Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021

Supporting information for:

Photoinduced electron transfer in non-covalent complexes of

C₆₀ and phosphangulene oxide derivatives.

A. J. Stasyuk, *a,b O. A. Stasyuk, a M. Solà*a and A. A. Voityuk*a,c

a. Institut de Química Computacional and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany 69, 17003 Girona, Spain

b. Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland

c. Institució Catalana de Recerca i Estudis Avancats (ICREA), 08010 Barcelona, Spain

Abstract: Investigation of photoinduced electron transfer (PET) in a series of experimentally reported complexes of fullerene with phosphangulene oxides shows that the replacement of O atoms in the bridge of phosphangulene with S atoms promotes efficient and ultrafast ET from fullerene to phosphangulene oxide in $PGO^{OSS} \supset C_{60}$ and $PGO^{SSS} \supset C_{60}$ complexes. The results obtained can be useful in development of photovoltaic devices based on phosphangulenes.

Table of Contents

1.	Computational methodology	p. S3-S4
2.	Table S1. Energy decomposition analysis for PG ⁰⁰⁰ ⊃PG ⁰⁰⁰ , PG ⁰⁰⁰ ⊃C ₆₀ , and PGO ⁰⁰⁰ ⊃C ₆₀ complexes	p. S5
3.	Table S2. Charge separation in ground state for PGO ⁰⁰⁰ ⊃C ₆₀ , PGO ⁰⁰⁵ ⊃C ₆₀ , PGO ^{0ss} ⊃C ₆₀ , and PGO ^{sss} ⊃C ₆₀ complexes	p. S5
4.	Table S3. EDA Results for PGO ⁰⁰⁰ ⊃C ₆₀ , PGO ⁰⁰⁵ ⊃C ₆₀ , PGO ⁰⁵⁵ ⊃C ₆₀ , and PGO ⁵⁵⁵ ⊃C ₆₀	p. S5
5.	Table S4. Selected bond critical points parameters related to the non-covalent interactions of the fragments for studied $PGO^{000} \supset C_{60}$, $PGO^{005} \supset C_{60}$, $PGO^{005} \supset C_{60}$, and $PGO^{555} \supset C_{60}$	p. S6
6.	Table S5. Comparison of Gibbs energy for CT reaction in PGO ^{sss} ⊃ C ₆₀ complexes obtained with TD-DFT and Rehm-Weller approaches.	p. S7
7.	Table S6. Relative energies and solvation energies calculated for $PGO^{000} \supset C_{60}$, $PGO^{00S} \supset C_{60}$, $PGO^{0SS} \supset C_{60}$, $PGO^{0SS} \supset C_{60}$, and $PGO^{SSS} \supset C_{60}$ complexes in DCM	p. S7
8.	Table S7. ET parameters and rate for charge separation reactions of $PGO^{000} \supset C_{60}$ and $PGO^{sss} \supset C_{60}$ complexes in toluene (TOL) and dichloromethane (DCM)	p. S8
9.	Table S8. Excited state properties for selected excited states computed for TBSubP \supset C ₆₀ , SubPc \supset C ₆₀ , Suma \supset C ₆₀ , and Cora \supset C ₆₀ complexes in the gas-phase (VAC) and dichloromethane (DCM).	p. S8
10.	Table S9. Computed ET rates for PGO ^{sss} ⊃C ₆₀ with different effective Huang-Rhys factors	p. S9
11.	Table S10. Semi-classical rates and characteristic times computed for the $LE_1 \rightarrow$	p. S9
	CS and $LE_2 \rightarrow CS$ processes in TBSubP \supset C ₆₀ complex	
12.	Table S11. Semi-classical rates computed for the $LE_1 \rightarrow CS$ in PGO ^{SSS} \supset C ₆₀ complex in Frank-Condon and relaxed LE_1 geometries.	p. S9
13.	Figure S1. Structure and binding energies of PG ⁰⁰⁰ ⊃PG ⁰⁰⁰ , PG ⁰⁰⁰ ⊃C ₆₀ , and PGO ⁰⁰⁰ ⊃C ₆₀ complexes	p. S10
14.	Figure S2. Plot of RDG <i>vs.</i> sign(λ2)×ρ for PGO ⁰⁰⁰ ⊃C ₆₀ , PGO ^{00s} ⊃C ₆₀ , PGO ^{0ss} ⊃C ₆₀ , and PGO ^{sss} ⊃C ₆₀	p. S12
15.	Figure S3. NCI isosurfaces of van der Waals interactions in PGO ⁰⁰⁰ ⊃C ₆₀ , PGO ^{00s} ⊃C ₆₀ , PGO ^{0ss} ⊃C ₆₀ , and PGO ^{sss} ⊃C ₆₀ complexes	p. S12
16.	Figure S4. QTAIM molecular graph for PGO ⁰⁰⁰ ⊃C ₆₀ , PGO ^{00s} ⊃C ₆₀ , PGO ^{0ss} ⊃C ₆₀ , and PGO ^{sss} ⊃C ₆₀	p. S12
17.	Figure S5. Natural transition orbitals for PGO ⁰⁰⁰ ⊃C ₆₀	p. S13
18.	Figure S6. Natural transition orbitals for PGO ^{oos} ⊃C ₆₀	p. S13
19.	Figure S7. Natural transition orbitals for PGO ^{oss} ⊃C ₆₀	p. S14
20.	Figure S8. Natural transition orbitals for PGO ^{sss} ⊃C ₆₀	p. S14
21.	Figure S9. Dependence of the electron transfer rate on Gibbs free energy for PGO ^{sss} ⊃C ₆₀ complex	p. S15
22.	Cartesian coordinates of studied systems	p. S16-S23
23.	References	p. S24-S25

Computational Methodology

Quantum-chemical calculations

Geometry optimization of the complexes was performed employing the DFT B3LYP¹⁻³ exchange–correlation functional with Ahlrichs' Def2-SVP basis set,^{4,5} and using the resolution of identity approximation (RI, alternatively termed density fitting)^{6,7} implemented in the ORCA 4.2.1 program.^{8,9} The host-guest interaction energy was computed using B3LYP functional coupled with triple- ξ Def2-TZVP basis.¹⁰ Vertical excitation energies were calculated using TDA formalism¹¹ with the range-separated functional from Handy and coworkers' CAM-B3LYP¹² and Ahlrichs' Def2-SVP basis set.^{4,5} The empirical dispersion D3 correction with Becke–Johnson damping,^{13,14} was employed. The population analysis performed within Mulliken,^{15,16} Lowdin,¹⁷ Hirshfeld,¹⁸ and CM5,¹⁹ schemes were carried out using code implemented in Gaussian 16 (Rev. A03).²⁰ The excited states have been analyzed in terms of the natural transition orbitals (NTO) concept introduced by Luzanov *et al.*²¹ and implemented within modern many-body codes by Head-Gordon *et al.*²²

Topological analysys of the electron distributions was conducted using the "Quantum Theory of Atoms in Molecules" (QTAIM) approach proposed by Bader.^{23,24} The AIMALL suite of programs²⁵ was applied to evaluate the bond critical point properties and the associated bond descriptors – the electron density $[\rho(r)]$ in bond critical points (BCPs), its Laplacian $[\nabla^2 \rho(r)]$, potential energy density [V(r)], kinetic energy density [G(r)], and total electron energy density [H(r)]. The NCI technique was employed through the analysis of the reduced density gradient (RDG) at the CAM-B3LYP/Def2-SVP level Multiwfn program.²⁶ To visualize molecular structures, NCI isosurfaces, and natural transition orbitals, Chemcraft 1.8. program²⁷ was used.

Interaction energies

The interaction energies were calculated directly from the electronic energy of the complex and the electronic energies of the subsystems. For $PGO^{xxx} \supset C_{60}$, the interaction energy can be expressed as follows:

$$E_{\rm int} = E_{PGO-C_{60}} - (E_{PGO} + E_{C_{60}}) \tag{1}$$

Energy decomposition analysis

The interaction energy in the gas phase is examined in the framework of the Kohn-Sham MO model using a quantitative energy decomposition analysis (EDA)^{28,29} into electrostatic interactions, Pauli repulsive orbital interactions, and attractive orbital interactions, to which a term ΔE_{disp} is added to account for the dispersion correction:

$$\Delta E_{\rm int} = \Delta E_{elstat} + \Delta E_{Pauli} + \Delta E_{oi} + \Delta E_{disp}$$
⁽²⁾

The term ΔV_{elstat} corresponds to the classical electrostatic interactions between the unperturbed charge distributions of the prepared (i.e. deformed) bases and is usually attractive. The Pauli repulsion, $\Delta E_{Pauli\nu}$ comprises the destabilizing interactions between occupied orbitals and is responsible for any steric repulsion. The orbital interaction, ΔE_{oi} , accounts for electron-pair bonding, charge transfer (i.e., donor–acceptor interactions between occupied orbitals on one moiety and unoccupied orbitals on the other, including the HOMO-LUMO interactions) and polarization (empty-occupied orbital mixing on one fragment due to the presence of another fragment). The term ΔE_{disp} accounts for the dispersion corrections.^{13,14} The analysis was performed using the ADF suite of programs.³⁰

Non-covalent interactions (NCI)

The NCI method³¹⁻³³ relies on two scalar fields to map local bonding properties: the electron density (ρ) and the reduced-density gradient (RDG, *s*), defined as:

$$s = \frac{1}{2(3\pi)^{1/3}} \frac{|\nabla\rho|}{\rho^{4/3}}$$
(3)

a quantity that is essential to the design of DFT functionals. The combination of *s* and ρ allows a rough partition of real space into bonding regions: high-*s* low- ρ corresponds to non-interacting density tails, low-*s* high- ρ to covalent bonds, and low-*s* low- ρ to non-covalent interactions.

Complex	Energy terms								
	ΔE_{Pauli}	ΔE_{elstat}	ΔE_{oi}	ΔE_{disp}	ΔE_{int}				
PG ⁰⁰⁰ ⊃PG ⁰⁰⁰	35.63	-17.96 (32.7%)	-6.65 (12.1%)	-30.38 (55.2%)	-19.36				
PG ⁰⁰⁰ ⊃C ₆₀	34.34	-16.46 (31.7%)	-7.75 (14.9%)	-27.67 (53.3%)	-17.54				
PGO ⁰⁰⁰ ⊃C ₆₀	34.38	-16.57 (31.4%)	-7.79 (14.8%)	-28.34 (53.8%)	-18.33				

Table S1. Energy decomposition analysis for $PG^{000} \supset PG^{000} \supset C_{60}$, and $PGO^{000} \supset C_{60}$ complexes.^[a]

^[a] The energy values are in kcal/mol. The percentage contributions of all attractive terms are given in parentheses.

Table S2. Charge separation between the fragments in electronic ground state for $PGO^{000} \supset C_{60}$, $PGO^{000} \supset C_{60}$, $PGO^{000} \supset C_{60}$, $PGO^{000} \supset C_{60}$, and $PGO^{555} \supset C_{60}$ complexes. Q_{PGO} - charge on PGO^{XXX} , and $Q_{C_{60}}$ - charge on fullerene moiety. Total charge of the complexes Q_{Tot} equal to 0.

Charge	PGO ⁰⁰⁰ ⊃C ₆₀		PGO ^{oos} ⊃C ₆₀		PGO ^{oss} ⊃C ₆₀		PGO ^{sss} ⊃C ₆₀	
Charge	$Q_{\scriptscriptstyle PGO}$	$Q_{C_{60}}$	Q_{PGO}	$Q_{C_{60}}$	Q_{PGO}	$Q_{C_{60}}$	$Q_{\scriptscriptstyle PGO}$	$Q_{C_{60}}$
Mulliken	0.021	-0.021	0.018	-0.018	0.027	-0.027	0.027	-0.027
Löwdin	0.019	-0.019	0.023	-0.023	0.033	-0.033	0.036	-0.036
Hirshfeld	-0.010	0.010	-0.001	0.001	0.012	-0.012	0.018	-0.017
CM5	-0.009	0.009	0.000	0.000	0.012	-0.012	0.017	-0.017

Table S3. EDA results for $PGO^{000} \supset C_{60}$, $PGO^{005} \supset C_{60}$, $PGO^{055} \supset C_{60}$, and $PGO^{555} \supset C_{60}$ complexes.^[a]

Complex	Energy terms								
complex	ΔE_{Pauli}	ΔE_{elstat}	ΔE_{oi}	ΔE_{disp}	ΔE_{int}				
PGO ⁰⁰⁰ ⊃C ₆₀	34.38	-16.57 (31.4%)	-7.79 (14.8%)	-28.34 (53.8%)	-18.33				
PGO ^{00S} ⊃C ₆₀	32.46	-15.42 (30.0%)	-7.03 (13.7%)	-28.95 (56.3%)	-18.94				
PGO ^{oss} ⊃C ₆₀	34.36	-16.39 (30.0%)	-7.68 (14.1%)	-30.50 (55.9%)	-20.22				
PGO ^{SSS} ⊃C ₆₀	34.47	-16.27 (29.6%)	-7.57 (13.8%)	-31.20 (56.7%)	-20.58				

^[a] The energy values are in kcal/mol. The percentage contributions to the sum of all attractive energy terms are given in parentheses.

Table S4. Selected bond critical points parameters (electron density $[\rho(r)]$, its Laplacian $[\nabla^2 \rho(r)]$, potential energy density [V(r)], kinetic energy density [G(r)], and total electron energy density [H(r)] related to the non-covalent interactions of the fragments for studied $PGO^{000} \supset C_{60}$, $PGO^{005} \supset C_{60}$, $PGO^{005} \supset C_{60}$, and $PGO^{555} \supset C_{60}$ complexes in the gas phase.

Bond critical points	Interaction	<i>ρ(r),</i> au	∇² <i>ρ(r),</i> au	<i>V(r),</i> au	<i>G(r),</i> au	<i>H(r),</i> au					
			PGO ^{oo}	^o ⊃C ₆₀							
C ₆₀ ··· PGO ⁰⁰⁰		7.60E-03	2.24E-02	-3.65E-03	4.62E-03	9.75E-04					
		7.46E-03	2.21E-02	-3.66E-03	4.59E-03	9.30E-04					
		6.99E-03	2.06E-02	-3.34E-03	4.24E-03	9.01E-04					
	π…π	7.36E-03	2.15E-02	-3.59E-03	4.48E-03	8.93E-04					
		7.39E-03	2.06E-02	-3.43E-03	4.28E-03	8.55E-04					
		7.43E-03	2.14E-02	-3.54E-03	4.44E-03	9.00E-04					
		7.63E-03	2.09E-02	-3.53E-03	4.38E-03	8.50E-04					
		PGO ^{oos} ⊃C ₆₀									
C ₆₀ ··· PGO ^{OOS}		6.05E-03	1.80E-02	-2.75E-03	3.62E-03	8.71E-04					
		7.13E-03	2.01E-02	-3.30E-03	4.16E-03	8.61E-04					
	ππ	7.77E-03	2.20E-02	-3.74E-03	4.62E-03	8.84E-04					
	<i></i>	6.96E-03	2.17E-02	-3.42E-03	4.43E-03	1.00E-03					
		7.49E-03	2.13E-02	-3.58E-03	4.45E-03	8.65E-04					
		8.04E-03	2.23E-02	-3.83E-03	4.70E-03	8.75E-04					
			PGO ^{os}	^s ⊃C ₆₀							
C ₆₀ ··· PGO ^{OSS}		7.18E-03	2.07E-02	-3.36E-03	4.26E-03	9.01E-04					
		6.02E-03	1.80E-02	-2.75E-03	3.62E-03	8.74E-04					
	ππ	9.12E-03	2.50E-02	-4.45E-03	5.35E-03	9.06E-04					
		8.33E-03	2.28E-02	-3.91E-03	4.81E-03	8.93E-04					
		8.05E-03	2.29E-02	-3.95E-03	4.84E-03	8.90E-04					
		7.28E-03	2.07E-02	-3.41E-03	4.30E-03	8.81E-04					
			PGO ^{ss}	^s ⊃C ₆₀							
C ₆₀ ··· PGO ^{SSS}		6.60E-03	1.91E-02	-3.00E-03	3.88E-03	8.86E-04					
		9.66E-03	2.64E-02	-4.76E-03	5.68E-03	9.15E-04					
	π	7.28E-03	2.12E-02	-3.47E-03	4.38E-03	9.11E-04					
		8.40E-03	2.33E-02	-3.98E-03	4.90E-03	9.21E-04					
		8.24E-03	2.37E-02	-4.04E-03	4.97E-03	9.39E-04					
		4.34E-03	1.40E-02	-1.80E-03	2.65E-03	8.45E-04					

Table S5. The Gibbs energy for photoinduced ET reaction in $PGO^{SSS} \supset C_{60}$ complexes obtained using the Rehm-Weller equation.

	E_D^{ox}	E ^{red} _A	$\Delta E_{Coulombic}**$	$E_{PGO}^{CS} \rightarrow C_{60}$	E_{C60}^{S}	ΔG_{ET}
Rehm-Weller	7.266	2.360	2.415	2.491	1.980	0.511

* The Rehm–Weller equation estimates the Gibbs energy for a photoinduced ET reaction between the donor and acceptor subunits in a DA complex as: $\Delta G_{ET} = E_D^{ox} - E_A^{red} - \Delta E_{Coulombic} - E_{S/T}^{*}$, where E_A^{red} and E_D^{ox} is the reduction and oxidation potentials of the donor and acceptor molecules, respectively, ΔE^* is the energy of the singlet or triplet excited state, and $\Delta E_{Coulombic}$ is the electrostatic work required to separate D⁺ and A⁻ at infinite distance.

** $\Delta E_{Coulombic}$ computed for the distance d = 5.963Å between centers of C₆₀ and PGO^{SSS} units.

Table S6. Excitation energies (E_x , eV) and dipole moments in ground state (μ_0 , D), change in dipole moments between ground state and state of interest ($\Delta \mu = \mu_i - \mu_0$, D) and solvation energies (E_{solv} , eV) in DCM calculated for PGO⁰⁰⁰ \supset C₆₀, PGO⁰⁰⁵ \supset C₆₀, PGO⁰⁰⁵ \supset C₆₀, and PGO⁵⁵⁵ \supset C₆₀ complexes.

		Supramolecular h	ost-guest systems								
	PGO ⁰⁰⁰ ⊃C ₆₀	PGO ^{oos} ⊃C ₆₀	PGO ^{oss} ⊃C ₆₀	PGO ^{sss} ⊃C ₆₀							
		Ground s	tate (GS)								
Ex	0.000	0.000	0.000	0.000							
μ_0	5.16	4.73	4.30	4.00							
E _{solv}	-0.181	-0.163	-0.143	-0.135							
		LE ₁ (Fulle	rene C ₆₀)								
Ex	2.553	2.542	2.552	2.554							
Δμ	1.03	0.88	0.66	0.75							
E _{solv}	-0.190	-0.142									
	LE ₂ (Host PGO)										
Ex	4.812	4.470	4.532	4.270							
Δμ	1.47	2.87	1.36	3.88							
E _{solv}	-0.187	-0.274	-0.183	-0.209							
		Most absorpt	ive transition								
Ex	4.401	4.376	4.369	4.372							
Δμ	0.13	0.80	1.08	2.59							
E _{solv}	-0.184	-0.169	-0.146	-0.147							
		CT (Host PGO —	 Fullerene C₆₀) 								
Ex	4.045	2.778	2.631	2.543							
Δμ	23.92	20.22	22.71	23.92							
Esolv	-0.990	-0.834	-0.910	-0.943							

Table S7.	ET parameters	and the ra	ate for c	harge	separation	reactions	of PGC	⁰⁰⁰ ⊃C ₆₀	and	PGOss	°⊃C ₆₀
complexe	s in toluene (TO	L) and dich	loromet	hane (DCM).						

Reaction	Solvent	$\Delta G^{0 a}$, eV	V <i>,</i> eV	λ, eV	E _a , eV	k _{et} ,s⁻¹					
	PGO ⁰⁰⁰ ⊃C ₆₀										
	TOL	1.836	1.16.10-2	0.205	5.080	[2.57·10 ⁻³⁹]					
$LE_1 \rightarrow CS$	DCM	1.492	1.16·10 ⁻²	0.584	1.845	[1.93·10 ⁻¹⁹]					
	TOL	-0.009	9.64·10 ⁻⁴	0.205	0.047	5.57·10 ⁹					
$VIA \rightarrow CS$	DCM	-0.356	9.64·10 ⁻⁴	0.584	0.022	8.59·10 ⁹					
			PGO	^{SSS} ⊃C ₆₀							
	TOL	0.335	1.61.10-2	0.237	0.345	1.31·10 ⁷					
$LE_1 \rightarrow CS$	DCM	-0.011	1.61·10 ⁻²	0.603	0.145	1.96·10 ¹¹					
	TOL	-1.485	1.54·10 ⁻²	0.237	1.643	[1.39.10-15]					
$101A \rightarrow CS$	DCM	-1.829	1.54·10 ⁻²	0.603	0.623	[1.50·10 ²]					

Table S8. Excitation energies (E_x , eV), main singly excited configuration (HOMO(H)–LUMO(L)) and its weight (W), oscillator strength (f), extent of charge transfer (CT, e) or localization of exciton (X) computed for **TBSubP** \supset **C**₆₀, **SubPc** \supset **C**₆₀, **Suma** \supset **C**₆₀, and **Cora** \supset **C**₆₀ complexes in the gas-phase (VAC) and dichloromethane (DCM).

		Supramolecular host-guest systems								
	TBSub	P⊃C ₆₀	Suma	a⊃C ₆₀	Cora	⊃C ₆₀				
	VAC	DCM	VAC	DCM	VAC	DCM				
			LE ₁ (Fulle	erene C ₆₀)						
E _x	2.549	2.540	2.552	2.549	2.561	2.553				
Transition (W)	H-2 – L (0.46)		H-4 – L+	-1 (0.21)	H – L	(0.27)				
f	<0.001		<0.	<0.001		001				
Х	0.972		0.928		0.974					
	LE ₂ (Host)									
E _x	2.841	2.842	4.143	4.142	3.976	3.978				
Transition (W)	H – L+3	3 (0.63)	H – L+6 (0.21)		H-6 – L+6 (0.36)					
f	0.1	L60	<0.001		<0.001					
Х	0.9	917	Sum (0.67,	Suma/C ₆₀ (0.67/0.23)		356				
			CT (Host $ ightarrow$	Fullerene C ₆₀)						
E _x	2.140	1.600	3.137	2.516	3.835	3.158				
Transition (W)	H-L	(0.92)	H-1 – I	. (0.58)	H-6 – L	. (0.62)				
f	0.0	003	0.008		0.001					
СТ	0.	98	0.87		0.86					

Table S9. Computed semi-classical rates (k_X in s⁻¹) and characteristic times (τ in ps) for the CS process in **PGO**^{SSS} \supset **C**₆₀ complex in DCM solution using different effective Huang-Rhys (S_{eff}) factors.

h <i>ω</i> _α	$\Delta {\sf G}^{\sf 0}$, eV	V _{ij} , eV	λ_s , eV	λ_i , eV	$S_{\it eff}$	$k_{\scriptscriptstyle X}$, s-1	τ, ps				
ejj	$LE_1 \rightarrow CS$										
1200				0.389 0.214	1.438	$1.981 \cdot 10^{11}$	5.05				
1400		11 1.61·10 ⁻² 0.38			1.233	$1.970 \cdot 10^{11}$	5.08				
1600	-0.011		0.389		1.079	1.964·10 ¹¹	5.09				
1800					0.959	1.961·10 ¹¹	5.10				
2000					0.863	1.959·10 ¹¹	5.10				

Table S10. Semi-classical rates (k_X in s⁻¹) and characteristic times (τ in ps) computed for the LE₁ \rightarrow CS and LE₂ \rightarrow CS processes in the **TBSubP** \supset **C**₆₀ complex

Reaction	LE	СТ	ΔG^0	V _{ij}	Reorg. Energy		k _{ET}	τ, ns
					λ_i^d	λ_s		
$LE_1 \rightarrow CS$	2.540	1.600	-0.940	1.75·10 ⁻³	0.154	0.333	7.05·10 ⁹	0.14
$LE_2 \rightarrow CS$	2.842	1.600	-1.242	2.49·10 ⁻³	0.154	0.333	1.39·10 ⁹	0.72

Table S11. Semi-classical rates (k_{χ} in s⁻¹) computed for the LE₁ \rightarrow CS process for **PGO**^{SSS} \supset **C**₆₀ in DCM using the Frank-Condon and relaxed LE₁ geometries

PGO ^{SSS} ⊃C ₆₀	LE	СТ	ΔG^0	V _{ij}	Reorg. En	ergy	k _{ET}
					$\lambda_i{}^d$	λ_s	
Frank-Condon	2.554	2.543	-0.011				1.964·10 ¹¹
geometry				1.61·10 ⁻²	0.214	0.389	
Relaxed	2 121	2 360	-0.055				1 308.1011
geometry	2.424	2.309	-0.033				4.508.10

Figure S1. Structure and binding energies of $PG^{000} \supset PG^{000} \supset C_{60}$, and $PGO^{000} \supset C_{60}$ complexes.

Figure S2. Plot of RDG *vs.* sign($\lambda 2$)× ρ for (a) PGO⁰⁰⁰ \supset C₆₀, (b) PGO⁰⁰⁵ \supset C₆₀, (c) PGO⁰⁵⁵ \supset C₆₀, and (d) PGO⁵⁵⁵ \supset C₆₀ complexes.

Figure S3. NCI isosurfaces of van der Waals interactions ($-0.005 < \text{sign}(\lambda 2) \times \rho < 0.005 \text{ a.u.}$) for **PGO**⁰⁰⁰ \supset **C**₆₀, **PGO**⁰⁰⁵ \supset **C**₆₀, **PGO**⁰⁰⁵ \supset **C**₆₀, and **PGO**⁰⁵⁵ \supset **C**₆₀

Figure S4. QTAIM molecular graph for $PGO^{000} \supset C_{60}$, $PGO^{005} \supset C_{60}$, $PGO^{055} \supset C_{60}$, and $PGO^{555} \supset C_{60}$ complexes. Lines connecting the nuclei are the bond paths. Small green dots correspond to BCPs.

Figure S5. Natural transition molecular orbitals representing the LE₁, LE₂, and CT states in $PGO^{000} \supset C_{60}$

Figure S6. Natural transition molecular orbitals representing the LE₁, LE₂, and CT states in $PGO^{oos} \supset C_{60}$

Figure S7. Natural transition molecular orbitals representing the LE₁, LE₂, and CT states in $PGO^{OSS} \supset C_{60}$

Figure S8. Natural transition molecular orbitals representing the LE₁, LE₂, and CT states in $PGO^{SSS} \supset C_{60}$

Figure S9. Dependence of the electron transfer rate on Gibbs free energy for $PGO^{SSS} \supset C_{60}$ complex in DCM. The electronic coupling |Vij| is equal to $1.61 \cdot 10^{-2}$ eV.

Cartesian coordinates

PGO⁰⁰⁰⊃C₆₀

Gas-phase. B3LYP-D3(BJ)/def2-SVP

Α	tom X	Y	Z	
6	8.195669000	26.741591000	-4.346985000	
6	8.392159000	25.299818000	-4.287369000	
6	7.573118000	24.517772000	-3.470122000	
6	6.519643000	25.143938000	-2.682070000	
6	6.329397000	26.528133000	-2.740892000	
6	7.184702000	27.344243000	-3.592172000	
6	9.505204000	27.370126000	-4.443542000	
6	10.511544000	26.317150000	-4.441819000	
6	9.825007000	25.037166000	-4.344841000	
6	10.379931000	24.001365000	-3.588006000	
6	8.151132000	23.439402000	-2.678138000	
6	6.449897000	24.454522000	-1.401543000	
6	6.189774000	25.174094000	-0.232777000	
6	5.990908000	26.616096000	-0.293761000	
6	6.058378000	27.280224000	-1.522322000	
6	6.746805000	28.560242000	-1.620586000	
6	7.442993000	28.599630000	-2.899874000	
6	8.700391000	29.203749000	-2.993353000	
6	9.752050000	28.575412000	-3.780709000	
6	11.725750000	26.511395000	-3.777728000	
6	11.981676000	27.766811000	-3.085960000	
6	11.016463000	28.776806000	-3.087421000	
6	10.747302000	29.529198000	-1.870537000	
6	9.315994000	29.793685000	-1.811986000	
6	8.648164000	29.756637000	-0.584335000	
6	7.337772000	29.127077000	-0.486582000	
6	7.265766000	28.435277000	0.793154000	
6	6.604960000	27.206480000	0.888042000	
6	7.457813000	23.4031/4000	-1.400409000	
6	9.404564000	25.270757000	2.345769000	
6	9.15/995000	24.066289000	1.682031000	
6	10.209721000	23.438818000	0.893512000	
6	11.466942000	24.040616000	0.800812000	
0	10.517021000	25.297175000	1.491966000	
6	10.51/031000	27.340717000	2.18/05/000	
0	9.085310000	27.002549000	2.245010000	
6	0.397703000 7 1944E7000	20.323552000	2.344304000	
6	6 02721/000	20.129050000	0.087006000	
6	7 90/025000	24.873310000	0.987090000	
6	0 5022/2000	23.807394000	-0.288056000	
6	10 260585000	22.830214000	-0.288950000	
0 A	11 572/21000	22.004004000	-1.515710000	
6	12 163301000	23.312300000	-0 479922000	
6	12 849742000	25 360730000	-0 578442000	
6	12 578960000	26 112915000	0.640161000	
0	TE-2, 0200000	_0.11_010000	212 12 10 10 1000	

PGO^{oos}⊃C₆₀

Gas	-phase. B3LYP-	D3(BJ)/def2-SVF	D
Ato	m X	Y	Z
6	8.977430000	27.482643000	-4.667886000
6	9.154944000	26.050082000	-4.862469000
6	8.158404000	25.158528000	-4.454710000
6	6.942661000	25.665007000	-3.830976000
6	6.772610000	27.040626000	-3.643413000
6	7.811055000	27.969050000	-4.071297000
6	10.269247000	28.051378000	-4.309493000
6	11.243818000	26.970544000	-4.282028000
6	10.555674000	25.733812000	-4.623475000
6	10.906055000	24.538718000	-3.989152000
6	8.521779000	23.912492000	-3.791997000
6	6.554641000	24.732390000	-2.781467000
6	6.011655000	25.214129000	-1.586374000
6	5.836967000	26.646650000	-1.391042000
6	6.206924000	27.542503000	-2.399048000
6	6.895315000	28.780713000	-2.057101000
6	7.887354000	29.044103000	-3.091192000
6	9.128116000	29.590122000	-2.747128000
6	10.343183000	29.082172000	-3.368954000
6	12.254027000	26.964211000	-3.317730000
6	12.332473000	28.038273000	-2.338055000
6	11.396498000	29.075995000	-2.362945000
6	10.832518000	29.579657000	-1.118061000
6	9.430446000	29.896995000	-1.355571000
6	8.479042000	29.643086000	-0.363131000
6	7.186241000	29.073840000	-0.721229000
6	6.800316000	28.140599000	0.328759000
6	6.140996000	26.952512000	0.000548000
6	7.530389000	23.650437000	-2.756663000
6	8.490459000	24.622258000	1.656136000
6	8.417524000	23.594711000	0.713076000
6	9.632245000	23.086285000	0.091369000
6	10.873119000	23.628375000	0.437136000
6	10.949506000	24.702181000	1.418461000
6	9.604540000	26.622020000	2.208628000
6	8.203250000	26.938833000	1.969650000
6	7.514885000	25.702295000	1.629473000
6	6.503963000	25.708675000	0.664852000
6	6.425670000	24.635056000	-0.315029000
6	7.365040000	23.602398000	-0.291590000
6	9.329555000	22.779005000	-1.300431000
6	10.280194000	23.031398000	-2.291924000
6	11.574124000	23.597652000	-1.933691000
6	11.865462000	23.890888000	-0.597321000
6	12.553085000	25.129579000	-0.255367000
6	11.987065000	25.631501000	0.989829000

611.33704000028.1238740001.370359000610.60077200027.5130770001.79968.53052700028.6380120001.48719200067.85330000028.1334580001.33469.38531500029.4547430000.63572300068.89133100029.0618390000.907610.75960000029.2020340000.579059000610.23701100028.7582820001.136611.45486700029.240988000-0.699764000611.22848400029.0225270000.102612.46073400028.187889000-0.698601000612.2032600027.0400530000.122	841000 168000
6 8.530527000 28.638012000 1.487192000 6 7.853300000 28.133458000 1.334 6 9.385315000 29.454743000 0.635723000 6 8.891331000 29.061839000 0.907 6 10.759600000 29.202034000 0.579059000 6 10.237011000 28.758282000 1.136 6 11.454867000 29.240988000 -0.699764000 6 11.228484000 29.022527000 0.102 6 12.460734000 28.187889000 -0.698601000 6 12.20326000 27.040053000 0.122	168000
6 9.385315000 29.454743000 0.635723000 6 8.891331000 29.061839000 0.907 6 10.759600000 29.202034000 0.579059000 6 10.237011000 28.758282000 1.136 6 11.454867000 29.240988000 -0.699764000 6 11.228484000 29.022527000 0.102 6 12.460724000 28.187889000 -0.698601000 6 12.202926000 27.040052000 0.122	
6 10.759600000 29.202034000 0.579059000 6 10.237011000 28.758282000 1.136 6 11.454867000 29.240988000 -0.699764000 6 11.228484000 29.022527000 0.102 6 12.460724000 28.187888000 -0.698601000 6 12.202026000 27.040052000 0.122	642000
6 11.454867000 29.240988000 -0.699764000 6 11.228484000 29.022527000 0.102	292000
	024000
0 15.400/54000 50.10/002000 -0.020001000 0 15.50220000 57.340023000 0.12/	203000
6 12.718780000 27.466268000 -1.867477000 6 12.745980000 27.458153000 -1.067	713000
6 12.918911000 26.024399000 -1.807004000 6 12.922393000 26.025520000 -1.263	353000
6 12.305529000 25.433608000 -2.988547000 6 12.618238000 25.720212000 -2.654	1233000
6 11.645803000 24.203237000 -2.894633000 6 11.959681000 24.531611000 -2.983	3158000
6 8.164460000 23.116090000 -0.230837000 6 7.927996000 23.098452000 -1.536	315000
6 9.524570000 23.184867000 -2.735092000 6 9.868103000 23.609567000 -3.563	250000
6 10.714452000 25.899398000 2.248738000 6 9.782239000 25.189063000 2.015	704000
15 7.490292000 18.975170000 -1.504547000 15 7.616935000 19.117580000 -0.688	3730000
8 5.481337000 20.633968000 -0.001297000 16 5.631024000 20.851368000 1.281	498000
8 7.787504000 20.287169000 -4.204939000 8 7.363695000 19.988081000 -3.572	429000
8 10.126571000 19.378530000 -0.107326000 8 10.530112000 19.527398000 0.027	859000
8 7.100402000 17.534692000 -1.583576000 8 7.216827000 17.684935000 -0.529	388000
6 10.187013000 20.353679000 -4.181879000 6 9.703063000 20.038520000 -4.040	005000
1 10.184162000 20.733992000 -5.204152000 1 9.478666000 20.273299000 -5.081	067000
6 8.980830000 20.039342000 -3.553676000 6 8.660137000 19.834145000 -3.136	557000
6 9.000201000 19.537497000 -2.245716000 6 8.943968000 19.523836000 -1.799	941000
6 7.733415000 19.735861000 0.076450000 6 8.241732000 19.984915000 0.740	933000
6 6.666256000 20.416147000 0.680282000 6 7.379542000 20.656509000 1.623	933000
6 6.832470000 20.946505000 1.960586000 6 7.897014000 21.209624000 2.801	533000
1 6.008972000 21.472792000 2.444434000 1 7.244216000 21.750800000 3.488	794000
6 8.094249000 20.847987000 2.564454000 6 9.266426000 21.094771000 3.069	580000
1 8.237400000 21.285017000 3.555334000 1 9.668592000 21.529491000 3.987	845000
6 5.486957000 20.847224000 -1.368651000 6 5.509917000 20.929847000 -0.505	154000
6 6.437280000 20.224959000 -2.190402000 6 6.403671000 20.245839000 -1.345	373000
6 6.664284000 20.674755000 -3.498265000 6 6.374821000 20.456783000 -2.734	542000
6 10.171109000 19.573317000 -1.475502000 6 10.258984000 19.592423000 -1.319	939000
6 9.022575000 19.778247000 0.624094000 6 9.630179000 19.990519000 0.963	583000
6 9.203835000 20.303327000 1.904467000 6 10.144751000 20.509482000 2.154	417000
1 10,200782000 20,328166000 2,345912000 1 11,221193000 20,482957000 2,329	831000
6 11.387181000 19.873660000 -2.092363000 6 11.315349000 19.785752000 -2.21(0480000
1 12.309075000 19.878897000 -1.509574000 1 12.338713000 19.826421000 -1.83	5220000
6 11.375389000 20.222861000 -3.450499000 6 11.019337000 19.979859000 -3.564	1685000
1 12.319458000 20.478028000 -3.937414000 1 11.840629000 20.149154000 -4.264	1688000
6 5.779281000 21.590726000 -4.069368000 6 5.345552000 21.207902000 -3.305	346000
1 5 947073000 21 945174000 -5 087192000 1 5 318503000 21 350135000 -4 386	600000
6 4 726000000 22 081030000 -3 285804000 6 4 408254000 21 814737000 -2 465	114000
1 4 038631000 22 807278000 -3 725113000 1 3 621983000 22 431457000 -2 906	373000
6 4 583701000 21 751595000 -1 930241000 6 4 499916000 21 717128000 -1 071	352000
1 3 829911000 22 229876000 -1 304305000 1 3 811887000 22 274009000 -0 432	976000
1 5.025511000 22.225070000 1.504505000 1 5.011007000 22.274005000 0.452	570000
PGO ^{oss} ⊃C ₆₀ PGO ^{sss} ⊃C ₆₀	
Gas-phase. B3LYP-D3(BJ)/def2-SVP Gas-phase. B3LYP-D3(BJ)/def2-SVP	
Atom X Y Z Atom X Y	Z
6 8.762500000 27.500321000 -4.625063000 6 8.712443000 27.549542000 -4.598	288000

6	7.872832000	25.208412000	-4.358350000	6	7.743575000	25.290624000	-4.328384000
6	6.719843000	25.757921000	-3.656023000	6	6.624745000	25.877177000	-3.600828000
6	6.614098000	27.138365000	-3.457183000	6	6.574025000	27.259171000	-3.391045000
6	7.656623000	28.028013000	-3.952778000	6	7.639689000	28.112718000	-3.901034000
6	10.096185000	28.019712000	-4.354783000	6	10.069386000	28.017491000	-4.349901000
6	11.030256000	26.903417000	-4.393447000	6	10.960960000	26.867657000	-4.413734000
6	10.274383000	25.694343000	-4.688419000	6	10.155413000	25.689382000	-4.702236000
6	10.621129000	24.485676000	-4.078298000	6	10.468977000	24.464244000	-4.106238000
6	8.232270000	23.948215000	-3.721500000	6	8.068356000	24.014334000	-3.705740000
6	6.367161000	24.837669000	-2.582854000	6	6.258135000	24.962991000	-2.526785000
6	5.920343000	25.335089000	-1.354104000	6	5.853567000	25.467779000	-1.286073000
6	5.813331000	26.773109000	-1.147153000	6	5.803943000	26.907454000	-1.067933000
6	6.150481000	27.657369000	-2.177569000	6	6.154551000	27.785668000	-2.099106000
6	6.907566000	28.867188000	-1.881954000	6	6.962198000	28.963999000	-1.810387000
6	7.838531000	29.095696000	-2.978923000	6	7.879683000	29.165997000	-2.923724000
6	9.119010000	29.594334000	-2.718823000	6	9.182217000	29.615692000	-2.685227000
6	10.270678000	29.043735000	-3.419997000	6	10.299413000	29.028124000	-3.412072000
6	12.103297000	26.857509000	-3.499177000	6	12.048065000	26.775806000	-3.539775000
6	12.285534000	27.924936000	-2.525094000	6	12.287808000	27.828955000	-2.562439000
6	11.388489000	28.997003000	-2.487238000	6	11.431643000	28,933067000	-2.500683000
6	10.926972000	29.517156000	-1.207389000	6	11.013849000	29.460340000	-1.208829000
6	9 524285000	29 885951000	-1 350540000	6	9 623563000	29 881994000	-1 322808000
6	8 631746000	29 664906000	-0 297619000	6	8 743700000	29 686457000	-0 254267000
6	7 296913000	29 146124000	-0 568232000	6	7 385817000	29 219371000	-0 502523000
6	6 946608000	28 224739000	0.504514000	6	7 021615000	28 304351000	0.570984000
6	6 220525000	20.224755000	0.221944000	6	6 246996000	27 173136000	0.295296000
6	7 302378000	27.003405000	-2 6229/8000	6	7 150639000	23 812599000	-2 592038000
6	8 589615000	23.720333000	1 716762000	6	8 553538000	23.812333000	1 730267000
6	8.383013000	24.043223000	0 779932000	6	8 32/1523000	23 650726000	0.789671000
6	9 567529000	23.022300000	0.078526000	6	9 1/1950000	23.050720000	0.06251/000
6	10 8/10052000	23.072032000	0.078320000	6	10 745836000	23.004300000	0.202514000
6	11 020461000	23.303332000	1 215199000	6	10.094944000	23.505512000	1 201002000
6	0 912649000	24.032300000	2 102125000	6	0 957144000	24.338434000	2 10/921000
6	9.012040000	20.398380000	2.192123000	6	9.837144000	20.301333000	2.194031000
0	8.410760000		2.048216000	0	8.467032000	20.983738000	2.079720000
6	7.034447000	25.759056000	1.755464000	C C	6 572170000	25.800190000	1.795544000
0	6.380389000	25.804977000	0.801048000	0	6.372179000	25.89/881000	0.919935000
0	0.397198000	24.737217000	-0.112969000	0	0.330971000	24.844447000	-0.057613000
6	7.298374000	23.670514000	-0.152499000	6	7.191653000	23.745502000	-0.120799000
6	9.162362000	22.783288000	-1.290454000	6	9.000975000	22.803416000	-1.299828000
6	10.053338000	23.002100000	-2.342408000	6	9.879007000	22.993454000	-2.36/330000
6	11.388988000	23.516146000	-2.071692000	6	11.238432000	23.452778000	-2.119630000
6	11.//9/58000	23.793410000	-0.757331000	6	11.662776000	23.706684000	-0.810664000
6	12.535436000	25.004050000	-0.462013000	6	12.468361000	24.886408000	-0.522408000
6	12.0/1814000	25.523244000	0.8185/3000	6	12.049023000	25.413289000	0.770614000
6	11.964920000	26.903746000	1.016472000	6	11.996569000	26.795545000	0.978994000
6	10.812151000	27.452456000	1.717711000	6	10.878451000	27.381513000	1.705760000
6	8.064153000	28.175724000	1.436944000	6	8.153741000	28.208024000	1.482361000
6	9.105922000	29.065029000	0.941920000	6	9.218430000	29.061099000	0.972413000
6	10.451751000	28.711501000	1.079728000	6	10.552610000	28.657314000	1.082173000
6	11.382392000	28.942196000	-0.016861000	6	11.469843000	28.860859000	-0.030744000
6	12.317568000	27.824510000	-0.056390000	6	12.362189000	27.709918000	-0.095051000
6	12.761910000	27.326317000	-1.285106000	6	12.764550000	27.204591000	-1.335287000
6	12.872059000	25.888382000	-1.492521000	6	12.818024000	25.764966000	-1.553719000

6	12.464900000	25.598599000	-2.861076000	6	12.375372000	25.499807000	-2.916567000
6	11.739719000	24.436871000	-3.144702000	6	11.602299000	24.367746000	-3.193526000
6	7.759564000	23.151327000	-1.432430000	6	7.610890000	23.222207000	-1.413009000
6	9.578921000	23.596415000	-3.583240000	6	9.403636000	23.611449000	-3.596488000
6	9.923624000	25.160634000	1.988068000	6	9.911189000	25.122448000	1.979614000
15	7.726269000	19.212680000	-0.851037000	15	7.927097000	19.277528000	-0.837089000
16	5.502004000	20.792025000	1.038120000	16	5.480376000	20.705036000	0.926810000
16	7.628655000	19.814595000	-4.092168000	16	7.809465000	19.818629000	-4.118024000
8	10.537221000	19.664857000	0.240946000	16	10.970680000	19.507185000	0.531175000
8	7.346227000	17.766760000	-0.764184000	8	7.598799000	17.817724000	-0.748224000
6	10.341319000	20.009771000	-3.902292000	6	10.480321000	20.027860000	-3.975758000
1	10.300523000	20.185506000	-4.978997000	1	10.385576000	20.188005000	-5.051714000
6	9.158420000	19.808876000	-3.182813000	6	9.326046000	19.847528000	-3.201907000
6	9.201579000	19.611133000	-1.792298000	6	9.409374000	19.668263000	-1.807003000
6	8.172986000	20.047069000	0.675442000	6	8.229706000	20.112311000	0.747452000
6	7.211059000	20.642167000	1.511269000	6	7.163284000	20.667255000	1.485147000
6	7.582882000	21.155672000	2.759350000	6	7.377074000	21.206287000	2.761649000
1	6.839157000	21.640175000	3.394384000	1	6.541445000	21.651344000	3.304902000
6	8.918855000	21.078060000	3.165583000	6	8.657742000	21.210501000	3.310463000
1	9.210055000	21.487206000	4.135908000	1	8.827250000	21.657652000	4.292761000
6	5.518964000	20.917778000	-0.741852000	6	5.581414000	20.832211000	-0.838380000
6	6.478667000	20.294733000	-1.563609000	6	6.628238000	20.282921000	-1.607441000
6	6.425529000	20.484757000	-2.957866000	6	6.579570000	20.444341000	-3.006412000
6	10.434320000	19.710936000	-1.124993000	6	10.684565000	19.715238000	-1.205882000
6	9.523447000	20.073304000	1.066000000	6	9.520421000	20.154586000	1.314174000
6	9.898411000	20.555029000	2.323108000	6	9.732523000	20.698588000	2.588811000
1	10.953310000	20.545278000	2.601069000	1	10.745818000	20.743173000	2.993884000
6	11.623774000	19.881373000	-1.838542000	6	11.839616000	19.886141000	-1.982579000
1	12.565707000	19.941832000	-1.291964000	1	12.815972000	19.928288000	-1.495633000
6	11.565512000	20.014373000	-3.225860000	6	11.732008000	20.029479000	-3.364102000
1	12.487655000	20.172866000	-3.789657000	1	12.630539000	20.179668000	-3.966821000
6	5.381489000	21.224379000	-3.527193000	6	5.504258000	21.102682000	-3.617769000
1	5.351578000	21.382332000	-4.607161000	1	5.497734000	21.232169000	-4.701835000
6	4.407788000	21.793132000	-2.704140000	6	4.467992000	21.614301000	-2.838357000
1	3.607228000	22.387487000	-3.150518000	1	3.641015000	22.143910000	-3.316816000
6	4.479262000	21.663203000	-1.316730000	6	4.507212000	21.494431000	-1.450745000
1	3.747217000	22.158726000	-0.676191000	1	3.720998000	21.931538000	-0.832055000

TBSubP⊃C₆₀

Gas-phase. B3LYP-D3(BJ)/def2-SVP

Ato	m X	Y	Z
6	2.181490000	0.997384000	1.265213000
6	1.809774000	1.330999000	-0.103379000
6	0.462892000	1.484901000	-0.438255000
6	-0.565895000	1.323352000	0.577707000
6	-0.210502000	1.011626000	1.891172000
6	1.192463000	0.840360000	2.240788000
6	3.305033000	0.072067000	1.211570000
6	3.627372000	-0.166145000	-0.190218000
6	2.704132000	0.615127000	-1.003767000
6	2.212238000	0.086520000	-2.202099000
6	-0.046842000	0.936238000	-1.684599000

SubPc⊃C₆₀

Gas-phase. B3LYP-D3(BJ)/def2-SVP

Ato	m X	Y	Z
6	-0.079941000	1.161676000	0.727827000
6	-0.079947000	1.161663000	-0.727809000
6	-1.175036000	0.646156000	-1.425388000
6	-2.316121000	0.108759000	-0.698611000
6	-2.316115000	0.108755000	0.698634000
6	-1.175025000	0.646158000	1.425404000
6	1.275474000	0.874455000	1.178364000
6	2.114425000	0.698806000	-0.000008000
6	1.275456000	0.874448000	-1.178361000
6	1.479795000	0.080864000	-2.309477000
6	-0.963085000	-0.178218000	-2.606122000

6	-1.713190000	0.674608000	-0.041140000	6	-2.810695000	-1.050763000	-1.426725000
6	-2.464602000	-0.258839000	0.674863000	6	-3.286836000	-2.165148000	-0.728918000
6	-2.091202000	-0.590206000	2.043692000	6	-3.286832000	-2.165149000	0.728951000
6	-0.988328000	0.033094000	2.639589000	6	-2.810675000	-1.050768000	1.426753000
6	-0.062255000	-0.746657000	3.450592000	6	-1.972648000	-1.229668000	2.605604000
6	1.284932000	-0.246351000	3.203928000	6	-0.963059000	-0.178216000	2.606140000
6	2.363701000	-1.134557000	3.153481000	6	0.337754000	-0.457468000	3.035257000
6	3.394163000	-0.972841000	2.137120000	6	1.479833000	0.080896000	2.309494000
6	4.027083000	-1.439552000	-0.609028000	6	3.125161000	-0.267587000	-0.000013000
6	4.118471000	-2.528124000	0.355893000	6	3.337131000	-1.098044000	1.179128000
6	3.809131000	-2.299358000	1.700096000	6	2.531197000	-0.926131000	2.309891000
6	3.033827000	-3.281017000	2.447035000	6	2.037513000	-2.089396000	3.035809000
6	2.140929000	-2.561379000	3.345398000	6	0.682309000	-1.799002000	3.484196000
6	0.849198000	-3.041707000	3.580432000	6	-0.286300000	-2.807233000	3.483970000
6	-0.275098000	-2.116104000	3.633944000	6	-1.641707000	-2.517323000	3.037071000
6	-1 422899000	-2 764977000	3 013758000	6	-2 134530000	-3 679255000	2 309444000
6	-2 311907000	-2 017617000	2 234241000	6	-2 939546000	-3 506858000	1 178623000
6	-1 392586000	0.436959000	-1 440670000	6	-1 972678000	-1 229669000	-2 605583000
6	-2 102550000	-4 078625000	-0.834428000	6	-0.878353000	-5 484248000	-1 178005000
6	-2 191613000	-3 033494000	-1 759610000	6	-1 083159000	-4 687410000	-2 308347000
6	-1 160483000	-2 871475000	-2 776709000	6	0.058647000	-4 148296000	-3 034722000
6	-0.081174000	-3 758728000	-2 826033000	6	1 358582000	-4 427408000	-2 603523000
6	0.011135000	-4 846513000	-1 862750000	6	1.550502000	-5 257417000	-1 426193000
6	-0 605389000	-5 339265000	0.480371000	6	0.476704000	-5 775643000	0 728318000
6	-1 /198787000	-4 619164000	1 378530000	6	-0.8783/1000	-5 /8/250000	1 178016000
6	-2 424252000	-3 840080000	0 565561000	6	-1 716013000	-5 304582000	0.000010000
6	-2 824471000	-2 566864000	0.984636000	6	-2 725516000	-4 336219000	0.000016000
6	-2 919648000	-1 478735000	0.020240000	6	-2 939556000	-3 506855000	-1 178591000
6	-2 610180000	-1 707938000	-1 324801000	6	-2 134552000	-3 679251000	-2 309421000
6	-0.938940000	-1 445636000	-2 971511000	6	-0 286334000	-2 807236000	-3 483975000
6	0 354155000	-0.965051000	-3 206374000	6	0.682275000	-1 799006000	-3 484205000
6	1 478204000	-1 890093000	-3 258093000	6	2 037/189000	-2 089399000	-3 0358/3000
6	1.478204000	-1.890093000	-3.238093000	6	2.037489000	-2.089399000	-3.033843000
6	2 1 2 0 5 7 1 0 0 0	4 027905000	2 260107000	6	2.306232000	2 556270000	1 426202000
6	2.189371000	-4.037803000	-2.200197000	6	2 713664000	-3.330379000	-1.420393000
6	1.414280000	5.018582000	0.200270000	6	2.713004000	4.718289000	0.098985000
6	1.772009000	5.540085000	-0.200279000	6	2.713072000	-4.718288000 5 257420000	1 426191000
6	1 007111000	4 000800000	2 575056000	6	1.022124000	-5.257420000	2 200261000
6	0.306222000	-4.090809000	2.373330000	6	0.058678000	-4.087413000	2.308301000
6	1 252056000	4.201023000	2.920100000	6	1 258606000	-4.148294000	2 602509000
6	2 500012000	-4.955056000	2.004692000	6	2.258000000	-4.427406000	2.005508000
6	2.599015000	-4.452675000	1.820018000	6	2.306237000	-3.370001000	2.005650000
0	2.920207000	-4.691151000	0.419893000	6	3.200132000	-3.550378000	1.420300000
6	3.004013000	-3.749070000	-0.297454000	6	3.680188000	-2.440628000	0.728544000
6	3.291390000	-3.414931000	-1.66511/000	6	3.6801/1000	-2.440629000	-0.728572000
6	3.514749000	-1.988227000	-1.85/580000	6	3.337109000	-1.098051000	-1.179152000
6	2.626806000	-1.240154000	-2.638015000	6	2.5311/0000	-0.926142000	-2.309908000
6	-1.834110000	-0.727083000	-2.0/3082000	6	-1.641/3/000	-2.51/321000	-3.03/062000
6	0.808885000	0.253987000	-2.551344000	6	0.337721000	-0.457475000	-3.035255000
ь г	-0.977843000	-5.0028/4000	-0.88/050000	6			-0.728319000
с т	-1.102890000	4.939414000	-0.393384000	D C		3.12115/000	-0.71630404000
7	-2.348894000	4.024924000	-0.500211000	D C	-3.553410000	3.1211/0000	0.710391000
7	-0.133/96000	4.403883000	-1.42/404000	D C	-4.3323/0000	2.41//43000	1.425/60000
1	-0.51/943000	4.045143000	0.955323000	6	-2.21309/000	1./3/300000	0.704837000

6	-3.089646000	3.632145000	0.580379000	6	-5.513677000	1.737339000	-0.704852000
6	-4.167867000	2.814476000	0.050143000	6	-4.532337000	2.417700000	-1.425773000
6	-5.221307000	2.128072000	0.668936000	6	-2.331520000	3.793995000	-1.147581000
1	-5.414015000	2.248452000	1.737886000	6	-2.331538000	3.794014000	1.147571000
6	-6.015646000	1.286770000	-0.105488000	1	-4.513267000	2.395386000	2.517013000
1	-6.839623000	0.741379000	0.360718000	1	-6.288265000	1.184595000	1.241135000
6	-5.761519000	1.114199000	-1.482971000	1	-6.288227000	1.184541000	-1.241148000
1	-6.389821000	0.433270000	-2.061488000	1	-4.513202000	2.395307000	-2.517024000
6	-4.723741000	1.795591000	-2.113980000	6	1.951146000	3.663811000	-2.457715000
1	-4.519125000	1.638012000	-3.175662000	6	0.713991000	3.502076000	-3.163557000
6	-3.930295000	2.666811000	-1.354442000	6	0.679295000	2.826408000	-4.386606000
6	-2.732809000	3.430207000	-1.670475000	6	1.878378000	2.342747000	-4.908071000
6	-1.858539000	3.439715000	-2.772360000	6	3.097988000	2.518631000	-4.222245000
6	-0.533701000	3.887555000	-2.612118000	6	3.146004000	3.172232000	-2.992030000
6	0.697763000	3.618705000	-3.335969000	6	1.626930000	4.214908000	-1.146851000
6	0.953752000	3.004240000	-4.569953000	6	-0.350803000	3.979890000	-2.287605000
1	0.133431000	2.701072000	-5.224361000	1	-0.269932000	2.666677000	-4.901017000
6	2.275579000	2.768621000	-4.938287000	1	1.874904000	1.805836000	-5.859423000
1	2.493258000	2.283737000	-5.892993000	1	4.015652000	2.118726000	-4.660576000
6	3.343715000	3.130441000	-4.090772000	1	4.081261000	3.286401000	-2.440822000
1	4.368961000	2.922845000	-4.407430000	6	0.713971000	3.502059000	3.163546000
6	3.107691000	3.729110000	-2.856385000	6	1.951131000	3.663783000	2.457706000
1	3.938302000	3.991605000	-2.197452000	6	3.145980000	3.172198000	2.992036000
6	1.782816000	3.981343000	-2.472038000	6	3.097948000	2.518614000	4.222260000
6	1.199164000	4.475814000	-1.236174000	6	1.878334000	2.342744000	4.908079000
6	1.710357000	4.652385000	0.063470000	6	0.679257000	2.826403000	4.386601000
6	0.836640000	4.630113000	1.164871000	6	-0.350816000	3.979870000	2.287587000
6	1.023522000	4.288844000	2.565682000	6	1.626919000	4.214892000	1.146846000
6	2.172338000	4.075573000	3.340643000	1	4.081245000	3.286349000	2.440837000
1	3.165947000	4.268011000	2.929053000	1	4.015609000	2.118712000	4.660602000
6	2.021965000	3.594900000	4.638208000	1	1.874850000	1.805845000	5.859440000
1	2.905569000	3.411603000	5.253919000	1	-0.269977000	2.666686000	4.901003000
6	0.743534000	3.315054000	5.166739000	7	0.284149000	4.493176000	1.186643000
1	0.659110000	2.914420000	6.179918000	7	-1.755180000	4.273677000	-0.000005000
6	-0.407292000	3.525508000	4.413479000	7	0.284157000	4.493201000	-1.186658000
1	-1.391199000	3.287164000	4.824751000	7	-1.661734000	3.714126000	2.301098000
6	-0.274636000	4.023738000	3.109702000	7	-1.661716000	3.714117000	-2.301107000
6	-1.237555000	4.221695000	2.040834000	7	2.311242000	4.155689000	0.000000000
6	-2.570311000	3.804768000	1.875387000	5	-0.459513000	5.015731000	-0.000005000
1	2.786535000	4.608452000	0.229926000	17	-0.658694000	6.863475000	0.000034000
1	-2.146284000	2.929397000	-3.691148000				
1	-3.126969000	3.428932000	2.733614000				
8	-1.590603000	6.304089000	-0.568053000				
6	-0.655223000	7.344977000	-0.552756000				
1	0.116749000	7.226849000	-1.338992000				
1	-1.181873000	8.296537000	-0.731530000				

Suma⊃C₆₀

Gas-phase. B3LYP-D3(BJ)/def2-SVP						
Ator	m X	Y	Z			
6	5.739719000	-2.805671000	1.762324000			

1 -0.126141000 7.421334000 0.418560000

Cora⊃C₆₀

Gas-phase. B3LYP-D3(BJ)/def2-SVP							
Ato	m X	Y	Z				
6	0.934401000	1.329324000	-3.103006000				

6	5.779913000	-1.784644000	2.800652000	6	0.948428000	-0.100654000	-3.384666000
6	4.837267000	-0.752416000	2.800862000	6	0.002510000	-0.938640000	-2.785815000
6	3.818651000	-0.699537000	1.763664000	6	-0.994469000	-0.382560000	-1.882089000
6	3.777473000	-1.678991000	0.770269000	6	-1.007847000	0.987465000	-1.613578000
6	4.757106000	-2.755004000	0.768824000	6	-0.025122000	1.861821000	-2.236396000
6	7.112020000	-3.145797000	1.411395000	6	2.315749000	1.786029000	-3.027079000
6	7.999799000	-2.332572000	2.232255000	6	3.183784000	0.640053000	-3.262594000
6	7.176382000	-1.491376000	3.091089000	6	2.338611000	-0.526260000	-3.482272000
6	7.571659000	-0.179978000	3.373660000	6	2.725568000	-1.772919000	-2.980861000
6	5.246537000	0.614413000	3.097671000	6	0.404891000	-2.238642000	-2.264537000
6	3.595519000	0.694541000	1.419380000	6	-1.209130000	-1.335732000	-0.804526000
6	3.338244000	1.055003000	0.096634000	6	-1.426838000	-0.880884000	0.496033000
6	3.301976000	0.033756000	-0.939812000	6	-1.443915000	0.545353000	0.775762000
6	3.515998000	-1.303618000	-0.610259000	6	-1.238931000	1.461488000	-0.256756000
6	4.334510000	-2.148265000	-1.469483000	6	-0.396341000	2.629651000	-0.037610000
6	5.103347000	-3.045188000	-0.616766000	6	0.354852000	2.876806000	-1.260903000
6	6.420588000	-3.371908000	-0.953595000	6	1.680625000	3.314691000	-1.189897000
6	7,445404000	-3.422520000	0.081837000	6	2.681150000	2.758612000	-2.091245000
6	9.184222000	-1.826465000	1.688609000	6	4.381106000	0.512011000	-2.551249000
6	9.531600000	-2.114084000	0.304245000	6	4.761530000	1.525377000	-1.576014000
6	8.680157000	-2.895424000	-0.483027000	6	3.927650000	2.624355000	-1.350352000
6	8.418936000	-2.519602000	-1.865874000	6	3.697745000	3.098072000	0.007804000
6	7.022862000	-2.813684000	-2.156962000	6	2.308867000	3.524770000	0.107165000
6	6.283781000	-1.953420000	-2.976383000	6	1.586749000	3.288073000	1.281061000
6	4.911905000	-1.614607000	-2.625714000	6	0.204676000	2.834736000	1.208156000
6	4.690475000	-0.215358000	-2.970966000	6	-0.010666000	1.877386000	2.287174000
6	3.906517000	0.589775000	-2.141796000	6	-0.815217000	0.756349000	2.072990000
6	4.476577000	1.509278000	2.243509000	6	-0.346419000	-2.484691000	-1.040041000
6	6.384763000	3.277220000	-1.573504000	6	1.649114000	-1.818062000	3.074137000
6	6.050726000	3.553377000	-0.243675000	6	1.283263000	-2.790160000	2.137118000
6	7.075684000	3.500887000	0.791097000	6	2.283619000	-3.344609000	1.235129000
6	8.392373000	3.173408000	0.454081000	6	3.609041000	-2.905700000	1.305775000
6	8.739409000	2.885051000	-0.930402000	6	3.989946000	-1.892812000	2.280862000
6	7,716727000	1.913377000	-2.960457000	6	3.015296000	0.070019000	3.427963000
6	6.321184000	1.622298000	-3.254423000	6	1.626252000	0.496109000	3.529879000
6	5 497686000	2 463347000	-2 394670000	6	0 781791000	-0 671405000	3 310096000
6	4 314963000	1 956195000	-1 849965000	6	-0 412979000	-0 542446000	2 596360000
6	3 967694000	2 242535000	-0 465091000	6	-0 790837000	-1 554449000	1 619180000
6	4.814897000	3.028585000	0.321950000	6	0.035728000	-2.658223000	1.397227000
6	6.473405000	2.943565000	1.995213000	6	1.654415000	-3.555704000	-0.062019000
6	7.213204000	2.083524000	2.814110000	6	2.376173000	-3.319255000	-1.236151000
6	8.584507000	1.743392000	2.461845000	6	3.757036000	-2.862092000	-1.162121000
6	9 163170000	2 278636000	1 307032000	6	4 360447000	-2 659473000	0.082680000
6	9,986284000	1.437157000	0.448611000	6	5.207313000	-1.493994000	0.301375000
6	9.722572000	1.811652000	-0.933551000	6	4.976302000	-1.019726000	1.659896000
6	9.684141000	0.831475000	-1.928794000	6	4.962599000	0.352073000	1.929379000
6	8.661241000	0.882757000	-2.962716000	6	3.962059000	0.907828000	2.830695000
6	5.925922000	0.310460000	-3.535675000	6	1.238529000	1.742320000	3.026844000
6	6.910468000	-0.763885000	-3.538563000	6	2.224925000	2.614515000	2.405046000
6	8.250682000	-0.482721000	-3.257862000	6	3.558572000	2.205565000	2.308841000
6	9.020914000	-1.378758000	-2.405842000	6	4.310232000	2.452655000	1.085696000
6	9.907173000	-0.565548000	-1.584436000	6	5.178799000	1.307396000	0.851332000
6	10.159250000	-0.926058000	-0.257931000	6	5.400685000	0.852979000	-0.452456000

6	10.199486000	0.096031000	0.779804000	6	5.415183000	-0.576421000	-0.733069000
6	9.596592000	-0.461068000	1.982870000	6	4.785468000	-0.786941000	-2.030589000
6	8.805873000	0.345593000	2.807088000	6	3.972810000	-1.905375000	-2.239573000
6	5.076269000	2.652118000	1.705704000	6	0.264331000	-3.132612000	0.037849000
6	6.586921000	0.894803000	3.377429000	6	1.738704000	-2.646589000	-2.360331000
6	7.756361000	2.935025000	-1.922980000	6	3.029535000	-1.359844000	3.146382000
6	-0.093294000	1.225158000	-0.731002000	6	-4.779752000	-0.686940000	0.932634000
6	-0.073239000	0.030514000	-1.442099000	6	-4.793919000	-1.109196000	-0.425527000
6	0.559950000	-0.089045000	-2.687236000	6	-4.787502000	0.052702000	-1.245337000
6	1.049274000	1.101223000	-3.245296000	6	-4.772540000	1.193060000	-0.395538000
6	1.025467000	2.333698000	-2.513442000	6	-4.766525000	0.736513000	0.950729000
6	0.513386000	2.396117000	-1.208706000	6	-4.238912000	-1.457206000	1.953414000
6	0.736197000	3.320282000	0.021734000	6	-4.272059000	-2.326605000	-0.842667000
1	1.590611000	1.089306000	-4.195161000	6	-4.267391000	0.065533000	-2.532059000
1	1.544718000	3.189831000	-2.953503000	6	-4.230936000	2.412010000	-0.781743000
1	1.750498000	3.746136000	0.036189000	6	-4.214674000	1.471801000	1.991873000
1	0.032849000	4.172258000	0.025879000	6	-3.840064000	2.825507000	1.636918000
6	-0.060068000	-1.222140000	-0.741162000	6	-3.847409000	3.271738000	0.319058000
6	-0.067885000	-1.239502000	0.648032000	6	-3.891463000	2.497716000	-2.188436000
6	0.558548000	-2.250564000	1.389998000	6	-3.905749000	1.381743000	-3.017680000
6	1.080689000	-3.325029000	0.652800000	6	-3.925710000	-2.379489000	-2.248714000
6	1.093767000	-3.305557000	-0.779986000	6	-3.921368000	-1.242138000	-3.049769000
6	0.584325000	-2.211641000	-1.496818000	6	-3.906247000	-3.222676000	0.234888000
6	0.856995000	-1.599868000	-2.898238000	6	-3.889586000	-2.809070000	1.562933000
1	1.617120000	-4.135641000	1.153860000	6	-3.865990000	-0.706548000	3.135946000
1	1.643995000	-4.099559000	-1.292896000	6	-3.856625000	0.684596000	3.154838000
1	1.899057000	-1.766909000	-3.213902000	1	-3.438596000	3.489103000	2.407656000
1	0.215596000	-2.046309000	-3.678500000	1	-3.448955000	4.267364000	0.104176000
6	-0.089811000	-0.006100000	1.381716000	1	-3.509646000	3.439608000	-2.592827000
6	-0.103420000	1.206584000	0.704017000	1	-3.528780000	1.490140000	-4.038828000
6	0.492962000	2.364718000	1.223611000	1	-3.552981000	-3.315458000	-2.674687000
6	0.986635000	2.267029000	2.532992000	1	-3.541939000	-1.330430000	-4.071859000
6	1.005787000	1.014273000	3.229539000	1	-3.527908000	-4.220523000	-0.004923000
6	0.523367000	-0.160430000	2.633132000	1	-3.501044000	-3.499078000	2.316759000
6	0.792382000	-1.680604000	2.815541000	1	-3.480691000	-1.240281000	4.009196000
1	1.501609000	3.110827000	3.001214000	1	-3.463382000	1.189500000	4.041492000
1	1.537433000	0.975812000	4.184836000				
1	1.816317000	-1.875235000	3.168675000				
1	0.109318000	-2.132733000	3.556404000				

References:

- 1 A. D. Becke, Phys. Rev. A 1988, **38**, 3098-3100.
- 2 C. Lee, W. Yang and R. G. Parr, Phys. Rev. B 1988, **37**, 785-789.
- 3 S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200-1211.
- 4 F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
- 5 F. Weigend, Phys. Chem. Chem. Phys. 2006, **8**, 1057-1065.
- 6 K. Eichkorn, O. Treutler, H. Öhm, M. Häser and R. Ahlrichs, Chem. Phys. Lett. 1995, **240**, 283-290.
- 7 K. Eichkorn, F. Weigend, O. Treutler and R. Ahlrichs, Theor. Chem. Acc. 1997, 97, 119-124.
- 8 F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, **2**, 73-78.
- 9 ORCA—an ab initio density functional, and semiempirical program package, version 4.2.1
- 10 K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs; Theor. Chem. Acc. 1997, 97, 119.
- 11 S. Hirata and M. Head-Gordon, Chem. Phys. Lett. 1999, **314**, 291-299.
- 12 T. Yanai, D. P. Tew and N. C. Handy, Chem. Phys. Lett. 2004, **393**, 51-57.
- 13 S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys. 2010, **132**, 154104.
- 14 S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem. 2011, **32**, 1456-1465.
- 15 R. S. Mulliken, J. Chem. Phys. 1955, 23, 1833-1840.
- 16 R. S. Mulliken, J. Chem. Phys. 1955, 23, 1841-1846.
- 17 P. O. Löwdin, J. Chem. Phys. 1950, 18, 365-375.
- 18 F. L. Hirshfeld, *Theor. Chim. Acta* 1977, **44**, 129-138.
- 19 A. V. Marenich, S. V. Jerome, C. J. Cramer, D.G. Truhlar, J. Chem. Theory Comput. 2012, **8**, 527-541.
- Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- 21 A. V. Luzanov, A. A. Sukhorukov, and V.E. Umanskii, *Theor. Exp. Chem.* 1976, **10**, 354–361.
- 22 M. Head-Gordon, A. M. Grana, D.Maurice and C. A. White, J. Phys. Chem. 1995, 99, 14261–14270.
- 23 R. F. W. Bader, Chem. Rev. **1991**, 91, 893–928.
- 24 R. F. W. Bader, Atoms in Molecules: A Quantum Theory; International Series of Monographs on Chemistry 22; Oxford University Press: Oxford, U.K., **1990**.
- 25 Keith, T. A. AIMAII, version 14.06.21; TK Gristmill Software: Overland Park, KS, **2014**.
- 26 T. Lu, F. Chen, J. Comput. Chem. 2012, **33**, 580-592.
- 27 G. A. Zhurko, Chemcraft 1.80 (build 523b) graphical program for visualization of quantum chemistry computations. (<u>https://chemcraftprog.com</u>).
- 28 T. Ziegler and A. Rauk, *Theor. Chim. Acta* 1977, **46**, 1-10.

- 29 T. Ziegler and A. Rauk, *Inorg. Chem.* 1979, **18**, 1558-1565.
- 30 ADF 2019, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com. E.J. Baerends, T. Ziegler, A.J. Atkins, J. Autschbach, O. Baseggio, D. Bashford, A. Bérces, F.M. Bickelhaupt, C. Bo, P.M. Boerrigter, L. Cavallo, C. Daul, D.P. Chong, D.V. Chulhai, L. Deng, R.M. Dickson, J.M. Dieterich, D.E. Ellis, M. van Faassen, L. Fan, T.H. Fischer, A. Förster, C. Fonseca Guerra, M. Franchini, A. Ghysels, A. Giammona, S.J.A. van Gisbergen, A. Goez, A.W. Götz, J.A. Groeneveld, O.V. Gritsenko, M. Grüning, S. Gusarov, F.E. Harris, P. van den Hoek, Z. Hu, C.R. Jacob, H. Jacobsen, L. Jensen, L. Joubert, J.W. Kaminski, G. van Kessel, C. König, F. Kootstra, A. Kovalenko, M.V. Krykunov, E. van Lenthe, D.A. McCormack, A. Michalak, M. Mitoraj, S.M. Morton, J. Neugebauer, V.P. Nicu, L. Noodleman, V.P. Osinga, S. Patchkovskii, M. Pavanello, C.A. Peeples, P.H.T. Philipsen, D. Post, C.C. Pye, H. Ramanantoanina, P. Ramos, W. Ravenek, M. Reimann, J.I. Rodríguez, P. Ros, R. Rüger, P.R.T. Schipper, D. Schlüns, H. van Schoot, G. Schreckenbach, J.S. Seldenthuis, M. Seth, J.G. Snijders, M. Solà, M. Stener, M. Swart, D. Swerhone, V. Tognetti, G. te Velde, P. Vernooijs, L. Versluis, L. Visscher, O. Visser, F. Wang, T.A. Wesolowski, E.M. van Wezenbeek, G. Wiesenekker, S.K. Wolff, T.K. Woo, A.L. Yakovlev
- 31 E. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A. Cohen and W. Yang, J. Am. Chem. Soc. 2010, **132**, 6498–6506.
- 32 J. Contreras-García, E. Johnson, S. Keinan, R. Chaudret, J. Piquemal, D. Beratan and W. Yang, J. Chem. Theory Comput. 2011, **7**, 625–632.
- 33 J. Contreras-García, W. Yang and E. Johnson, J. Phys. Chem. A, 2011, 115, 12983–12990.