μg/mL, (F) 100 μg/mL, (G) 250 μg/mL, (H) 500 μg/mL.

Fig. S13 Antibacterial activity against *P. aeruginosa* at different concentrations of 1: (A) 0 μ g/mL, (B) 5 μ g/mL, (C) 10 μ g/mL, (D) 25 μ g/mL, (E) 50 μ g/mL, (F) 100 μ g/mL, (G) 250 μ g/mL, (H) 500 μ g/mL.

Fig. S14 Antibacterial activity against *B. cereus* at different concentrations of 1: (A) 0 μ g/mL, (B) 5 μ g/mL, (C) 10 μ g/mL, (D) 25 μ g/mL, (E) 50 μ g/mL, (F) 100 μ g/mL, (G) 250 μ g/mL, (H) 500 μ g/mL.

Fig. S15 Antibacterial activity against *E. coli* at different concentrations of $Cu(NO_3)_2$: (**A**) 0 µg/mL, (**B**) 5 µg/mL, (**C**) 10 µg/mL, (**D**) 25 µg/mL, (**E**) 50 µg/mL, (**F**) 100 µg/mL, (**G**) 250 µg/mL, (**H**) 500 µg/mL.

Fig. S16 Antibacterial activity against *E. coli* at different concentrations of Hcmu: (**A**) $0 \mu g/mL$, (**B**) $5 \mu g/mL$, (**C**) $10 \mu g/mL$, (**D**) $25 \mu g/mL$, (**E**) $50 \mu g/mL$, (**F**) $100 \mu g/mL$, (**G**) $250 \mu g/mL$, (**H**) $500 \mu g/mL$.

Fig. S17 Antibacterial activity against *S. aureus* at different concentrations of Cu(NO₃)₂: (A) 0 μ g/mL, (B) 5 μ g/mL, (C) 10 μ g/mL, (D) 25 μ g/mL, (E) 50 μ g/mL, (F) 100 μ g/mL, (G) 250 μ g/mL, (H) 500 μ g/mL.

Fig. S18 Antibacterial activity against *S. aureus* at different concentrations of Hcmu: (**A**) 0 μg/mL, (**B**) 5 μg/mL, (**C**) 10 μg/mL, (**D**) 25 μg/mL, (**E**) 50 μg/mL, (**F**) 100 μg/mL, (**G**) 250 μg/mL, (**H**) 500 μg/mL

Fig. S19 Antibacterial activity against *P.aeruoginosa* at different concentrations of Cu(NO₃)₂: (A) 0 μ g/mL, (B) 5 μ g/mL, (C) 10 μ g/mL, (D) 25 μ g/mL, (E) 50 μ g/mL, (F) 100 μ g/mL, (G) 250 μ g/mL, (H) 500 μ g/mL.

Fig. S20 Antibacterial activity against *P.aeruoginosa* at different concentrations of Hcmu: (**A**) 0 μg/mL, (**B**) 5 μg/mL, (**C**) 10 μg/mL, (**D**) 25 μg/mL, (**E**) 50 μg/mL, (**F**) 100 μg/mL, (**G**) 250 μg/mL, (**H**) 500 μg/mL.

Fig. S21 Antibacterial activity against *B*. *cereus* at different concentrations of $Cu(NO_3)_2$: (A) 0 µg/mL, (B) 5 µg/mL, (C) 10 µg/mL, (D) 25 µg/mL, (E) 50 µg/mL, (F) 100 µg/mL, (G) 250 µg/mL, (H) 500 µg/mL.

Fig. S22 Antibacterial activity against *B. cereus* at different concentrations of Hcmu: (**A**) $0 \ \mu g/mL$, (**B**) $5 \ \mu g/mL$, (**C**) $10 \ \mu g/mL$, (**D**) $25 \ \mu g/mL$, (**E**) $50 \ \mu g/mL$, (**F**) $100 \ \mu g/mL$, (**G**) $250 \ \mu g/mL$, (**H**) $500 \ \mu g/mL$.

Fig. S23 Graphical representation of antibacterial activity of $Cu(NO_3)_2$ (A–D) and Hcmu (E–H) at different concentrations against four bacteria types.

	SET 1	SET 2	SET 3	N total	Mean	SD	SEM	Median	
E. coli	9.568	11.781	12.345	3	11.231	1.467	0.847	11.781	
S. aureus	8.966	6.22	6.892	3	7.359	1.431	0.826	6.892	
B. cereus	12.406	14.457	8.683	3	11.848	2.927	1.689	12.406	
P. aeruginosa	4.965	4.371	4.536	3	4.624	0.370	0.177	4.54	
SET 1, SET 2, and SET 3 refer to three independent individual tests (IC ₅₀ values); N represents the total									
number of experiments that are carried out for each set; the Mean is calculated by combining the three									
individual experi	individual experiments: SD represents the calculated deviation from each set								

Table S5. Calculated IC_{50} values (µg/mL) for complex 1.

Table S6. Inhibition activity of Hcmu at different concentrations against E. coli.

µg/ml	SET 1	SET 2	SET 3	N total	Mean	SD	SEM	Median	P-value
0	0.989	0.998	1.012	3	0.999	0.011	0.006	0.998	
5	0.988	0.998	0.999	3	0.995	0.006	0.003	0.998	0.380
10	0.933	0.901	0.841	3	0.891	0.046	0.026	0.901	0.849
25	0.865	0.805	0.724	3	0.798	0.070	0.040	0.805	0.051
50	0.794	0.852	0.692	3	0.779	0.081	0.046	0.794	0.051
100	0.796	0.54	0.697	3	0.677	0.129	0.074	0.697	0.052
250	0.687	0.784	0.533	3	0.668	0.126	0.073	0.687	0.051
500	0.682	0.745	0.587	3	0.671	0.079	0.045	0.682	0.061
SET 1, SET 2, and SET 3 refer to three independent inhibition evaluations; N represents the total number of									
experiments that are carried out for each set; the Mean is calculated by combining the three individual experiments;									

SD represents the calculated deviation from each set.

µg/ml	SET 1	SET 2	SET 3	N total	Mean	SD	SEM	Median	P-value
0	1.007	0.998	0.994	3	0.999	0.006	0.003	0.998	
5	0.984	0.997	0.986	3	0.989	0.007	0.004	0.986	0.241
10	0.953	0.958	0.984	3	0.965	0.016	0.009	0.958	0.016
25	0.942	0.912	0.845	3	0.899	0.004	0.028	0.912	0.058
50	0.902	0.713	0.803	3	0.806	0.094	0.054	0.803	0.065
100	0.862	0.668	0.796	3	0.775	0.098	0.056	0.796	0.052
250	0.842	0.615	0.735	3	0.730	0.113	0.065	0.735	0.050
500	0.835	0.565	0.070	3	0.703	0.135	0.780	0.709	0.059

SET 1, SET 2, and SET 3 refer to three independent inhibition evaluations; N represents the total number of experiments that are carried out for each set; the Mean is calculated by combining the three individual experiments; SD represents the calculated deviation from each set.

Table S7. Inhibition activity of $Cu(NO_3)_2$ at different concentrations against *E. coli*.

Table S8. Inhibition activity of Hcmu at different concentrations against B. cereus

µg/ml	SET 1	SET 2	SET 3	N total	Mean	SD	SEM	Median	P-value
0	0.999	0.996	1.012	3	1	0.010	0.006	0.995	
5	0.995	0.993	0.998	3	0.997	0.001	0.008	0.998	0.728
10	0.991	0.885	0.789	3	0.888	0.101	0.058	0.885	0.219
25	0.994	0.996	0.992	3	0.994	0.002	0.001	0.994	0.486
50	0.993	0.926	0.902	3	0.940	0.047	0.027	0.926	0.197
100	0.991	0.895	0.934	3	0.940	0.048	0.027	0.934	0.170
250	0.888	0.765	0.900	3	0.851	0.074	0.043	0.888	0.063
500	0.901	0.712	0.822	3	0.811	0.094	0.054	0.822	0.073

SET 1, SET 2, and SET 3 refer to three independent inhibition evaluations; N represents the total number of experiments that are carried out for each set; the Mean is calculated by combining the three individual experiments; SD represents the calculated deviation from each set.

Table S9. Inhibition activity of $Cu(NO_3)_2$ at different concentrations against *B. cereus*.

µg/ml	SET 1	SET 2	SET 3	N total	Mean	SD	SEM	Median	P-value
0	1.004	0.996	1	3	1.000	0.004	0.002	1	
5	0.995	0.993	0.997	3	0.995	0.002	0.001	0.995	0.129
10	0.986	0.990	0.991	3	0.989	0.002	0.001	0.99	0.092
25	0.99	0.992	0.965	3	0.982	0.015	0.008	0.099	0.192
50	0.962	0.865	0.923	3	0.916	0.048	0.028	0.923	0.084
100	0.954	0.854	0.919	3	0.909	0.050	0.029	0.919	0.078
250	0.862	0.654	0.754	3	0.756	0.010	0.061	0.754	0.051
500	0.822	0.566	0.723	3	0.703	0.129	0.074	0.723	0.054
SET 1, SET 2, and SET 3 refer to three independent inhibition evaluations; N represents the total number of									
experime	ents that a	re carried	out for each	ch set; the	Mean is	calculated	by combin	ing the thr	ee individual

experiments; SD represents the calculated deviation from each set.

µg/ml	SET 1	SET 2	SET 3	N total	Mean	SD	SEM	Median	P-value
0	1.102	0.912	0.986	3	1	0.095	0.055	0.986	
5	0.996	0.993	0.991	3	0.993	0.002	0.001	0.993	0.913
10	0.912	0.945	0.966	3	0.941	0.027	0.015	0.945	0.472
25	0.856	0.812	0.786	3	0.818	0.035	0.020	0.812	0.051
50	0.912	0.834	0.777	3	0.841	0.067	0.039	0.083	0.062
100	0.821	0.823	0.723	3	0.789	0.057	0.033	0.821	0.077
250	0.666	0.595	0.811	3	0.690	0.110	0.063	0.666	0.052
500	0.501	0.612	0.695	3	0.602	0.097	0.056	0.612	0.054

SET 1, SET 2, and SET 3 refer to three independent inhibition evaluations; N represents the total number of experiments that are carried out for each set; the Mean is calculated by combining the three individual experiments; SD represents the calculated deviation from each set.

Table S10. Inhibition activity of Hcmu at different concentrations against P. aeruginosa.

Table S11. Inhibition activity of Cu(NO₃)₂ at different concentrations against *P. aeruginosa*.

µg/ml	SET 1	SET 2	SET 3	N total	Mean	SD	SEM	Median	P-value
0	1.008	0.902	1.091	3	1.000	0.094	0.05469	1.008	
5	0.998	0.992	0.995	3	0.995	0.003	0.00173	0.995	0.930
10	0.992	0.973	0.957	3	0.974	0.017	0.01012	0.973	0.700
25	0.867	0.901	0.821	3	0.863	0.040	0.02318	0.867	0.219
50	0.765	0.813	0.792	3	0.790	0.024	0.01389	0.792	0.078
100	0.735	0.798	0.812	3	0.781	0.041	0.02368	0.798	.0624
250	0.558	0.754	0.612	3	0.641	0.101	0.05845	0.612	0.077
500	0.552	0.732	0.632	3	0.638	0.090	0.05207	0.632	0.066

SET 1, SET 2, and SET 3 refer to three independent inhibition evaluations; N represents the total number of experiments that are carried out for each set; the Mean is calculated by combining the three individual experiments; SD represents the calculated deviation from each set.

Table S12 Inhibition activity of Hcmu at different concentrations against S. aureus.

µg/ml	SET 1	SET 2	SET 3	N total	Mean	SD	SEM	Median	P-value
0	1.006	0.894	1.103	3	1.001	0.104	0.060	1.006	
5	0.995	0.991	0.886	3	0.957	0.061	0.035	0.991	0.682
10	0.945	0.975	0.934	3	0.951	0.021	0.012	0.945	0.563
25	0.884	0.903	0.937	3	0.908	0.026	0.015	0.903	0.218
50	0.856	0.843	0.817	3	0.838	0.019	0.011	0.843	0.140
100	0.813	0.748	0.712	3	0.757	0.051	0.029	0.748	0.083
250	0.879	0.66	0.791	3	0.776	0.110	0.063	0.791	0.052
500	0.523	0.729	0.629	3	0.627	0.103	0.059	0.062	0.070

SET 1, SET 2, and SET 3 refer to three independent inhibition evaluations; N represents the total number of experiments that are carried out for each set; the Mean is calculated by combining the three individual experiments; SD represents the calculated deviation from each set.

µg/ml	SET 1	SET 2	SET 3	N total	Mean	SD	SEM	Median	P-value
0	1.035	0.965	1.000	3	1	0.035	0.020	1.000	
5	0.998	0.989	0.979	3	0.988	0.009	0.005	0.989	0.598
10	0.947	0.969	0.912	3	0.942	0.028	0.016	0.947	0.202
25	0.934	0.959	0.905	3	0.932	0.027	0.015	0.934	0.159
50	0.923	0.945	0.901	3	0.923	0.022	0.012	0.923	0.115
100	0.949	0.917	0.865	3	0.910	0.042	0.024	0.917	0.070
250	0.870	0.61	0.791	3	0.757	0.133	0.076	0.791	0.051
500	0.872	0.782	0.606	3	0.753	0.135	0.078	0.782	0.079
SET 1, 5	SET 1, SET 2, and SET 3 refer to three independent inhibition evaluations; N represents the total number of								

Table S13. Inhibition activity of Cu(NO₃)₂ at different concentrations against *S. aureus*.

SET 1, SET 2, and SET 3 refer to three independent inhibition evaluations; N represents the total number of experiments that are carried out for each set; the Mean is calculated by combining the three individual experiments; SD represents the calculated deviation from each set.

DPPH ASSAY								
Antioxidant Activity of Ascorbic acid								
μg/mL	SET 1	SET 2	SET 3	Ν	Mean	SD	SEM	Median
10	40.3	40.3	39.8	3	40.19	0.32	0.18	40.37
25	47.9	50.9	49.1	3	49.36	1.52	0.87	49.18
50	58.2	57.1	58.3	3	57.91	0.67	0.39	58.27
75	76.5	77.5	77.8	3	77.30	0.65	0.37	7.76
100	86.7	87.5	87.9	3	87.43	0.61	0.35	87.58
Antioxidant Activity of 1								
10	3.77	4.77	5.39	3	4.643	0.817	0.47	4.77
25	12.3	10.3	12.0	3	11.55	1.082	0.62	12.03
50	39.5	37.9	37.0	3	38.20	1.265	0.73	37.98
75	53.4	53.9	56.2	3	54.53	1.50	0.86	5.39
100	72.5	73.6	71.5	3	72.56	1.050	0.60	72.52
IC ₅₀ of DPPH Assay								
μg/mL	SET 1	SET 2	SET 3	Ν	Mean	SD	SEM	Median
Ascorbic acid	29.3	27.8	28.7	3	28.65	0.80	0.46	28.76
Compound 1	69.6	69.5	69.6	3	69.63	0.04	0.02	69.65
SET 1, SET 2, a	nd SET3	refer to	three inc	lepen	dent individ	lual evaluati	ons; N rep	resents
1 1 1 1	C	•	1 /	• 1		1 4 1 1	• 1	1 / 11

 Table S14. Antioxidant activity of ascorbic acid and 1.

SET 1, SET 2, and SET3 refer to three independent individual evaluations; N represents the total number of experiments that are carried out for each set; the Mean is calculated by combining the three individual experiments; SD represents the calculated deviation from each set.

Listing S1. Cartesian coordinates for the DFT optimized 1 with coordinated methanol molecules instead of water ones.

Cu	1.892766	-0.798478	3.939087
Cl	3.290114	1.703850	5.514801
0	0.868960	0.245174	1.531648
0	2.376243	4.618680	1.413844
0	3.677613	-1.262402	3.035566
Ν	1.991081	1.051616	3.341535
С	1.448564	1.199005	2.076590
Ν	1.599069	2.435773	1.452925
С	2.284024	3.548393	2.030422
С	2.836222	3.306431	3.349298
Н	3.365854	4.119999	3.857278
С	2.660446	2.071094	3.923647
С	1.019484	2.577000	0.117815
Н	1.245925	3.598945	-0.229655
Н	1.458228	1.829665	-0.571241
Н	-0.076017	2.419504	0.155754
Cl	0.511159	-3.297418	2.347452
0	2.908058	-1.851233	6.350404
0	1.394996	-6.222980	6.447011
0	0.114180	-0.326321	4.848535
Ν	1.796578	-2.651242	4.530698
С	2.330531	-2.802680	5.798869
Ν	2.174447	-4.040649	6.418677
С	1.492064	-5.151128	5.834186
С	0.948911	-4.905300	4.512161
Н	0.422203	-5.717151	3.998407
С	1.129492	-3.668974	3.941840
С	2.746097	-4.186293	7.756671
Н	2.517748	-5.209456	8.099317
Н	2.302889	-3.441761	8.445953
Н	3.841825	-4.028792	7.725792
С	-0.215330	-0.795619	6.174741
Н	-1.175370	-0.343022	6.489528
Н	0.585119	-0.546761	6.898228
Н	-0.331796	-1.891576	6.110042
С	3.991575	-0.817230	1.696708
Н	4.953100	-1.267607	1.383457
Н	4.098634	0.280769	1.738748
Н	3.186900	-1.087787	0.985862
Н	0.086612	0.654272	4.834594
Н	3.720833	-2.241771	3.070036

Listing S2. Cartesian coordinates for the DFT optimized 1 with coordinated DMF molecules instead of water ones.

Cu	1.912257	-0.803415	3.910225
Cl	3.273451	1.660233	5.488465
0	1.077671	0.258512	1.348283
0	2.000186	4.780995	1.643739
0	3.579843	-1.463420	2.983651
Ν	2.143389	1.020701	3.216829
С	1.563233	1.215434	1.981878

Ν	1.547442	2.513583	1.471521
С	2.059074	3.654810	2.160545
С	2.623561	3.370443	3.462827
Н	3.031873	4.196284	4.055946
С	2.623398	2.069530	3.910273
С	0.949628	2.696629	0.150317
Н	1.052617	3.763590	-0.109802
Н	1.469958	2.065127	-0.595464
Н	-0.120042	2.409354	0.166613
Cl	0.560027	-3.269796	2.327865
0	2.721513	-1.860928	6.484232
0	1.710522	-6.367076	6.229713
0	0.241941	-0.142201	4.831998
N	1.673808	-2.625680	4.606501
С	2.228485	-2.816122	5.853646
N	2.208929	-4.107635	6.380417
С	1.684268	-5.246724	5.697643
С	1.147869	-4.967719	4.382482
Н	0.731897	-5.792649	3.793439
С	1.181327	-3.672710	3.919223
С	2.780035	-4.285674	7.714011
Н	2.655227	-5.347983	7.983475
Н	2.256561	-3.638368	8.443950
Н	3.854159	-4.015194	7.714004
С	0.235783	-0.033129	6.093325
Ν	-0.735364	0.586872	6.767133
Н	1.059765	-0.464305	6.704317
С	-1.865718	1.207551	6.082437
Н	-1.941361	2.272580	6.380595
Н	-2.807999	0.693160	6.361336
Н	-1.712122	1.134525	4.991974
С	-0.704293	0.659866	8.224396
Н	-0.691960	1.719606	8.550816
Н	0.201383	0.151542	8.602907
Н	-1.601860	0.167255	8.650534
С	3.582933	-1.554103	1.720782
N	4.553261	-2.162508	1.035407
Н	2.756440	-1.116214	1.117871
С	4.517746	-2.215704	-0.422687
Н	4.504525	-3.270953	-0.763266
Н	5.414164	-1.717309	-0.844490
Н	3.611252	-1.702160	-0.791986
С	5.687042	-2.790792	1.707595
Н	5.762131	-3.851902	1.395654
Н	5.537729	-2.731905	2.799504
Н	6.627564	-2.272229	1.430644

Listing S3. Shortened example of the ORCA input TDDFT calculation (atoms coordinates are not shown).

```
! M06L ma-def2-TZVP AutoAux D3Zero RIJCOSX Grid5 FinalGrid6 TightSCF
! LARGEPRINT CPCM(METHANOL) PAL5
%tddft
  maxdim 5
  nroots 50
```

end * xyz 0 2

Listing S4. Selected output of the ORCA TDDFT calculations of the complex 1.

_____ TOTAL SCF ENERGY _____ Total Energy : -3619.90319587 Eh -98502.57373 eV DFT components: 106.000016468941 electrons : N(Alpha) 105.000017145421 electrons N(Beta) : N(Total) : 211.000033614362 electrons _____ ORBITAL ENERGIES _____ SPIN UP ORBITALS NO OCC E(Eh) E(eV) 85 1.0000 -0.358098 -9.7443 86 1.0000 -0.356204 -9.6928 87 1.0000 -0.350889 -9.5482 -0.335731 -0.324023 -0.322331 -0.317550 88 1.0000 -9.1357 1.0000 89 -8.8171 1.0000 90 -8.7711 91 1.0000 -8.6410 92 1.0000 -0.309068 -8.4102 93 1.0000 -0.303395 -8.2558 94 -8.0823 1.0000 -0.297019 95 1.0000 -0.287145 -7.8136 96 1.0000 -0.283496 -7.7143 97 1.0000 -0.258316 -7.0291 -0.253431 -0.250236 98 1.0000 -6.8962 99 1.0000 -6.8093 -0.249832 100 1.0000 -6.7983 -0.245770 101 1.0000 -6.6877 102 1.0000 -0.230699 -6.2776 103 1.0000 -0.228196 -6.2095 104 1.0000 -0.216978 -5.9043 1.0000 -0.214768 -5.8441 105 106 0.0000 -0.061013 -1.6602 -0.060326 107 0.0000 -1.6415 108 0.0000 -0.019783 -0.5383 109 0.0000 -0.017209 -0.4683 110 0.0000 -0.016293 -0.4434 111 0.0000 -0.009864 -0.2684 -0.004508 112 0.0000 -0.1227 113 0.0000 0.002113 0.0575 114 0.0000 0.004634 0.1261 115 0.0000 0.009591 0.2610 116 0.0000 0.012771 0.3475 0.019206 0.5226 117 0.0000 0.0000 0.027782 0.7560 118

119		0 031004	0 8/37
100	0.0000	0.001004	0.0437
120	0.0000	0.031967	0.8699
121	0.0000	0.035802	0.9742
122	0.0000	0.041751	1.1361
123	0.0000	0.042848	1.1659
124	0.0000	0.044595	1.2135
125	0 0000	0 048345	1 3155
120	0.0000	0.040343	1.5155
			-
		SPIN DOWN ORBITAL	S
NO	OCC	E(Eh)	E(eV)
84	1.0000	-0.358089	-9.7441
85	1.0000	-0.356708	-9.7065
86	1.0000	-0.352818	-9.6007
87	1.0000	-0.346612	-9.4318
88	1.0000	-0.319634	-8.6977
89	1 0000	-0 318795	-8 6749
90	1 0000	-0 31/1557	-8 5595
01	1 0000	-0.209947	-9 4042
91	1.0000	-0.308847	-0.4042
92	1.0000	-0.297994	-8.1088
93	1.0000	-0.286115	-7.7856
94	1.0000	-0.281945	-7.6721
95	1.0000	-0.281163	-7.6508
96	1.0000	-0.277051	-7.5389
97	1.0000	-0.258036	-7.0215
98	1.0000	-0.250199	-6.8083
99	1.0000	-0.249908	-6.8003
100	1.0000	-0.247750	-6.7416
101	1 0000	-0.230668	-6 2768
102	1 0000	-0.226917	-6 1747
102	1 0000	-0.216012	_5 0700
103	1.0000	-0.210013	-3.8780
104	1.0000	-0.213306	-5.8044
105	0.0000	-0.1/22/4	-4.68/8
106	0.0000	-0.060749	-1.6531
107	0.0000	-0.060027	-1.6334
108	0.0000	-0.019436	-0.5289
109	0.0000	-0.016059	-0.4370
110	0.0000	-0.014415	-0.3922
111	0.0000	-0.009285	-0.2527
112	0.0000	-0.004309	-0.1173
113	0.0000	0.002671	0.0727
114	0 0000	0 007338	0 1997
115	0.0000	0 010138	0.2759
116	0.0000	0.012407	0.2733
110	0.0000	0.013497	0.3073
	0.0000	0.019435	0.5289
118	0.0000	0.028625	0.7789
119	0.0000	0.031718	0.8631
120	0.0000	0.032671	0.8890
121	0.0000	0.036189	0.9848
122	0.0000	0.042226	1.1490
123	0.0000	0.043546	1.1850
124	0.0000	0.046115	1.2548

TD-DFT/TDA EXCITED STATES

STATE 19: E= 0.152151 au 4.140 eV 33393.3 cm**-1

89b ->	105b	:	0.949563	(c=	0.97445	515)	
104b ->	106b	:	0.011124	(c=	-0.10547	245)	
STATE 36:	E=	0.1823	862 au	4.9	962 eV	40023.7	cm**-1
99a ->	107a	:	0.010211	(c=	-0.10104	817)	
99a ->	110a	:	0.011583	(c=	0.10762	602)	
100a ->	106a	:	0.014966	(c=	0.12233	643)	
100a ->	108a	:	0.015365	(c=	0.12395	560)	
101a ->	106a	:	0.288032	(c=	-0.53668	642)	
104a ->	107a	:	0.157971	(c=	-0.39745	588)	
105a ->	106a	:	0.127057	(c=	0.35645	073)	
89b ->	105b	:	0.012405	(c=	-0.11137	554)	
98b ->	109b	:	0.012241	(c=	-0.11063	948)	
99b ->	108b	:	0.012990	(c=	0.11397	514)	
103b ->	107b	:	0.148000	(c=	-0.38470	757)	
104b ->	106b	:	0.114348	(c=	-0.33815	322)	

Listing S5. The TDDFT calculated wavenumbers (cm^{-1}) and intensities of the UV/Vis absorptions of the complex 1.

7353.20	0.000000000000
8039.70	51.152142865085
9897.90	0.000000000000
9031.40	7.585739065389
14431.00	0.00000000000
14719.80	0.000000000000
14615.50	11.256704135966
17499.40	28.146018182085
21295.30	0.000000000000
21591.40	0.000000000000
22995.50	0.000000000000
24431.40	0.000000000000
24071.30	55.350158284226
29147.10	0.000000000000
29086.00	25.861753658115
29711.80	7.000977327418
29916.50	0.000000000000
29304.10	0.000000000000
33393.30	16687.283394691978
33800.80	0.000813600415
33801.60	61.223268476928
34006.00	0.000216960111
34007.60	30.787724488193
34631.00	0.246846365783
34656.90	0.000000000000
35810.20	4.226382953596
35937.30	0.00000000000
35943.40	0.00000000000
35973.40	0.015675367988
36170.60	0.00000000000
36276.20	9.317460427805
3/600.10	30.229757323875
3/596.20	0.028150574344
38361.60	234/.1916886/49/6
1117 111 111	

40023.70	9511.857717422135
40079.20	0.000325440166
40009.60	2847.411339726897
40632.90	601.524347312741
40389.30	0.000433920221
39656.50	80.966204617139
40719.90	0.000216960111
40333.30	1044.702473298583
40423.40	0.000108480055
39840.50	0.000000000000
40731.50	76.309589764314
40756.60	0.002657761354
40798.20	20.464436987858
40873.10	0.000162720083
41172.80	57.275353825229

Listing S6. Selected output of the ORCA TDDFT calculations of the DFT optimized complex 1 with coordinated methanol molecules instead of water ones.

TOTAL	SCF ENERGY			
Total	Energy	: -369	8.59862609 Eh	-100643.98526 eV
DFT C	omponents:			
N(Alpi	ha)	: 114.00	0034425030 electrons	
N(Bet	a)	: 113.00	0034116126 electrons	
N(Tot	al)	: 227.00	0068541156 electrons	
ORBIT	AL ENERGIES			
		SPIN UP ORBITAL	S	
NO	OCC	E(Eh)	E(eV)	
93	1.0000	-0.349899	-9.5212	
94	1.0000	-0.335943	-9.1415	
95	1.0000	-0.329407	-8.9636	
96	1.0000	-0.325063	-8.8454	
97	1.0000	-0.323769	-8.8102	
98	1.0000	-0.316766	-8.6196	
99	1.0000	-0.311487	-8.4760	
100	1.0000	-0.302434	-8.2296	
101	1.0000	-0.299561	-8.1515	
102	1.0000	-0.289170	-7.8687	
103	1.0000	-0.286387	-7.7930	
104	1.0000	-0.285368	-7.7653	
105	1.0000	-0.265839	-7.2339	
106	1.0000	-0.262314	-7.1379	
107	1.0000	-0.252150	-6.8613	
108	1.0000	-0.251628	-6.8471	
109	1.0000	-0.241718	-6.5775	
110	1.0000	-0.238893	-6.5006	
111	1.0000	-0.235958	-6.4207	

112	1.0000	-0.219537	-5.9739
113	1.0000	-0.216591	-5.8937
114	0.0000	-0.067016	-1.8236
115	0.0000	-0.066038	-1.7970
116	0.0000	-0.026827	-0.7300
117	0.0000	-0.023870	-0.6495
118	0.0000	-0.022661	-0.6166
119	0.0000	-0.016424	-0.4469
120	0.0000	-0.014814	-0.4031
121	0.0000	-0.002526	-0.0687
122	0.0000	0.001610	0.0438
123	0 0000	0 007443	0 2025
124	0 0000	0 007622	0 2074
125	0 0000	0 016924	0 4605
126	0 0000	0 017622	0 4795
127	0.0000	0.022116	0.4755
128	0.0000	0.026207	0.0010
120	0.0000	0.020207	0.8827
130	0.0000	0.032440	0.0027
1 2 1	0.0000	0.032970	0.0974
122	0.0000	0.035340	0.9010
132	0.0000	0.036335	0.9887
133	0.0000	0.040264	1.0956
		SPIN DOWN ORBIT.	ALS
NO	OCC	E (Eh)	E(eV)
92	1.0000	-0.349947	-9.5225
93	1.0000	-0.348400	-9.4804
94	1.0000	-0.321197	-8.7402
95	1.0000	-0.320580	-8.7234
96	1.0000	-0.318488	-8.6665
97	1.0000	-0.313806	-8.5391
98	1.0000	-0.311033	-8.4636
99	1.0000	-0.298855	-8.1323
100	1.0000	-0.297409	-8.0929
101	1.0000	-0.284150	-7.7321
102	1.0000	-0.283642	-7.7183
103	1.0000	-0.279865	-7.6155
104	1.0000	-0.273452	-7.4410
105	1.0000	-0.265425	-7.2226
106	1.0000	-0.255742	-6.9591
107	1.0000	-0.252013	-6.8576
108	1.0000	-0.251307	-6.8384
109	1.0000	-0.238801	-6.4981
110	1.0000	-0.235122	-6.3980
111	1 0000	-0.218416	-5 9434
112	1 0000	-0 215429	-5 8621
113	0 0000	-0 177270	-4 8238
114	0 0000	-0.066737	-1 8160
115	0 0000	-0.065697	-1 7877
116	0.0000	-0.026526	-0 7218
117	0 0000	-0 023290	-0 6338
118	0.0000	-0.022168	-0 6032
119	0.0000	-0.016248	-0 4421
120	0 0000	-0 013943	-0 379/
121	0 0000	-0 002178	-0 0593
122	0 0000	0 002170	0.0555
123	0 0000	0 007736	0.0007
- <i>L</i> J	0.0000	0.001100	0.2100

124	0.00	000	0.008251		0.2245		
125	0.00	000	0.017391		0.4732		
126	0.00	000		0.018146	0.4938		
127	0.00	000		0.022599	0.6149		
128	0.00	000		0.026823	0.7299		
129	0.00	000		0.032519	0.8849		
130	0.00	000		0.033430	0.9097		
131	0.00	000		0.036479	0.9927		
132	0.00	000		0.036823	1.0020		
TD-DF:	r/tda	EXCI	FED S	STATES			
STATE	21:	E=	0.14	17359 au	4.010 eV	32341.5	cm**-1
94	4b ->	113b	:	0.845581	(c= 0.9195	5499)	
95	5b ->	113b	:	0.106359	(c= -0.3261	2782)	
111	lb ->	115b	:	0.011423	(c = -0.1068)	7754)	
STATE	42:	E=	0.17	79318 au	4.879 eV	39355.8	cm**-1
10	7a ->	115a	:	0.023619	(c= 0.1536	8390)	
108	3a ->	114a	:	0.024107	(c = -0.1552)	6540)	
108	3a ->	116a	:	0.017763	(c= 0.1332	7806)	
109	9a ->	114a	:	0.041296	(c = -0.2032)	1498)	
112	2a ->	115a	:	0.172510	(c= 0.4153	4362)	
113	3a ->	114a	:	0.127043	(c = -0.3564)	3088)	
113	3a ->	116a	:	0.031052	(c= 0.1762	1688)	
88	3b ->	113b	:	0.081321	(c= 0.2851	6828)	
108	3b ->	116b	:	0.015307	(c= 0.1237	2199)	
111	lb ->	115b	:	0.159780	(c = -0.3997)	2476)	
112	2b ->	114b	:	0.117977	(c = -0.3434)	7841)	
112	2b ->	116b	:	0.021496	(c = -0.1466)	1471)	

Listing S7. The TDDFT calculated wavenumbers (cm^{-1}) and intensities of the UV/Vis absorptions of the DFT optimized complex 1 with coordinated methanol molecules instead of water ones.

7014.70	0.238493401527
7841.60	351.051710241906
10788.20	0.138203590423
10208.80	59.231737382124
14797.90	0.074742758086
15156.50	0.249829567303
14052.10	24.994347136119
18151.70	39.293862582580
20347.00	0.100615251270
20228.90	0.199277861544
21198.30	0.271579818386
23329.30	0.019634890005
23533.90	765.201495516067
26817.90	14.041549875012
27270.00	2385.815632676193
28959.40	15.798818290446
28996.20	1.255493919749
27985.20	609.494431213977

29420.40	0.112276857212
31503.80	24.609839580190
32341.50	12724.455718593543
24827.30	145.219321037956
26200.30	162.721276196252
26167.30	26.905331789881
25029.30	57.064794037936
35129.60	0.536542353401
35173.70	0.000379680193
36734.20	25.582580235859
36736.60	3.748365590017
35884.60	42.306841877874
36326.90	0.638622085416
32751.70	1.057192378703
32742.40	11.236364125602
37343.20	1404.583158279382
36752.30	0.652561772519
36840.70	38.303710878039
37146.10	8.725647486241
37403.70	580.318883067285
37464.60	12.246476160314
38085.80	1290.452865083150
36912.90	1.606047218377
39355.80	13725.603015778152
39580.60	3.147820004003
39629.60	2145.340029339446
39761.40	2.966766791746
31458.60	1.209661096395
34598.10	27.108677653498
31862.60	0.370350908716
36949.30	9.804590116027
40073.60	3.524625476008

Listing S8. Selected output of the ORCA TDDFT calculations of the DFT optimized complex 1 with coordinated DMF molecules instead of water ones.

TOTAL	SCF ENERGY						
Total	Energy	:	-3964	.26022030	Eh	-107873.00475	eV
DFT co	omponents:						
N(Alpł	na)	:	135.999	986198351	electrons		
N(Beta	a)	:	134.999	986334739	electrons		
N(Tota	al)	:	270.999	972533090	electrons		
ORBITA	AL ENERGIES						
		SPIN UP	ORBITALS				
NO	OCC	E(Eh)		E(eV)			
105	1.0000	-0.371	.513	-10.1094	1		
106	1.0000	-0.362	2724	-9.8702	2		
107	1.0000	-0.362	2581	-9.8663	3		

108	1.0000	-0.359832	-9.7915
109	1.0000	-0.359674	-9.7872
110	1.0000	-0.359317	-9.7775
111	1.0000	-0.352834	-9.6011
112	1 0000	-0 347960	-9 4685
113	1 0000	-0 347882	-9.1663
111	1 0000	0.221072	0.0224
115 115	1.0000	-0.331973	-9.0334
115	1.0000	-0.320059	-8.7092
116	1.0000	-0.315937	-8.59/1
117	1.0000	-0.313713	-8.5366
118	1.0000	-0.308565	-8.3965
119	1.0000	-0.303948	-8.2708
120	1.0000	-0.295976	-8.0539
121	1.0000	-0.295310	-8.0358
122	1.0000	-0.281750	-7.6668
123	1.0000	-0.278232	-7.5711
124	1.0000	-0.277926	-7.5627
125	1.0000	-0.261139	-7.1059
126	1.0000	-0.258612	-7.0372
127	1.0000	-0.248965	-6.7747
128	1.0000	-0.247699	-6.7402
129	1 0000	-0 247147	-6 7252
130	1 0000	-0 246124	-6 6974
131	1 0000	-0 234787	-6 3889
122	1 0000	0.234707	-0.3009
122	1.0000	-0.232603	-0.3295
133	1.0000	-0.221933	-6.0391
134	1.0000	-0.213291	-5.8039
135	1.0000	-0.210193	-5./19/
136	0.0000	-0.061/13	-1.6/93
137	0.0000	-0.061274	-1.6674
138	0.0000	-0.043368	-1.1801
139	0.0000	-0.043227	-1.1763
140	0.0000	-0.020518	-0.5583
141	0.0000	-0.020341	-0.5535
142	0.0000	-0.017713	-0.4820
143	0.0000	-0.014305	-0.3893
144	0.0000	-0.012023	-0.3272
145	0.0000	-0.002517	-0.0685
146	0.0000	-0.001147	-0.0312
147	0.0000	0.006503	0.1770
148	0.0000	0.010504	0.2858
149	0.0000	0.012884	0.3506
150	0.0000	0.016883	0.4594
1.51	0.0000	0.019952	0.5429
152	0 0000	0 023914	0 6507
153	0.0000	0.025979	0.0907
157	0.0000	0.023070	0.7042
155	0.0000	0.027043	0.7570
100	0.0000	0.031042	0.0010
		SPIN DOWN ORBIT	ALS
NO	OCC	E(Eh)	E(eV)
104	1.0000	-0.370399	-10.0791
105	1.0000	-0.367286	-9.9943
106	1.0000	-0.362515	-9.8645
107	1.0000	-0.362235	-9.8569
108	1.0000	-0.359404	-9.7799
109	1.0000	-0.359326	-9.7778

110	1.0000	-0.358842	-9.7646
111	1.0000	-0.347861	-9.4658
112	1.0000	-0.347737	-9.4624
113	1.0000	-0.343994	-9.3606
114	1.0000	-0.315123	-8.5749
115	1.0000	-0.315044	-8.5728
116	1.0000	-0.311767	-8.4836
117	1.0000	-0.308297	-8.3892
118	1.0000	-0.299783	-8.1575
119	1.0000	-0.291346	-7.9279
120	1.0000	-0.283695	-7.7197
121	1.0000	-0.277069	-7.5394
122	1.0000	-0.275453	-7.4955
123	1.0000	-0.273480	-7.4418
124	1.0000	-0.263708	-7.1759
125	1.0000	-0.260849	-7.0981
126	1.0000	-0.249959	-6.8017
127	1.0000	-0.248284	-6.7561
128	1.0000	-0.246683	-6.7126
129	1.0000	-0.246208	-6.6997
130	1.0000	-0.242938	-6.6107
131	1.0000	-0.234735	-6.3875
132	1.0000	-0.231420	-6.2973
133	1.0000	-0.212227	-5.7750
134	1.0000	-0.208657	-5.6778
135	0.0000	-0.159478	-4.3396
136	0.0000	-0.061495	-1.6734
137	0.0000	-0.061018	-1.6604
138	0.0000	-0.042599	-1.1592
139	0.0000	-0.042459	-1.1554
140	0.0000	-0.020096	-0.5468
141	0.0000	-0.019835	-0.5397
142	0.0000	-0.017256	-0.4696
143	0.0000	-0.014096	-0.3836
144	0.0000	-0.011827	-0.3218
145	0.0000	-0.002521	-0.0686
146	0.0000	-0.001137	-0.0309
147	0.0000	0.006634	0.1805
148	0.0000	0.010575	0.2877
149	0.0000	0.012953	0.3525
150	0.0000	0.017024	0.4633
151	0.0000	0.020252	0.5511
152	0.0000	0.024040	0.6542
153	0.0000	0.025962	0.7065
154	0.0000	0.027878	0.7586

TD-DFT/TDA EXCITED STATES

STATE 14:	E =	0.114270 au	3.109 eV	25079.5 cm**-1
120b ->	135b	: 0.392771	(c = -0.62671)	440)
121b ->	135b	: 0.558133	(c = 0.74708)	299)
122b ->	135b	: 0.035472	(c = -0.18833)	986)
STATE 19:	E=	0.134496 au	3.660 eV	29518.4 cm**-1
119b ->	135b	: 0.922155	(c= 0.96028	915)

123b ->	135b	:	0.055677	(c = -0.23595)	997)	
STATE 26: 116b -> 117b ->	E= 135b 135b	0.1555 : :	95 au 0.918642 0.017616	4.234 eV (c= -0.958458 (c= 0.132728	34149.1 806) 559)	cm**-1
STATE 50:	E=	0.1780	52 au	4.845 eV	39077.8	cm**-1
127a ->	138a	:	0.017682	(c= -0.13297)	196)	
129a ->	138a	:	0.023759	(c= -0.15414)	002)	
130a ->	138a	:	0.018124	(c= 0.13462	649)	
130a ->	139a	:	0.043359	(c= 0.20822	716)	
133a ->	138a	:	0.083411	(c = -0.28880)	878)	
133a ->	139a	:	0.230431	(c = -0.48003)	250)	
134a ->	137a	:	0.082451	(c = -0.287142)	289)	
135a ->	136a	:	0.064275	(c= 0.25352	460)	
129b ->	139b	:	0.020665	(c = -0.14375)	168)	
130b ->	136b	:	0.061849	(c= 0.24869	543)	
130b ->	138b	:	0.041171	(c = -0.20290)	736)	
133b ->	137b	:	0.081796	(c= 0.28599)	960)	
134b ->	136b	:	0.060113	(c = -0.24517)	986)	

Listing S9. The TDDFT calculated wavenumbers (cm^{-1}) and intensities of the UV/Vis absorptions of the DFT optimized complex **1** with coordinated DMF molecules instead of water ones.

9321.10	0.695302914299
10291.30	161.821813817922
13990.00	0.028638734593
13261.90	37.983152314695
16626.30	0.051636506312
17960.90	0.077183559330
17791.30	345.932156753187
17490.70	0.575107013052
17662.60	53.887738659036
21970.60	0.031730416169
20975.70	70.693523062591
22916.70	0.184090653805
23748.90	0.066389793830
25079.50	1.396789191748
25819.50	4228.331960508796
28908.70	23.976261817344
28928.80	0.495048732257
29344.00	15.030454058918
29518.40	6345.447106665972
30952.90	124.100695076749
24525.40	55.565762394089
24594.00	66.298616343122
24664.10	34.723435133673
24705.60	44.228728777191
32582.00	1.144627303256
34149.10	14345.179149409360
33479.60	188.800478125170
33604.70	19.512958423023
35748.90	0.368940667997
34898.90	0.412658130274
34544.40	3.301102322110

35569.70	2.777197895149
35582.40	0.096384529114
34162.20	291.076667521024
34327.30	23.325544205764
36386.80	15.733133616975
36473.00	0.256935010924
35958.60	0.364492985731
35406.20	132.443191007751
35623.50	12.060866785735
36299.00	18.316369173289
36334.10	20.162211553856
36484.70	0.338186572326
33678.50	0.165377844270
33664.70	1.235533589578
37021.40	0.235998360255
37049.20	3.388428766608
38427.10	0.594362222863
38432.60	417.453870797791
39077.80	6822.113296915992