Theoretical chemistry-handled strategy for the rational design of new luminescent lanthanide complexes: An approach from multireference SOC-NEVPT2 method

Plinio Cantero-López^{1*}, Julian Santoyo-Flores², Andrés Vega³, Alexander Carreño¹, Juan A. Fuentes⁴, Angélica Ramirez-Osorio¹, Alejandro Ortiz^{5,6}, Luis Alberto Illicachi^{5,6}, Julio Sánchez⁸ Andrés F. Olea⁷, Dayán Páez-Hernández^{1,2*}

¹Center of Applied Nanoscience (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello, Av. República 330, Santiago, Chile.

²Doctorado en Fisicoquímica Molecular, Universidad Andres Bello, Facultad de Ciencias Exactas, República 275, Santiago, Chile.

³Departamento de Ciencias Química, Universidad Andrés Bello, Facultad de Ciencias Exactas, Quillota 980, Viña del Mar, Chile.

⁴Laboratorio de Genética y Patógénesis Bacteriana, Facultad de Ciencias de la Vida, Universidad Andres Bello, República 330, Santiago, Chile.

⁵Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, A.A. 25360, Cali, Colombia.

⁶Center for Research and Innovation in Bioinformatics and Photonics-CIBioFi, Calle 13 No. 100-00, Edificio 320, No. 1069, Cali, Colombia.

⁷Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Santiago, Chile. ⁸Department of Environmental Sciences, Faculty of Chemistry and Biology, Santiago de Chile University, USACH, Box 40, Correo 33, Santiago, Chile.

Electronic Supporting Information

1. TDDFT Calculations

Figure S1. Electronic absorption spectra of all ligands and europium complexes proposed. All spectrum was simulated at SR-TDDFT(CAM-B3LYP/TZ2P) level of theory using methanol as solvent via COSMO model.

Figure S2. Electronic absorption spectra of the [Eu(**Phen-Nitro**)(**BTA**)₃] and the corresponding antennas (solvent included) (CAM-B3LYP/TZ2P). The plotted orbitals correspond to main electronic transitions obtained with SR-TDDFT in methanol.

Figure S3. Absorption spectrum of [Eu(Me-phen)(BTA)₃] calculated with CAM-B3LYP/TZVP and methanol solvent.

Table S1. Most relevant electronic transitions for the complex [Eu(Me-phen)(BTA)₃]

Band	λ(nm)	E(eV)	f	Assignment
а	208	5.95	0.305	π-π
b	248	4.98	0.287	π-π
с	286	4.32	0.620	π-π

	Trai	isition
a		
b		
c		

 Table S2. Molecular orbitals involved in the electronic transitions for the complex [Eu(Me-phen)(BTA)₃]

Figure S4. Absorption spectrum of BTA calculated with CAM-B3LYP/TZVP and methanol solvent.

Band	λ(nm)	E(eV)	f	%	Transition	Assignment
а	203	6.10	0.108	79	HOMO-LUMO+2	π-π
b	229	5.41	0.132	85	HOMO-LUMO+1	π-π
с	278	4.44	0.602	98	HOMO-LUMO	π-π

Table S4. Molecular orbitals involved in the electronic transitions for BTA

Band	Transition			
a				

Figure S5. Absorption spectrum of Me-phen calculated with CAM-B3LYP/TZVP and methanol solvent.

Table S5 . Most relevant electronic transitions for Me-ph	en
--	----

Band	λ(nm)	E(eV)	f	%	Transition	Assignment
а	205	6.02	0.666	29	HOMO-LUMO+2	π-π

b	238	5.19	0.512	30	HOMO-1-LUMO	π-π
				24	HOMO-LUMO+1	π-π
с	273	4.53	0.037	50	HOMO-LUMO+1	π-π
				30	HOMO-LUMO	π-π

Table S6. Molecular orbitals involved in the electronic transitions for Me-phen.

Band	Transitio	n
a		
b		
b		, 1
c		3

Figure S6. Absorption spectrum of [Eu(**Nitro-phen**)(**BTA**)₃] calculated with CAM-B3LYP/TZVP and methanol solvent.

Table S7. Most relevant electronic transitions for the complex [Eu(Nitro-phen)(BTA)₃]

Band	λ(nm)	E(eV)	f	Assignment
а	238	5.20	0.187	π-π
b	257	4.82	0.178	π-π
с	286	4.32	0.728	π-π

Band	Transition				
a					
b					
C					

 Table S8. Molecular orbitals involved in the electronic transitions for [Eu(Nitrophen)(BTA)3]

Figure S9. Absorption spectrum of Nitro-phen calculated with CAM-B3LYP/TZVP and methanol solvent.

Band	λ(nm)	E(eV)	f	%	Transition	Assignment
а	214	5.77	0.416	35	HOMO-1-LUMO+2	π-π
b	229	5.39	0.354	41	HOMO-LUMO+2	π-π
с	247	5.00	0.191	41	HOMO-1-LUMO+1	π-π
				23	HOMO-LUMO+2	π-π
d	301	4.10	0.105	35	HOMO-1-LUMO	π-π
				14	HOMO-6- LUMO	π-π
				16	HOMO-2-LUMO	n-π
				16	HOMO-LUMO	π-π
e	315	3.92	0.118	36	HOMO-LUMO	π-π
				46	HOMO-6-LUMO	π-π

 Table S9. Most relevant electronic transitions for Nitro-phen

Band	Transition
a	
b	
c	
c	
d	

Table S10. Molecular orbitals involved in the electronic transitions for Nitro-phen

e	-	
e		

Figure S8. Absorption spectrum of [Eu(One-phen)(BTA)₃] calculated with CAM-B3LYP/TZVP and methanol solvent.

Table S11. Most relevant electronic transitions for the complex [Eu(One-phen)(BTA)₃]

Band	λ(nm)	E(eV)	f	Assignment
а	226	5.48	0.170	π-π
b	265	4.67	0.098	π-π
с	288	4.29	0.246	π-π

 Table S12. Molecular orbitals involved in the electronic transitions for [Eu(One-phen)(BTA)₃]

Figure S9. Absorption spectrum of One-phen calculated with CAM-B3LYP/TZVP and methanol solvent.

Wavelength(nm)

Band	λ(nm)	E(eV)	f	%	Transition	Assignment
а	217	5.69	1.237	63	HOMO-3-LUMO	π-π
b	273	4.53	0.130	65	HOMO-LUMO+1	π-π
				26	HOMO-3-LUMO	π-π

Table S13. Most relevant electronic transitions for One-phen.

Table S14. Molecular orbitals involved in the electronic transitions for One-phen.

Band	Transi	tion
a		
b		
b		

Figure S10.Absorption spectrum of [Eu(Epoxy-phen)(BTA)₃] calculated with CAM-B3LYP/TZVP and methanol solvent.

Table S15. Most relevant electronic transitions for the complex [Eu(Epoxy-phen)(BTA)₃]

Band	λ(nm)	E(eV)	f	Assignment
а	240	5.16	0.111	π-π
b	276	4.49	0.857	π-π
c	287	4.31	0.713	π-π

Band	Transiti	on
a		
b		
c		

 Table S16. Molecular orbitals involved in the electronic transitions for [Eu(Epoxy-phen)(BTA)₃]

Figure S13. Absorption spectrum of Epoxy-phen calculated with CAM-B3LYP/TZVP and methanol solvent

Table S17.	Most relevant	electronic	transitions	for E	poxv-phen
	1.1000101010				

Band	λ(nm)	E(eV)	f	%	Transition	Assignment
а	236	5.23	0.025	53	HOMO-LUMO+1	π-π
b	282	4.78	0.389	84	HOMO-LUMO	π-π

Band	Trans	ition
a		
b		

Table S18. Molecular orbitals involved in the electronic transitions for Epoxy-phen

2. Synthesis and Characterization

2.1 FTIR spectroscopy

Ligands

In Figures S14 and S15 appear the most relevant IR absorption bands due to the ligands:

4,4,4-Trifluoro-1-Phenyl-1,3-butanodione (**BTA**) :1599(s), 1534(w),1253(m),689(s),773(s).

5-Methyl-1,10-Phenantroline (Me-phen): 1618(w),1559(w), 1560(w), 1561(w), 1414(m), 1378(m), 737(s),788(s), 876(s).

5-Nitro-1,10-Phenantroline (**Nitro-phen**) : 2564(w), 2568(w), 2690(w),2956(s),1664(w), 1437(w), 1408(w), 1024(s),3302(m),489(w).

5H-ciclopenta [1,2-b: 5,4-b '] dipiridin-5-ona (**One-phen**): 3317(m), 2943(w), 2827(w), 1445(w), 1023(s), 604(m).

5,6-Epoxy-5,6-dihydro-[1,10]phenanthroline (**Epoxy-phen**):1564(w), 1558(w), 1555(w), 1432(m), 1215(w), 1131(w), 1012(w), 881(m), 798(s), 750(s), 704(s), 614(m).

Complexes

The most relevant IR absorption bands due to the complexes are shown in **Figures S16** and **S17**, respectively. We found the following characteristics peaks:

Eu(Me-phen)(BTA)₃: 1609(s), 1572(m),1527(m),1490(m),1429(w),1290(s), 1178(m), 1133(s),943(w),880(w),766(s),703(s), 630(s).

Eu(Nitro-phen)(BTA)₃: 1613(s),1571(m),1519(m), 1425(w), 1353(w), 1319(m), 1292(s), 1190(m), 1139(s),1074(w), 1070(w),942(m), 770(s).

Eu(One-phen)(BTA)₃:1731(s), 1609(s),1573(s),1564(m), 1516(w),1464(m),1457(m), 1414(m) 1319(w),1291(s),1243(m), 1183(s), 1132(s), 1075(m), 1025(m), 944(m), 936(w) ,764(s),699(s),629(s).

Eu(Epoxy-phen)(BTA)₃: 1606(s), 1575(s),1533(m), 1467(m), 1470(m),1489(m), 1321(m), 1292(s),1273(w),1184(s), 1134(s),1076(w), 1116(w), 1021(m), 944(m), 894(w), 764(s).

Based on above and according to the literature¹ were identified the following characteristic absorption bands: 1609 cm⁻¹,1613 cm⁻¹,1609 cm⁻¹,1606cm⁻¹ (v_{as} C=C-C=O); 1572 cm⁻¹,1571 cm⁻¹,1573 cm⁻¹,1575 cm⁻¹ (v_s C=C),);1490 cm⁻¹,1519 cm⁻¹,1516 cm⁻¹,1489 cm⁻¹ (v_s C=C-C=O),1429 cm⁻¹,1425 cm⁻¹,1414 cm⁻¹,1467 cm⁻¹ (v_{as} C=N),1326 cm⁻¹,1367 cm⁻¹, 1321 cm⁻¹, 1378 cm⁻¹ (v_s C=N).It is important to note that the aromatic CH out-of-plane bending vibrations of N,N-donor were found about 700 cm⁻¹ and slightly shifted to lower frequencies

with respect of free ligand, originated by the coordination to the europium ion. In the same way, the characteristic strong carbon-fluorine bands were observed around 1130-1290 cm⁻¹.

Figure S14. FT-IR spectra of a) BTA (blue line) b) Me-phen (orange line) c) Epoxy-phen (gray line)

Figure S15. FT-IR spectra of a) One-phen (blue line) b) Nitro-phen (orange line).

Cell constant	Values Powder diffraction**
Eu(Me-phe	en)(BTA) ₃]
a (Å)	11.1927
b (Å)	17.6396
c (Å)	8.5866
β	115.452
Crystal Density (g cm ⁻³)	2.336
Éu(Nitro-ph	en)(BTA) ₃]
a (Å)	11.2357
b (Å)	17.8432
c (Å)	8.7322
β	112.353
Crystal Density (g cm ⁻³)	2.235
[Eu(One-ph	en)(BTA) ₃]
a (Å)	13.5511
b (Å)	17.3987
c (Å)	18.5192
β	105.257
Crystal Density (g cm ⁻³)	1.717
[Eu(Epoxy-pl	hen)(BTA) ₃]
a (Å)	9.1075
b (Å)	11.8822
c (Å)	15.5502
β	115.452
Crystal Density ($g \text{ cm}^{-3}$)	1.992

Table S19. Cell parameters estimated for Eu³⁺-complexes synthetized in this work *

Crystal system: monoclinic, radiation: CuKa

Figure S16. FT-IR spectra of a) [Eu(Me-phen)(BTA)₃] (red line) b) [Eu(Nitrophen)(BTA)₃] (green line)

•

Figure S17. FT-IR spectra of a) [Eu(One-phen)(BTA)₃] (blue line) b) [Eu(Epoxyphen)(BTA)₃] (orange line)

Figure S18. Simulated X -ray powder diffraction (λ = 1.54056 Å) pattern of a) Eu(Mephen)(BTA)₃ b) Eu(Nitro-phen)(BTA)₃. Experimental (blue line), calculated (dashed line).

Figure S19. Simulated X-ray powder diffraction (λ= 1.54056 Å) pattern ofc) Eu(Onephen)(BTA)₃ d) Eu(Epoxy-phen)(BTA)₃. Experimental (blue line), calculated (dashed line).

References

 Martins, J. P.; Martín-Ramos, P.; Coya, C.; Silva, M. R.; Eusebio, M. E. S.; De Andrés, A.; Álvarez, Á. L.; Martín-Gil, J. Highly Luminescent Pure-Red-Emitting Fluorinated β-Diketonate Europium(III) Complex for Full Solution-Processed OLEDs. J. Lumin. 2015, 159, 17–25. https://doi.org/10.1016/j.jlumin.2014.10.020.