Supporting Information

Coordination anion effects on the geometry and magnetic interaction of binuclear Dy_{2} single-molecule magnets

 and Jinkui Tang ${ }^{\text {a,b* }}$
${ }^{a}$ State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China. ${ }^{b}$ School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China.
${ }^{c}$ Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.

Corresponding Author:
Boris Le Guennic, E-mail: boris.leguennic@univ-rennesl.fr Jinkui Tang, E-mail: tang@ciac.ac.cn

Table S1. Crystallographic data for complexes 1 and 2.

Compound	1	2
Formula	$\mathrm{C}_{76} \mathrm{H}_{74} \mathrm{Dy}_{2} \mathrm{~N}_{12} \mathrm{O}_{6} \mathrm{~S}_{2}$	$\mathrm{C}_{74} \mathrm{H}_{74} \mathrm{Dy}_{2} \mathrm{~N}_{12} \mathrm{O}_{14}$
Mr	1640.59	1680.45
Temperature/K	173.0	173.0
Crystal system	Triclinic	Monoclinic
Space group	$P \overline{1}$	$P 2_{1} / \mathrm{n}$
a / \AA ¢	11.6924(4)	14.6039(9)
b / \AA	12.8898(4)	15.8167(9)
c / \AA	13.8753(4)	16.5425(10)
$\alpha{ }^{\circ}$	96.547(1)	90
$\beta 1{ }^{\circ}$	100.241(1)	107.585(2)
γ^{10}	113.931(1)	90
Volume/ \AA^{3}	1840.2(5)	3642.5(4)
Z	1	2
$\rho \mathrm{calc} / \mathrm{g} \cdot \mathrm{cm}^{-3}$	1.480	1.532
$F(000)$	826.0	1692.0
Crystal size/mm ${ }^{3}$	$0.12 \times 0.24 \times 0.25$	$0.6 \times 0.4 \times 0.2$
Reflns collected	20505	74904
$R_{\text {int }}$	0.0563	0.0485
GOF on F^{2}	1.072	1.151
* $R_{1}, w R_{2}[I>=2 \sigma(I)]$	0.0552, 0.1539	0.0227, 0.0521
* $R_{1}, w R_{2}$ [all data]	0.0597, 0.1595	0.0284, 0.0561
CCDC	2088272	2088273

Table S2. Selected bond distances (\AA), angles $\left({ }^{\circ}\right)$ for complexes $\mathbf{1}$ and 2.

	Compound	
	$\mathbf{1}$	$\mathbf{2}$
$\mathrm{Dy}(1)-\mathrm{O}(1)$	$2.286(3)$	$2.289(0)$
$\mathrm{Dy}(1)-\mathrm{O}(1 \mathrm{a})$	$2.345(1)$	$2.301(6)$
$\mathrm{Dy}(1)-\mathrm{O}(2)$	$2.187(7)$	$2.219(6)$
$\mathrm{Dy}(1)-\mathrm{O}(3)$	$2.214(0)$	$2.212(5)$
$\mathrm{Dy}(1)-\mathrm{O}_{\text {nitrate }}$		$2.212(5)$
		$2.668(8)$
$\mathrm{Dy}(1)-\mathrm{N}(1)$	$2.623(0)$	$2.546(0)$
$\mathrm{Dy}(1)-\mathrm{N}(2)$	$2.529(7)$	$2.730(7)$
$\mathrm{Dy}(1)-\mathrm{N}_{\text {thiocyanate }}$	$2.425(6)$	
$\mathrm{Dy} \cdots \mathrm{Dy}$	$3.7441(6)$	$3.7522(5)$
$\mathrm{Dy}(1)-\mathrm{O}(1)-\mathrm{Dy}(1 \mathrm{a})$	$107.8(7)$	$109.6(4)$
$\mathrm{Dy}-\mathrm{O}_{\text {average }}$	$2.258(0)$	$2.353(5)$
$\mathrm{Dy}-\mathrm{N}_{\text {average }}$	$2.525(6)$	$2.638(0)$

Table S3. Lanthanide geometry analysis by SHAPE software for $\mathbf{1}$ and $\mathbf{2}$.

Central atom	Coordination Polyhedron	CShM Values
$\mathbf{1}$ Dy1	Hexagonal pyramid (HPY-7 C $\mathrm{C}_{6 \mathrm{v}}$)	18.645
	Pentagonal bipyramid (PBPY-7, $\mathrm{D}_{5 \mathrm{~h}}$)	6.918
	Capped octahedron (COC-7, $\mathbf{C}_{3 \mathrm{v}}$)	$\mathbf{0 . 9 3 5}$
	Capped trigonal prism (CTPR-7, $\mathrm{C}_{2 \mathrm{v}}$)	1,247
	Johnson pentagonal bipyramid J13 (JPBPY, $\mathrm{D}_{5 \mathrm{~h}}$)	9.275
$\mathbf{2}$ Dy1	Hexagonal bipyramid (HBPY-8, $\mathrm{D}_{6 \mathrm{~h}}$)	14.052
	Cube (CU-8, Oh)	9.788
	Square antiprism (SAPR-8, D	3.368
	Triangular dodecahedron (TDD-8, $\mathbf{D}_{\mathbf{2 d}}$)	$\mathbf{2 . 7 5 2}$
	Johnson gyrobifastigium J26 (JGBF-8, $\mathrm{D}_{2 \mathrm{~d}}$)	13.062

Table S4. Computed energy levels (the ground state is set at zero), composition of the g-tensor ($\mathrm{g}_{\mathrm{x}}, \mathrm{g}_{\mathrm{y}}, \mathrm{g}_{\mathrm{z}}$) and the main components ($>10 \%$) of the wavefunction for each m_{j} state of the ground-state multiplet ${ }^{6} \mathrm{H}_{15 / 2}$ of individual Dy ${ }^{\text {III }}$ center for $\mathbf{1}$.

KDEnergy $\left(\mathbf{c m}^{-1}\right)$	\boldsymbol{g}	Wavefunction			
$\mathbf{1}$	0.0	0.0	0.0	19.8	$98.1 \% \mid \pm 15 / 2>$
$\mathbf{2}$	249.0	0.1	0.1	16.7	$92.9 \% \mid \pm 13 / 2>$
$\mathbf{3}$	404.8	1.0	1.6	12.6	$68.1 \%\| \pm 11 / 2>+14.7 \%\| \pm 5 / 2>+10.7 \% \mid \pm 7 / 2>$
$\mathbf{4}$	461.4	9.2	7.2	2.8	$45.1 \%\| \pm 3 / 2>+22.4 \%\| \pm 1 / 2>+15.1 \% \mid \pm 9 / 2>$
$\mathbf{5}$	508.5	2.3	4.4	11.3	$26.8 \%\| \pm 7 / 2>+19.8 \%\| \pm 9 / 2>+19.7 \% \mid \pm 1 / 2>+14.8 \%$
$\mathbf{6}$	530.3	3.0	5.6	9.1	$37.6 \%\| \pm 9 / 2>+26.5 \%\| \pm 5 / 2>+15.0 \% \mid \pm 1 / 2>$
$\mathbf{7}$	566.3	1.5	3.6	12.6	$32.7 \%\| \pm 7 / 2>+22.7 \%\| \pm 1 / 2>+19.4 \% \mid \pm 3 / 2>+16.5 \%$
$\mid \pm 9 / 2>$					

Table S5. Computed energy levels (the ground state is set at zero), composition of the g-tensor ($\mathrm{g}_{\mathrm{x}}, \mathrm{g}_{\mathrm{y}}, \mathrm{g}_{\mathrm{z}}$) and the main components ($>10 \%$) of the wavefunction for each m_{j} state of the ground-state multiplet ${ }^{6} \mathrm{H}_{15 / 2}$ of individual Dy ${ }^{\text {III }}$ center for $\mathbf{2}$.

KD Energy $\left(\mathbf{c m}^{-1}\right)$ $\mathbf{1}$	0.0	0.0	0.0	19.7	Wavefunction
$\mathbf{2}$	172.5	0.3	0.8	15.0	$97.3 \pm 15 / 2>$
$\mathbf{3}$	238.1	0.8	1.8	11.1	$39.3 \pm 11 / 2>+19.6 \pm 3 / 2>+11.8 \pm 7 / 2>+10.9 \pm 1 / 2>$
$\mathbf{4}$	293.4	1.9	4.0	11.0	$27.0 \pm 9 / 2>+19.6 \pm 7 / 2>+17.0 \pm 5 / 2>+11.5 \pm 1 / 2>+$
$10.8 \pm 11 / 2>$					

Table S6. Computed exchange energy levels (the ground state is set at zero), composition of the g-tensor $\left(\mathrm{g}_{\mathrm{x}}, \mathrm{g}_{\mathrm{y}}, \mathrm{g}_{\mathrm{z}}\right)$ and tunnelling splitting value for $\mathbf{1}$.

Energy $\left(\mathbf{c m}^{-\mathbf{1}}\right)$		\boldsymbol{g}		Tunneling splitting (cm
$\mathbf{1})$				
0.00	0.0	0.0	39.5	7.6×10^{-9}
0.49	0.0	0.0	0.0	3.31×10^{-8}

Table S7. Computed exchange energy levels (the ground state is set at zero), composition of the g-tensor $\left(g_{x}, g_{y}, g_{z}\right)$ and tunnelling splitting value for $\mathbf{2}$.

Energy (cm $\mathbf{c m}^{\mathbf{1}}$)		\boldsymbol{g}		Tunneling splitting ($\mathbf{c m}^{\mathbf{- 1}} \mathbf{)}$
0.00	0.0	0.0	0.0	2.46×10^{-6}
2.83	0.0	0.0	39.3	4.01×10^{-6}

Figure S1. Packing arrangement along the crystallographic a (top), b (middle) and c (bottom) axis for 1. Color code: purple, Dy; red, O; blue, N; gray, C; yellow, S.

Figure S2. Packing arrangement along the crystallographic a (top), b (middle) and c (bottom) axis for 2. Color code: purple, Dy; red, O; blue, N; gray, C.

Figure S3. Field dependences of magnetization in the field range $0-70 \mathrm{kOe}$ and at the range of $1.9-5.0 \mathrm{~K}$ for $\mathbf{1}$ (left) and $\mathbf{2}$ (right). Experimental values as empty dots while calculated curves are represented as full lines.

Figure S4. Plots of the reduced magnetization M versus H / T for $\mathbf{1}$ (left) and $\mathbf{2}$ (right).
Experimental values as symbols while calculated curves are represented as full lines.

Figure S5. Variable magnetic field magnetization measurement for $\mathbf{1}$ (left) and $\mathbf{2}$ (right) at 1.9 K with an averaged sweep rate of $27 \mathrm{Oe} / \mathrm{s}$.

Figure S6. Temperature dependence under zero dc field of the in-phase (red) and the out-of-phase (blue) ac susceptibility component at 997 Hz for 2.

Figure S7. Field dependence of the in-phase (red) and the in-phase (blue) ac susceptibility component at 1.9 K and 997 Hz for 2.

Figure S8. Frequency dependence of the out-of-phase ac susceptibility component under a 1100 Oe applied dc field for 2.

Figure S9. Frequency dependence of the in-phase (left) and out-of-phase (right) ac susceptibility component under a 1100 Oe applied dc field for 2.

Figure S10. Energies (in cm^{-1}) and projected $\mu_{\mathrm{Z}}\left(\right.$ in μ_{B}) values along the ground magnetic axis for individual Dy ${ }^{\text {III }}$ in complexes 1 (left) and 2 (right). Black lines represent the eight Kramers doublets of individual Dy ${ }^{\text {IIII }}$. The values of the magnetic (i.e. isotropic Zeeman) transition moments between the states are given for comparison. The values in red correspond to QTM (for the GS) and TA-QTM (for the ESs) mechanisms of the magnetization relaxation, whereas blue and green values correspond to Orbach mechanisms.

Figure S11. Temperature dependent $\chi_{\mathrm{M}} T$ values for $\mathbf{1}$ in dots with the calculated curves in full lines for a screening of the $J_{\text {exch }}$ value from $-0.7 \mathrm{~cm}^{-1}$ to $-1.7 \mathrm{~cm}^{-1}$.

Figure S12. Temperature dependent $\chi_{\mathrm{M}} T$ values for $\mathbf{2}$ in squares with the calculated curves in full lines for a screening of the $J_{\text {exch }}$ value from $-0.25 \mathrm{~cm}^{-1}$ to $-1.25 \mathrm{~cm}^{-1}$.

