Supporting Information for:

Antimony Diiminopyridine Complexes

John R. Tidwell,^a Jason L. Dutton,^b and Caleb D. Martin^a*

 ^a Baylor University, Department of Chemistry and Biochemistry, One Bear Place #97348, Waco, TX 76798

^b La Trobe University, La Trobe Institute for Molecular Science, Department of Chemistry and Physics, Melbourne, VIC, 3086

Table of Contents

Experimental details	S3
Multinuclear NMR spectra for 2CH ₃	S8
FT-IR spectrum of 2CH ₃	S15
Multinuclear NMR spectra for 2Ph	S16
FT-IR spectrum of 2Ph	S22
Multinuclear NMR spectra for 2H	S23
FT-IR spectrum of 2H	S29
¹ H NMR spectrum of 1H	S30
X-ray crystallographic details	S31
References	S32

EXPERIMENTAL DETAILS

General Considerations: All manipulations were performed under an inert atmosphere in a nitrogen filled MBraun Unilab glove box or using standard Schlenk techniques. CD₃CN for NMR spectroscopy was purchased from Cambridge Isotope Laboratories, Inc., dried by stirring for 5 days over CaH₂, distilled, and stored over 3 Å molecular sieves. *m*-Xylene for crystallizations was purchased from Alfa Aesar, dried by stirring for 5 days over CaH₂, distilled, and stored over 3 Å molecular sieves. All other solvents were purchased from commercial sources as anhydrous grade, dried further using a JC Meyer Solvent System with dual columns packed with solvent-appropriate drying agents, and stored over 3 or 4 Å molecular sieves. Ligands 1H, 1CH₃, and 1Ph were prepared by the literature procedures.¹ Antimony(III) trichloride was purchased from Alfa Aesar (>99%) and was ground into a fine powder with a mortar and pestle. Trimethylsilyl trifluoromethanesulfonate was purchased from Alfa Aesar (99%) and used as received. Multinuclear NMR spectra (¹H, ¹³C{¹H}, ¹⁹F) were recorded on a Bruker Avance III HD 400 MHz or 600MHz instrument. ¹⁹F NMR spectra were referenced to an internal standard, fluorobenzene, which was purchased from Aldrich Chemical (99%) and dried over 3 Å molecular sieves. High Resolution mass spectra (HRMS) were obtained in the Baylor University Mass Spectrometry Center on a Thermo Scientific LTQ Orbitrap Discovery spectrometer using +ESI. Melting points were measured with a Thomas Hoover Uni-melt capillary melting point apparatus and are uncorrected. FT-IR spectra were recorded on a Bruker Alpha ATR FT-IR spectrometer on solid samples. Single crystal X-ray diffraction data were collected on a Bruker Apex III-CCD detector using Mo-K α radiation ($\lambda = 0.71073$ Å). Crystals were selected under paratone oil, mounted on MiTeGen micromounts, and immediately placed in a cold stream of N₂. Structures were solved and refined using SHELXTL and figures produced using OLEX2.²

General procedure for the synthesis of **2Ph**, **2H**, and **2CH**₃ (quantities and characterization details follow): Antimony(III) trichloride was dissolved in acetonitrile (3 mL) and neat trimethylsilyl trifluoromethanesulfonate was added. The mixture was then added dropwise to an acetonitrile solution of ligand (1 mL) at room temperature and stirred. After 1 h, the volatiles were removed in vacuo giving a solid that was clean by NMR spectroscopy.

2CH₃: SbCl₃ (130.4 mg, 0.5716 mmol), TMSOTf (0.1030 mL, 0.5691 mmol), **1CH₃** (275.1 mg, 0.5711 mmol), yellow powder, Yield: quantitative (514.9 mg). Single crystals for X-ray diffraction studies were grown *via* vapor diffusion of a

benzene solution of 2CH₃ into toluene.; d.p. 100-105 °C.

¹H NMR (600 MHz, CD₃CN): δ (ppm) 9.07 (t, *J* = 7.8 Hz, 1H), 8.97 (d, *J* = 7.8 Hz, 2H), 7.50-7.44 (m, 6H), 3.12 (br, 4H), 2.77 (s, 6H), 1.24 (d, *J* = 6.6 Hz, 12H), 1.16 (d, *J* = 6.6 Hz, 12H)

¹³C{¹H} NMR (151 MHz, CD₃CN): δ (ppm) 173.86, 148.40, 147.80, 142.90, 136.18, 134.54, 130.76, 126.58, 124.92, 122.80, 120.68, 29.43, 25.48, 24.85, 20.86

¹⁹F NMR (565 MHz, CD₃CN): δ (ppm) -79.2

FT-IR [cm⁻¹ (ranked intensity)]: 2962 (9), 1632 (13), 1589 (15), 1459 (10), 1366 (8), 1275 (2), 1222 (12), 1159 (7), 1030 (3), 803 (5), 770 (11), 688 (4), 636 (1), 573 (12), 517 (6), 434 (14)

High-resolution mass spectrometry electrospray ionization (HRMS-ESI) for $C_{33}H_{43}N_3SbCl_2^+$ [M]⁺ calc. 672.1872 *m/z*; found: 672.1858 *m/z*.

2Ph: SbCl₃ (21.2 mg, 0.09293 mmol), TMSOTf (0.0160 mL, 0.08847 mmol), **1Ph** (53.6 mg, 0.08847 mmol), red powder, Yield: quantitative (83.8 mg). Single crystals for X-ray

diffraction studies were grown *via* vapor diffusion of a dichloromethane solution of **2Ph** into toluene. d.p. 135-140 °C.

¹H NMR (400 MHz, CD₃CN): δ (ppm) 8.81 (t, *J* = 8.0 Hz, 1H), 8.52 (d, *J* = 8.0 Hz, 2H), 7.69 (t, *J* = 7.4 Hz, 2H), 7.60 (t, *J* = 7.6 Hz, 4H), 7.53 (d, *J* = 7.6 Hz, 4H), 7.40 (t, *J* = 7.6f Hz, 2H), 7.32 (d, *J* = 7.6 Hz, 4H), 3.29 (sept, *J* = 6.6 Hz, 4H), 1.28 (d, *J* = 6.4 Hz, 12H), 0.82 (d, *J* = 6.8 Hz, 12H)

¹³C{¹H} NMR (101 MHz, CD₃CN): δ (ppm) 170.05, 149.31, 148.39, 142.94, 137.32, 136.52, 134.60, 131.81, 130.88, 130.44, 129.53, 126.64, 123.20, 120.01, 29.56, 27.08, 24.09

¹⁹F NMR (376 MHz, CD₃CN): δ (ppm) -79.1

FT-IR [cm⁻¹ (ranked intensity)]: 2966 (9), 1572 (5), 1464 (15), 1445 (8), 1274 (11), 1204 (3), 1056 (14), 1017 (2), 805 (10), 783 (6), 769 (13), 696 (4), 633 (1), 575 (12), 514 (7)

High-resolution mass spectrometry electrospray ionization (HRMS-ESI) for $C_{43}H_{47}N_3SbCl_2^+$ [M]⁺ calc. 796.2185 *m/z*; found: 796.2205 *m/z*.

2H: SbCl₃ (61.8 mg, 0.2709 mmol), TMSOTf (0.0470 mL,
0.2599 mmol), 1H (117.9 mg, 0.2599 mmol), orange powder,
Yield: quantitative (206.7 mg). Single crystals for X-ray

diffraction studies were grown *via* vapor diffusion of a benzene solution of **2H** into meta-xylene. d.p. 88-90 °C.

¹H NMR (400 MHz, CD₃CN): δ (ppm) 9.22 (s, 2H), 8.87 (t, *J* = 7.6 Hz, 1H), 8.72 (d, *J* = 7.6 Hz, 2H), 7.40 (s, 6H), 3.18 (sept, *J* = 6.6 Hz, 4H), 1.23 (d, *J* = 6.8 Hz, 24H)

¹³C{¹H} NMR (101 MHz, CD₃CN): δ (ppm) 164.86, 148.23, 146.77, 142.37, 135.64, 129.92, 126.62, 125.52, 123.43, 120.24, 117.06, 29.66, 24.86

¹⁹F NMR (376 MHz, CD₃CN): δ (ppm) -79.2

FT-IR [cm⁻¹ (ranked intensity)]: 2963 (7), 1588 (12), 1463 (8), 1364 (15), 1282 (9), 1222 (2), 1162 (6), 1099 (14), 1055 (10), 1017 (3), 802 (4), 759 (11), 635 (1), 573 (13), 518 (5)

High-resolution mass spectrometry electrospray ionization (HRMS-ESI) for $C_{31}H_{39}N_3SbCl_2^+$ [M]⁺ calc. 644.1559 *m/z*; found: 644.1556 *m/z*.

Figure S-4: ¹³C{¹H} NMR spectrum of **2CH₃** in CD₃CN.

Figure S-5: Expansion of ${}^{13}C{}^{1}H$ NMR spectrum of **2CH₃** in CD₃CN (aryl region).

180 178 176 174 172 170 168 166 164 162 160 158 156 154 152 150 148 146 144 142 140 138 136 134 132 130 128 126 124 122 120 118 116 (ppm)

Figure S-6: ¹⁹F NMR spectrum of **2CH₃** in CD₃CN with internal standard C_6H_5F .

Figure S-7: 19 F NMR spectrum of tristrimethylsilyl trifluoromethanesulfonate in CD₃CN with internal standard C₆H₅F.

Figure S-8: FT-IR spectrum of 2CH₃.

Figure S-9: ¹H NMR spectrum of **2Ph** in CD₃CN.

Figure S-10: Expansion of ¹H NMR spectrum of **2Ph** in CD₃CN (aryl region).

Figure S-12: ¹³C{¹H} NMR spectrum of **2Ph** in CD₃CN.

Figure S-13: Expansion of ¹³C{¹H} NMR spectrum of **2Ph** in CD₃CN (aryl region).

Figure S-14: ¹⁹F NMR spectrum of **2Ph** in CD₃CN with internal standard C_6H_5F .

Figure S-15: FT-IR spectrum of **2Ph**.

Figure S-16: ¹H NMR spectrum of **2H** in CD₃CN.

Figure S-17: Expansion of ¹H NMR spectrum of **2H** in CD₃CN (aryl region).

4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 (ppm)

Figure S-19: ${}^{13}C{}^{1}H$ NMR spectrum of **2H** in CD₃CN.

Figure S-20: Expansion of ${}^{13}C{}^{1}H$ NMR spectrum of **2H** in CD₃CN (aryl region).

Figure S-21: ¹⁹F NMR spectrum of **2H** in CD₃CN with internal standard C₆H₅F.

Figure S-22: FT-IR spectrum of **2H**.

Figure S-23: ¹H NMR spectrum of **1H** in CD₃CN.

	2 CH ₃	2Ph	2 H			
CCDC	2091549	2091550	2091551			
Empirical Formula	$C_{40}H_{49}N_3Sb_1Cl_2O_3S_1F_3$	$C_{44}H_{47}N_3Sb_1Cl_2O_3S_1F_3$	$C_{72}H_{87}N_6Sb_2Cl_4O_6S_2F_6$			
FW (g/mol)	901.53	947.55	1695.89			
Crystal System	monoclinic	orthorhombic	orthorhombic			
Space Group	$P2_1/c$	$P2_{1}2_{1}2_{1}$	Pna21			
a (Å)	17.5725(7)	9.4978(2)	20.2985(8)			
b (Å)	15.1574(7)	17.5189(4)	28.7063(12)			
c (Å)	16.5994(7)	26.3589(8)	16.5024(7)			
α (deg)	90	90	90			
β (deg)	106.4215(15)	90	90			
γ (deg)	90	90	90			
$V(Å^3)$	4241.0(3)	4385.88(19)	9615.9(17)			
Ζ	4	4	4			
D _c (g cm ⁻ 3)	1.412	1.435	1.171			
Radiation λ (Å)	0.71073	0.71073	0.71073			
Temp (K)	150	150	150			
R1	0.0310	0.0410	0.0451			
$[I>2(\sigma)I]^a$						
wR2 $(F^2)^a$	0.0892	0.1166	0.1157			
$GOF(S)^a$	1.065	1.156	1.063			
$F_{R1}(F[1 > 2(1)]) = \sum F_{o} - F_{c} / \sum F_{o} ; wR2(F^{2} [all data]) = [w(F_{o}^{2} - F_{c}^{2})^{2}]^{1/2}; S(all data)$						
$[w(F_0^2 - F_c^2)^2/(n - p)]^{1/2}$ (n = no. of data; p = no. of parameters varied; w = $1/[2(F_0^2) + (a - p)]^{1/2}$						

Table S-1: X-ray	crystallograph	nic details for	2CH ₃ , 2Ph,	and 2H.
2			-, ,	

= $(P)^2$ $[w(P_0 - P_c -) - (n - p)] = (n - n0. of data, p - n0. of parameters varied, w - 1/[(P_0 -) - (a)) + bP]$ where $P = (F_0^2 + 2F_c^2)/3$ and a and b are constants suggested by the refinement program.

References

- (a) N. Kleigrewe, W. Steffen, T. Blömker, G. Kehr, R. Fröhlich, B. Wibbeling, G. Erker, J.-C. Wasilke, G. Wu and G. C. Bazan, *J. Am. Chem. Soc.*, 2005, **127**, 13955-13968; (b) M. D. Greenhalgh and S. P. Thomas, *J. Am. Chem. Soc.*, 2012, **134**, 11900-11903; (c) A.M.A. Bennett, Oligomerization of Propylene. EP1066229 (A1): 2001.
- 2. (a) G. M. Sheldrick, *Acta Crystallogr. A*, 2008, **64**, 112-122; (b) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339-341.