Supporting Information

Coordination anion effects on the geometry and magnetic

interaction of binuclear Dy₂ single-molecule magnets

Jinjiang Wu^{a,b}, Xiao-Lei Li^a, Léo La Droitte,^c Olivier Cador,^c Boris Le Guennic,^{c*} and Jinkui Tang^{a,b*}

^aState Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China. ^bSchool of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China. ^cUniv Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.

Corresponding Author: Boris Le Guennic, E-mail: boris.leguennic@univ-rennesl.fr Jinkui Tang, E-mail: tang@ciac.ac.cn

Compound	1	2
Formula	$C_{76}H_{74}Dy_2N_{12}O_6S_2$	$C_{74}H_{74}Dy_2N_{12}O_{14}\\$
Mr	1640.59	1680.45
Temperature/K	173.0	173.0
Crystal system	Triclinic	Monoclinic
Space group	PĪ	$P2_1/n$
a/Å	11.6924(4)	14.6039(9)
b/Å	12.8898(4)	15.8167(9)
$c/{ m \AA}$	13.8753(4)	16.5425(10)
$lpha\!/^{\circ}$	96.547(1)	90
$eta^{\prime \circ}$	100.241(1)	107.585(2)
$\gamma^{\prime \circ}$	113.931(1)	90
Volume/Å ³	1840.2(5)	3642.5(4)
Ζ	1	2
$\rho calc/g \cdot cm^{-3}$	1.480	1.532
<i>F</i> (000)	826.0	1692.0
Crystal size/mm ³	0.12×0.24×0.25	0.6×0.4×0.2
Reflns collected	20505	74904
$R_{ m int}$	0.0563	0.0485
GOF on F^2	1.072	1.151
$*R_1, wR_2 [I > = 2\sigma (I)]$	0.0552, 0.1539	0.0227, 0.0521
* R_1 , wR_2 [all data]	0.0597, 0.1595	0.0284, 0.0561
CCDC	2088272	2088273

 Table S1. Crystallographic data for complexes 1 and 2.

 $\overline{R_1 = S||Fo| - |Fc||/S|Fo| \text{ for } Fo > 2s(Fo); wR_2 = (Sw(Fo^2 - Fc^2)^2/S(wFc^2)^2)^{1/2} \text{ all reflections}, w = 1/[s^2(Fo^2) + (0.1557P)^2] \text{ where } P = (Fo^2 + 2Fc^2)/3$

	Compound			
	1	2		
Dy(1)-O(1)	2.286(3)	2.289(0)		
Dy(1)-O(1a)	2.345(1)	2.301(6)		
Dy(1)-O(2)	2.187(7)	2.219(6)		
Dy(1)–O(3)	2.214(0)	2.212(5)		
Dy(1)–O _{nitrate}		2.212(5)		
		2.668(8)		
Dy(1)-N(1)	2.623(0)	2.546(0)		
Dy(1)-N(2)	2.529(7)	2.730(7)		
Dy(1)-N _{thiocyanate}	2.425(6)			
Dy⋯Dy	3.7441(6)	3.7522(5)		
Dy(1)-O(1)-Dy(1a)	107.8(7)	109.6(4)		
Dy–O _{average}	2.258(0)	2.353(5)		
Dy-N _{average}	2.525(6)	2.638(0)		

 Table S2. Selected bond distances (Å), angles (°) for complexes 1 and 2.

 Table S3. Lanthanide geometry analysis by SHAPE software for 1 and 2.

Central atom	Coordination Polyhedron	CShM Values
1 Dy1	Hexagonal pyramid (HPY-7 C _{6v})	18.645
	Pentagonal bipyramid (PBPY-7, D _{5h})	6.918
	Capped octahedron (COC-7, C _{3v})	0.935
	Capped trigonal prism (CTPR-7, C _{2v})	1,247
	Johnson pentagonal bipyramid J13 (JPBPY, D _{5h})	9.275
	Hexagonal bipyramid (HBPY-8, D _{6h})	14.052
2 Dy1	Cube (CU-8, Oh)	9.788
	Square antiprism (SAPR-8, D _{4d})	3.368
	Triangular dodecahedron (TDD-8, D _{2d})	2.752
	Johnson gyrobifastigium J26 (JGBF-8, D _{2d})	13.062

KD	Energy (cm ⁻¹)		g		Wavefunction
1	0.0	0.0	0.0	19.8	98.1% ±15/2>
2	249.0	0.1	0.1	16.7	92.9% ±13/2>
3	404.8	1.0	1.6	12.6	68.1% ±11/2> + 14.7% ±5/2> + 10.7% ±7/2>
4	461.4	9.2	7.2	2.8	45.1% ±3/2> + 22.4% ±1/2> + 15.1% ±9/2>
5	508.5	2.3	4.4	11.3	26.8% ±7/2> + 19.8% ±9/2> + 19.7% ±1/2> + 14.8% ±11/2> + 14.7% ±5/2>
6	530.3	3.0	5.6	9.1	37.6% ±9/2> + 26.5% ±5/2> + 15.0% ±1/2>
7	566.3	1.5	3.6	12.6	32.7% ±7/2> + 22.7% ±1/2> + 19.4% ±3/2> + 16.5% ±9/2>
8	726.5	0.0	0.0	19.3	31.1% ±5/2> + 25.7% ±3/2> + 20.4% ±7/2> + 16.3% ±1/2>

Table S4. Computed energy levels (the ground state is set at zero), composition of the *g*-tensor (g_x , g_y , g_z) and the main components (>10%) of the wavefunction for each m_j state of the ground-state multiplet ${}^{6}\text{H}_{15/2}$ of individual Dy^{III} center for **1**.

Table S5. Computed energy levels (the ground state is set at zero), composition of the *g*-tensor (g_x , g_y , g_z) and the main components (> 10%) of the wavefunction for each m_j state of the ground-state multiplet ${}^{6}\text{H}_{15/2}$ of individual Dy^{III} center for **2**.

KD	Energy (cm ⁻¹)		g		Wavefunction
1	0.0	0.0	0.0	19.7	97.3 ± 15/2>
2	172.5	0.3	0.8	15.0	72.2 ± 13/2>
3	238.1	0.8	1.8	11.1	$39.3 \pm 11/2 > + 19.6 \pm 3/2 > + 11.8 \pm 7/2 > + 10.9 \pm 1/2 >$
4	293.4	1.9	4.0	11.0	$27.0 \pm 9/2 > + 19.6 \pm 7/2 > + 17.0 \pm 5/2 > + 11.5 \pm 1/2 > +$ $10.8 \pm 11/2 >$
5	330.9	2.5	6.2	11.7	$30.0 \pm 1/2 > \pm 20.2 \pm 3/2 > \pm 15.3 \pm 5/2 > \pm 14.6 \pm 11/2 >$
6	430.1	0.2	1.2	15.3	$20.4 \pm 9/2 > + 18.6 \pm 11/2 > + 18.2 \pm 3/2 > + 12.5 \pm 7/2 > + 12.5 \pm 5/2 > + 12.5 \pm 1/2 >$
7	525.6	0.7	1.2	15.4	$24.5 \pm 1/2 > + 24.0 \pm 7/2 > + 17.9 \pm 9/2 > + 11.0 \pm 5/2 > + \\10.5 \pm 3/2 > + 10.3 \pm 11/2 >$
8	558.8	0.4	2.0	17.0	$29.5 \pm 5/2 > + 22.3 \pm 3/2 > + 20.0 \pm 7/2 > + 14.1 \pm 9/2 >$

Table S6. Computed exchange energy levels (the ground state is set at zero), composition of the *g*-tensor (g_x , g_y , g_z) and tunnelling splitting value for 1.

Energy (cm ⁻¹)		g		Tunneling splitting (cm ⁻¹)
0.00	0.0	0.0	39.5	7.6×10 ⁻⁹
0.49	0.0	0.0	0.0	3.31×10 ⁻⁸

Table S7. Computed exchange energy levels (the ground state is set at zero), composition of the *g*-tensor (g_x, g_y, g_z) and tunnelling splitting value for **2**.

Energy (cm ⁻¹)		g		Tunneling splitting (cm ⁻¹)
0.00	0.0	0.0	0.0	2.46×10^{-6}
2.83	0.0	0.0	39.3	4.01×10 ⁻⁶

Figure S1. Packing arrangement along the crystallographic *a* (top), *b* (middle) and *c* (bottom) axis for **1**. Color code: purple, Dy; red, O; blue, N; gray, C; yellow, S.

Figure S2. Packing arrangement along the crystallographic a (top), b (middle) and c (bottom) axis for **2**. Color code: purple, Dy; red, O; blue, N; gray, C.

Figure S3. Field dependences of magnetization in the field range 0-70 kOe and at the range of 1.9–5.0 K for 1 (left) and 2 (right). Experimental values as empty dots while calculated curves are represented as full lines.

Figure S4. Plots of the reduced magnetization M versus H/T for 1 (left) and 2 (right). Experimental values as symbols while calculated curves are represented as full lines.

Figure S5. Variable magnetic field magnetization measurement for **1** (left) and **2** (right) at 1.9 K with an averaged sweep rate of 27 Oe/s.

Figure S6. Temperature dependence under zero dc field of the in-phase (red) and the out-of-phase (blue) ac susceptibility component at 997 Hz for **2**.

Figure S7. Field dependence of the in-phase (red) and the in-phase (blue) ac susceptibility component at 1.9 K and 997 Hz for **2**.

Figure S8. Frequency dependence of the out-of-phase ac susceptibility component under a 1100 Oe applied dc field for **2**.

Figure S9. Frequency dependence of the in-phase (left) and out-of-phase (right) ac susceptibility component under a 1100 Oe applied dc field for 2.

Figure S10. Energies (in cm⁻¹) and projected μ_Z (in μ_B) values along the ground magnetic axis for individual Dy^{III} in complexes 1 (left) and 2 (right). Black lines represent the eight Kramers doublets of individual Dy^{III}. The values of the magnetic (i.e. isotropic Zeeman) transition moments between the states are given for comparison. The values in red correspond to QTM (for the GS) and TA-QTM (for the ESs) mechanisms of the magnetization relaxation, whereas blue and green values correspond to Orbach mechanisms.

Figure S11. Temperature dependent $\chi_M T$ values for 1 in dots with the calculated curves in full lines for a screening of the J_{exch} value from -0.7 cm⁻¹ to -1.7 cm⁻¹.

Figure S12. Temperature dependent $\chi_{\rm M}T$ values for **2** in squares with the calculated curves in full lines for a screening of the $J_{\rm exch}$ value from -0.25 cm⁻¹ to -1.25 cm⁻¹.