Supporting Information

Hydroboration of Aldehydes and Ketones Under Mild Conditions Mediated by Iron Salen Complex

Samantha Lau,^a Cei B. Provis-Evans,^a Alexander P. James,^a and Ruth L. Webster^{*a}

^aDepartment of Chemistry, University of Bath, Calverton Down, Bath, BA2 7AY, UK.

*Email: r.l.webster@bath.ac.uk

Table of Contents

1.	. General considerations						
2.	2. Materials						
3.	B. Optimisation						
;	3.1 Solvent and Borane source		3				
3.2		Temperature and Catalyst Loading	3				
3.3		Control reactions	4				
4. General method for hydroboration with 1a							
4	4.1	Aldehydes	5				
4	1.2	Ketones	6				
4	4.3	Large scale synthesis	8				
5.	Com	ompetition reactions9					
6.	5. CO ₂ reduction reaction10						
7.	7. Homogeneity reactions						
8.	3. Spectra of new compounds17						
9.	9. Spectra of Known Compounds						
Re	References						

1. General considerations

All manipulations were carried out under standard Schlenk-line and glovebox techniques under an inert atmosphere of argon or dinitrogen. Acetonitrile was dried over CaH₂ (reflux), distilled then freeze-pumpthaw degassed × 3 and stored under an inert atmosphere. Benzene, toluene and tetrahydrofuran (THF) were distilled from Na/benzophenone and stored over activated 3 Å molecular sieves. Dimethylformamide (DMF) was dried over three batches of activated 3 Å molecular sieves. Glassware was dried for 12 hours at 120°C prior to use. d₃-Acetonitirile, d₆-benzene and d₁-chloroform were purchased from Sigma Aldrich and used without further purification.

NMR spectra were obtained on Bruker or Agilent 300, 400 or 500 MHz instruments, all peaks are references against residual solvent peak or internal standard peak where stated with values quoted in ppm. Data were processed in MestReNova.

2. Materials

Chemicals were purchased from Sigma Aldrich and Alfa Aesar and used without further purification unless stated. Pinacolborane (HBpin) and catecholborane (HBcat) were purified by trap-to-trap distillation then freeze-pump-thaw degassed × 3 and stored under an inert atmosphere. Aldehydes and ketones were freeze-pump-thaw degassed × 3 prior to use where applicable, otherwise used without further purification. The synthesis of [Fe(salen)]₂- μ -oxo complexes **1a**¹, **1b**² and **1c**³ were all prepared according to literature procedures.

3. Optimisation

3.1 Solvent and Borane source

 μ -oxo-bis(*N*,*N*)-ethylenebis(salicylideniminato)iron(III) (**1a**) (1 mol%), 4-methylbenzaldehyde (30 μ L, 0.25 mmol, 1 equiv) were dissolved in solvent of choice (1 mL). Borane (0.30 mmol, 1.2 equiv) was added and the reaction left to stir at room temperature for designated time. The reaction was diluted with addition of diethyl ether (10 mL) then quenched with NaOH (1 mL, 3 M) and H₂O₂ (1 mL, 30% w/w in H₂O). The mixture was extracted with diethyl ether (3 × 10 mL) and the organic layers were combined, dried over MgSO₄, filtered, and reduced *in vacuo* to leave the crude product *p*-tolylmethanol. Yield calculated by ¹H NMR spectroscopy in CDCl₃ referenced against 1,3,5-trimethoxybenzene (4.4 mg, 0.026 mmol, 0.1 equiv) as the internal standard.

[B] = Bpin or Bcat

Ехр	Solvent	1a / mol%	Borane	Time / h	Yield of alcohol / %
1	CH ₂ Cl ₂	1	HBpin	1	99
2	THF	1	HBpin	1	>99
3	Toluene	1	HBpin	1	>99
4	Benzene	1	HBpin	1	>99
5	DMF	1	HBpin	1	97
6	Neat	1	HBpin	1	>99
7	CH₃CN	1	HBpin	1	88
8	Toluene	1	HBcat	1	83
9	Toluene	1	HBcat	100	93

High conversions in all solvents tested. CH₃CN continued for further optimisation due to greater solubility of **1a** and ease of characterisation in CD₃CN without overlap of residual solvent peak(s).

3.2 Temperature and Catalyst Loading

 μ -oxo-bis(*N*,*N*)-ethylenebis(salicylideniminato)iron(III) (**1a**) (1 – 2 mol%), 2-methylacetophenone (33 μ L, 0.25 mmol, 1 equiv) and 1,2-dichloroethane (20 μ L, 1.26 M, CD₃CN, 1 equiv) were dissolved in CD₃CN (500 μ L). HBpin (44 μ L, 0.30 mmol, 1.2 equiv) was added and the reaction was left at the relevant temperature and monitored by ¹H and ¹¹B NMR spectroscopy at timed intervals. Yield calculated by ¹H NMR spectroscopy referenced against 1,2-dichloroethane as the internal standard.

Evn	10 / x mol9/	Temperature	Yield of HB product			
схр	1d / X 1101%		2 h	4 h	24 h	48 h
1	1	50	38	41	64	72
2	2	50	36	42	65	73
3	1	60	53	60	78	83
4	2	60	41	46	76	83

3.3 Control reactions

Benzaldehyde or acetophenone (0.25 mmol, 1 equiv) and 1,2-dichloroethane (20 μ L, 0.25 mmol, 1 equiv) were dissolved in CD₃CN (400 μ L). HBpin (44 μ L, 0.30 mmol, 1.2 equiv) was added and the reaction left to react at room temperature for 2 h for benzaldehyde and at 60 °C for 24 h for acetophenone. Yield calculated by ¹H NMR spectroscopy in CD₃CN referenced against 1,2-dichloroethane as the internal standard.

4. General method for hydroboration with 1a

4.1 Aldehydes

 μ -oxo-bis(*N*,*N*)-ethylenebis(salicylideniminato)iron(III) (**1a**) (100 μ I, 0.025 M, CD₃CN, 0.01 equiv), aldehyde (0.25 mmol, 1 equiv) and 1,2-dichloroethane (20 μ L, 0.25 mmol, 1 equiv) were dissolved in CD₃CN (400 μ L). HBpin (44 μ L, 0.30 mmol, 1.2 equiv) was added and the reaction left to react at room temperature for 2 h. Yield calculated by ¹H NMR spectroscopy in CD₃CN referenced against 1,2-dichloroethane as the internal standard.

4.1.1 *In-situ* NMR spectroscopy characterisation of HB of aldehydes.

2-(benzyloxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (**2a**). ¹H NMR (**300** MHz, **298** K, CD₃CN) δ/ppm: 7.46 – 7.23 (m, 5H, Ar*H*), 4.87 (s, 2H, C*H*₂), 1.24 (s, 12H, C(C*H*₃)₂). ¹¹B{¹H} NMR (**96** MHz, **298** K, CD₃CN) δ/ppm: 25.5 (s). Data comparable to previous literature report.⁴

2-((4-methoxybenzyl)oxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2b). ¹H NMR (300 MHz, 298 K, CD₃CN) δ /ppm: 7.26 (d, ³*J*_{HH} = 8.6 Hz, 2H, Ar*H*), 6.90 (d, ³*J*_{HH} = 8.7 Hz, 2H, Ar*H*), 4.79 (s, 2H, C*H*₂), 3.77 (s, 3H, OC*H*₃), 1.24 (s, 12H, C(C*H*₃)₂). ¹¹B{¹H} NMR (96 MHz, 298 K, CD₃CN) δ /ppm: 25.5 (s). Data comparable to previous literature report.⁵

4,4,5,5-tetramethyl-2-((4-(trifluoromethyl)benzyl)oxy)-1,3,2-dioxaborolane (**2c**). ¹H NMR (**300 MHz, 298 K, CD₃CN**) δ /ppm: 7.66 (d, ³*J*_{HH} = 8.1 Hz, 2H, Ar*H*), 7.50 (d, ³*J*_{HH} = 8.0 Hz, 2H, Ar*H*), 4.95 (s, 2H, C*H*₂), 1.24 (s, 12H, C(C*H*₃)₂). ¹¹B{¹H} NMR (**96 MHz, 298 K, CD**₃CN) δ /ppm: 25.5 (s). Data comparable to previous literature report.⁶

2-((4-bromobenzyl)oxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2d). ¹H NMR (400 MHz, 298 K, CD₃CN) δ /ppm: 7.50 (d, ³*J*_{HH} = 8.3 Hz, 2H, Ar*H*), 7.25 (d, ³*J*_{HH} = 8.3 Hz, 2H, Ar*H*), 4.82 (s, 2H, C*H*₂), 1.23 (s, 12H, C(C*H*₃)₂). ¹¹B{¹H} NMR (128 MHz, 298 K, CD₃CN) δ /ppm: 22.5 (s). Data comparable to previous literature report.⁷

2-((3-bromobenzyl)oxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2e). ¹H NMR (400 MHz, 298 K, CD₃CN) δ /ppm: 7.50 (s, 1H, Ar*H*), 7.44 (d appt t, ³*J*_{*HH*} = 7.0 Hz and *J*_{*HH*} = 2 Hz, 1H, Ar*H*), 7.33 – 6.22 (m, 2H, Ar*H*), 4.84 (s, 2H, C*H*₂), 1.23 (s, 12H, C(C*H*₃)₂). ¹¹B{¹H} NMR (128 MHz, 298 K, CD₃CN) δ /ppm: 25.5 (s). Data comparable to previous literature report.⁸

4,4,5,5-tetramethyl-2-((4-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)benzyl)oxy)-1,3,2dioxaborolane (**2f**). ¹**H NMR (400 MHz, 298 K, CD**₃**CN)** δ/ppm: 7.27 (d, ³*J*_{HH} = 8.1 Hz, 2H, Ar*H*), 7.04 (d, ³*J*_{HH} = 8.1 Hz, 2H, Ar*H*), 4.82 (s, 2H, C*H*₂), 1.29 (s, 12H, C(C*H*₃)₂), 1.24 (s, 12H, C(C*H*₃)₂). ¹³**C**{¹**H**} **NMR (101 MHz, 298 K, CD**₃**CN)** δ/ppm: 153.8 (s, ArO), 135.4 (s, ArC) 129.0 (s, Ar), 120.5 (s, Ar), 83.6 (s, *C*(CH₃)₂), 66.8 (s, *C*H₂), 24.8 (s, fC(*C*H₃)₂). ¹¹**B**{¹**H**} **NMR (128 MHz, 298 K, CD**₃**CN)** δ/ppm: 22.4 (br s). N,N-dimethyl-4-(((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)methyl)aniline (**2g**). ¹H NMR (**300 MHz, 298 K, CD₃CN**) δ /ppm: 7.18 (d, ³J_{HH} = 6.6 Hz, 2H, Ar*H*), 6.72 (d, ³J_{HH} = 6.8 Hz, 2H, Ar*H*), 4.49 (s, 2H, C*H*₂), 2.88 (s, 6H, N(C*H*₃)₂), 1.24 (s, 12H, C(C*H*₃)₂). ¹¹B{¹H} NMR (96 MHz, 298 K, CD₃CN) δ /ppm: 25.4 (s). Data comparable to previous literature report.⁵

2-(cinnamyloxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2h). ¹H NMR (300 MHz, 298 K, CD₃CN) δ /ppm: 7.42 (2H, d, ³*J*_{HH} = 7.0 Hz, Ar*H*), 7.33 (t, ³*J*_{HH} = 7.0 Hz, 2H, Ar*H*), 7.29 – 7.17 (m, 1H, Ar*H*), 6.59 (d, ³*J*_{HH} = 15.9 Hz, 1H, C*H*), 6.34 (dt, ³*J*_{HH} = 15.7 and 4.7 Hz, 1H, C*H*) 4.48 (d, ³*J*_{HH} = 4.2 Hz, 2H, C*H*₂), 1.24 (s, 12H, C(C*H*₃)₂). ¹¹B{¹H} NMR (96 MHz, 298 K, CD₃CN) δ /ppm: 25.4 (s). Data comparable to previous literature report.⁵

4,4,5,5-tetramethyl-2-(pentyloxy)-1,3,2-dioxaborolane (2i). ¹H NMR (300 MHz, 298 K, CD₃CN) δ /ppm: OC*H*₂ peak obscured by 1,2-dichloroethane (ISTD), 1.51 (br s, 2H, CH₂), 1.28 (br s, 4H, C*H*₂), 1.20 (br s, 12H, C(C*H*₃)₂), 0.88 (br s, 3H, C*H*₃). ¹¹B{¹H} NMR (96 MHz, 298 K, CD₃CN) δ /ppm: 25.2. Data comparable to previous literature report.⁹

2-(heptyloxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2j). ¹H NMR (300 MHz, 298 K, CD₃CN) δ /ppm: 3.76 (t, ³*J*_{HH} = 6.5 Hz, 2H, OC*H*₂), 1.51 (appt t, *J*_{HH} = 5 Hz, 2H, C*H*₂), 1.28 (br , 8H, C*H*₂), 1.20 (s, 12H, C(C*H*₃)₂), 0.88 (t, ³*J*_{HH} = 6.0 Hz, 3H, C*H*₃). ¹¹B{¹H} NMR (96 MHz, 298 K, CD₃CN) δ /ppm: 25.2. Data comparable to previous literature report.⁹

4,4,5,5-tetramethyl-2-(naphthalen-2-ylmethoxy)-1,3,2-dioxaborolanee (**2k**). ¹H NMR (**300 MHz, 298 K,** CD₃CN) δ/ppm: 8.01 – 7.70 (m, 4H, Ar*H*), 7.48 (br s, 3H, Ar*H*), 5.04 (s, 2H, C*H*₂), 1.25 (s, 12H, C(C*H*₃)₂). ¹¹B{¹H} NMR (**96 MHz, 298 K, CD₃CN**) δ/ppm: 25.6 (s). Data comparable to previous literature report.¹⁰

4.2 Ketones

 μ -oxo-bis(*N*,*N*)-ethylenebis(salicylideniminato)iron(III) (**1a**) (100 μ I, 0.025 M, CD₃CN, 0.01 equiv), ketone (0.25 mmol, 1 equiv) and 1,2-dichloroethane (20 μ L, 0.25 mmol, 1 equiv) were dissolved in CD₃CN (400 μ L). HBpin (44 μ L, 0.30 mmol, 1.2 equiv) was added and the reaction left to react at 60 °C for 24 h. Yield calculated by ¹H NMR spectroscopy in CD₃CN referenced against 1,2-dichloroethane as the internal standard.

4.2.1 *In-situ* NMR spectroscopy characterisation of HB of ketones.

4,4,5,5-tetramethyl-2-(1-phenylethoxy)-1,3,2-dioxaborolane (**3a**). ¹**H NMR (400 MHz, 298 K, CD₃CN)** δ/ppm: 7.34 (appt d, J_{HH} = 4 Hz, 4H, Ar*H*), 7.30 – 7.23 (appt sext, J_{HH} = 4 Hz, 1H, Ar*H*), 5.20 (q, ³ J_{HH} = 6.2 Hz, 1H, C*H*), 1.24 (s, 12H, C(C*H*₃)₂), 1.20 (d, ³ J_{HH} = 12.5 Hz, 3H, C*H*₃). ¹¹**B**{¹**H**} **NMR (128 MHz, 298 K, CD₃CN)** δ/ppm: 22.2 (s). Data comparable to previous literature report.⁶ 2-(1-(4-methoxyphenyl)ethoxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (**3b**). ¹**H NMR (400 MHz, 298 K, CD₃CN)** δ /ppm: 7.25 (d, ³*J*_{HH} = 8.0 Hz, 2H, Ar*H*), 6.87 (d, ³*J*_{HH} = 8.0 Hz, 2H, Ar*H*), 5.14 (q, ³*J*_{HH} = 6.0 Hz, 1H, C*H*), 3.76 (s, 3H, OC*H*₃), 1.24 (s, 12H, C(C*H*₃)₂), 1.19 (d, ³*J*_{HH} = 10.4 Hz, 3H, C*H*₃). ¹¹**B**{¹**H**} **NMR (128 MHz, 298 K, CD₃CN)** δ /ppm: 22.2 (s). Data comparable to previous literature report.⁶

2-(1-(2-methoxyphenyl)ethoxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (**3c**). ¹**H NMR (300 MHz, 298 K, CD₃CN) \delta/ppm: 7.39 (d, ³***J***_{HH} = 7.2 Hz, 1H, Ar***H***), 7.23 (appt t,** *J***_{HH} = 7 Hz, 1H, Ar***H***), 6.96 (d, ³***J***_{HH} = 7.4 Hz, 1H, Ar***H***), 6.92 (d, ³***J***_{HH} = 8.0 Hz, 1H, Ar***H***), 5.48 (q, ³***J***_{HH} = 6.0 Hz, 1H, C***H***), 3.81 (s, 3H, OC***H***₃), 1.24 (s, 12H, C(C***H***₃)₂), 1.19 (d, ³***J***_{HH} = 8.8 Hz, 3H, C***H***₃). ¹¹B{¹H} NMR (96 MHz, 298 K, CD₃CN) \delta/ppm: 25.2 (s). Data comparable to previous literature report.⁸**

4,4,5,5-tetramethyl-2-(1-(4-(trifluoromethyl)phenyl)ethoxy)-1,3,2-dioxaborolane (**3d**). ¹**H** NMR (**300** MHz, **298** K, CD₃CN) δ/ppm: 7.65 (d, ${}^{3}J_{HH}$ = 8.1 Hz, 2H, Ar*H*), 7.52 (d, ${}^{3}J_{HH}$ = 8.1 Hz, 2H, Ar*H*), 5.27 (q, {}^{3}J_{HH} = 6.3 Hz, 1H, C*H*), 1.23 (s, 12H, C(C*H*₃)₂), 1.19 (d, {}^{3}J_{HH} = 10.3 Hz, 3H, C*H*₃). ¹¹B{¹H} NMR (**96** MHz, **298** K, CD₃CN) δ/ppm: 25.3 (s). Data comparable to previous literature report.¹¹

2-(1-(4-bromophenyl)ethoxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (**3e**). ¹H NMR (**300 MHz, 298 K,** CD₃CN) δ /ppm: 7.48 (d, ³*J*_{HH} = 7.7 Hz, 2H, Ar*H*), 7.25 (d, ³*J*_{HH} = 7.7 Hz, 2H, Ar*H*), 5.15 (q, ³*J*_{HH} = 5.9 Hz, 1H, C*H*), 1.23 (s, 12H, C(C*H*₃)₂), 1.21 (d, ³*J*_{HH} = 9.7 Hz, 3H, C*H*₃). ¹¹B{¹H} NMR (96 MHz, 298 K, CD₃CN) δ /ppm: 25.2 (s). Data comparable to previous literature report.⁷

2-(1-(4-chlorophenyl)ethoxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (**3f**). ¹**H NMR (300 MHz, 298 K, CD₃CN)** δ /ppm: 7.32 (s, 4H, Ar*H*), 5.17 (q, ³*J*_{HH} = 6.1 Hz, 1H, C*H*), 1.23 (s, 12H, C(C*H*₃)₂), 1.18 (d, ³*J*_{HH} = 9.1 Hz, 3H, C*H*₃). ¹¹B{¹H} NMR (96 MHz, 298 K, CD₃CN) δ /ppm: 25.3 (s). Data comparable to previous literature report.⁷

4,4,5,5-tetramethyl-2-(1-(p-tolyl)ethoxy)-1,3,2-dioxaborolane (**3g**). ¹**H NMR (300 MHz, 298 K, CD₃CN)** δ/ppm: 7.22 (d, ${}^{3}J_{HH}$ = 7.8 Hz, 2H, Ar*H*), 7.15 (d, ${}^{3}J_{HH}$ = 7.8 Hz, 2H, Ar*H*), 5.16 (q, ${}^{3}J_{HH}$ = 6.1 Hz, 1H, C*H*), 2.31 (s, 3H,ArC*H*₃), 1.24 (s, 12H, C(C*H*₃)₂), 1.20 (d, ${}^{3}J_{HH}$ = 8.3 Hz, 3H, C*H*₃). ¹¹B{¹H} NMR (96 MHz, 298 K, CD₃CN) δ/ppm: 25.3 (s). Data comparable to previous literature report.⁷

4-(1-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)ethyl)pyridine (**3h**). ¹**H** NMR (**300** MHz, **298** K, **CD**₃**CN**) δ/ppm: 11.44 (br s, 2H, Ar*H*), 8.22 (br s, 2H, Ar*H*), 4.89 (m, 1H, C*H*), 1.21 (s, 12H, C(C*H*₃)₂), 1.19 (d, ${}^{3}J_{HH} = 6.5$ Hz, 3H, C*H*₃). ¹¹B{¹H} NMR (**96** MHz, **298** K, CD₃CN) δ/ppm: 25.3 (s). Data comparable to previous literature report.¹²

2-(cyclohexyloxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (**3i**). ¹H NMR (**300** MHz, **298** K, CD₃CN) **δ/ppm:** 3.91 (br m, 1H, C*H*), 1.87 – 1.73 (br m, 4H, C*H*₂), 1.73 – 1.59 (br m, 4H, C*H*₂), 1.56 – 1.44 (br m, 2H, C*H*₂), 1.20 (s, 12H, C(C*H*₃)₂). ¹¹B{¹H} NMR (**128** MHz, **298** K, CD₃CN) **δ/ppm:** 22.0 (s). Data comparable to previous literature report.⁵

4,4,5,5-tetramethyl-2-((tetrahydro-2H-pyran-4-yl)oxy)-1,3,2-dioxaborolane (**3j**). ¹H NMR (**500 MHz, 298 K, CD₃CN**) **\delta/ppm:** 4.14 (tt, ³*J*_{*HH*} = 8.6 and 4.1 Hz, 1H, C*H*), 3.83 (t, *J*_{*HH*} = 4.3 Hz, 2H, C*H*₂), 3.40 (td, ³*J*_{*HH*} = 10.8 and 2.5 Hz, 2H, C*H*₂), 1.82 (dd, *J*_{*HH*} = 12.8 and 3.4 Hz, 2H, C*H*₂), 1.50 (dtd, *J*_{*HH*} = 13.2, 9.1 and 4.0 Hz, 2H, C*H*₂), 1.22 (s, 12H, C(C*H*₃)₂). ¹³C{¹H} NMR (126 MHz, 298 K, CD₃CN) δ /ppm: 83.5 (s,

C(CH₃)₂), 70.1 (s, CH), 65.8 (s, CH₂), 35.1 (s, CH₂), 25.0 (s, CH₃). ¹¹B{¹H} NMR (160 MHz, 298 K, CD₃CN) δ/ppm: 22.0 (s).

4,4,5,5-tetramethyl-2-((2-methyl-5-(prop-1-en-2-yl)cyclohex-2-en-1-yl)oxy)-1,3,2-dioxaborolane (**3k**). ¹H NMR (**300 MHz, 298 K, CD₃CN**) δ /ppm: 5.52 – 5.45 (br m, 1H, C=C*H*), 4.74 – 4.67 (m, 2H, C=C*H*₂), 4.63 – 4.54 (br m, 1H, C*H*), unable to unambiguously assign both CH₂ and one of the CH₃ peaks due to overlap with starting material, 1.64 (s, 3H, CH₃), 1.22 (s, 12H, C(C*H*₃)₂). ¹¹B{¹H} NMR (96 MHz, 298 **K**, **CD₃CN**) δ /ppm: 21.2 (s). Data comparable to previous literature report. ¹³

2-(benzhydryloxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3I). ¹H NMR (400 MHz, 298 K, CD₃CN) δ /ppm: 7.36 (t, ³*J*_{HH} = 7.7, 4H, Ar*H*), 7.32 (t, ³*J*_{HH} = 7.0, 4H, Ar*H*), 7.26 (t, ³*J*_{HH} = 6.1 Hz, 2H, Ar*H*), 6.16 (s, 1H, C*H*), 1.18 (s, 12H, C(C*H*₃)₂). ¹¹B{¹H} NMR (128 MHz, 298 K, CD₃CN) δ /ppm: 22.5 (s). Data comparable to previous literature report.⁵

2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (**3m**). ¹**H NMR (300 MHz, 298 K, CD₃CN) δ/ppm:** 4.25 (hept, ³*J*_{HH} = 6.4 Hz 1H, C*H*), 1.20 (s, 12H, C(C*H*₃)₂), 1.14 (d, ³*J*_{HH} = 6.1 Hz, 6H, CH(C*H*₃)₂). ¹¹**B**{¹**H**} **NMR (96 MHz, 298 K, CD₃CN) δ/ppm:** 25.0 (s). Data comparable to previous literature report.¹⁴

4.3 Large scale synthesis

 μ -oxo-bis(*N*,*N*)-ethylenebis(salicylideniminato)iron(III) (**1a**) (55 mg, 0.083 mmol) and acetophenone (0.98 mL, 8.3 mmol) were dissolved in CH₃CN (4 mL). HBpin (1.45 mL, 10 mmol) was added and the reaction left to react at 60 °C for 24 h. Reaction vessel opened to air and all volatiles removed *in vacuo*. Residue redissolved in dichloromethane and filtered through a silica plug to remove Fe residue. The crude was purified by column chromatography (Petroleum ether/EtOAc 90:10) to give 1-phenyl ethan-1-ol as a colourless oil (0.59 g, 58%).

¹H NMR (300 MHz, 298 K, CDCI₃) δ /ppm: 7.26 – 7.16 (m, 4H, Ar*H*), 4.79 (qd, ³*J*_{HH} = 6.4 Hz and ³*J*_{HH} = 3.1 Hz, 1H, C*H*), 1.73 (dm ³*J*_{HH} = 3.4 Hz, 1H, O*H*), 1.39 (d, ³*J*_{HH} = 6.4 Hz, 3H, C*H*₃). Data comparable to previous literature report.¹⁵

5. Competition reactions

Reactions **a** and **b**: μ -oxo-bis(*N*,*N*)-ethylenebis(salicylideniminato)iron(III) (**1a**) (100 μ I, 0.025 M, CD₃CN, 0.01 equiv), 1,2-dichloroethane (20 μ L, 0.25 mmol, 1 equiv), benzaldehyde (0.25 mmol, 1 equiv) and acetophenone/styrene (0.25 mmol, 1 equiv) were dissolved in CD₃CN (500 μ L). HBpin (44 μ L, 0.30 mmol, 1.2 equiv) was added and the reaction monitored at room temperature for 2 h. Yield calculated by ¹H NMR spectroscopy in CD₃CN referenced against 1,2-dichloroethane as the internal standard.

Reaction **c**: μ -oxo-bis(*N*,*N*)-ethylenebis(salicylideniminato)iron(III) (**1a**) (100 µl, 0.025 M, CD₃CN, 0.01 equiv), 1,2-dichloroethane (20 µL, 0.25 mmol, 1 equiv), acetophenone (0.25 mmol, 1 equiv) and styrene (0.25 mmol, 1 equiv) were dissolved in CD₃CN (500 µL). HBpin (44 µL, 0.30 mmol, 1.2 equiv) was added and the reaction monitored at 60 °C for 24 h. Yield calculated by ¹H NMR spectroscopy in CD₃CN referenced against 1,2-dichloroethane as the internal standard.

Reaction **d**: μ -oxo-bis(*N*,*N*)-ethylenebis(salicylideniminato)iron(III) (**1a**) (100 µl, 0.025 M, CD₃CN, 0.01 equiv), 1,2-dichloroethane (20 µL, 0.25 mmol, 1 equiv), acetophenone (0.25 mmol, 1 equiv) 4-boromoacetophenone (0.25 mmol, 1 equiv) and 4-methoxyacetophenone (0.25 mmol, 1 equiv) were dissolved in CD₃CN (500 µL). HBpin (44 µL, 0.30 mmol, 1.2 equiv) was added and the reaction monitored at room temperature for 2 h. Yield calculated by ¹H NMR spectroscopy in CD₃CN referenced against 1,2-dichloroethane as the internal standard.

6. CO₂ reduction reaction

Room temperature: Fe salen catalyst (1 - 2 mol%) and 1,3,5-trimethoxybenzene (12.6 mg, 0.075 mmol) were dissolved in 1:1 CD₃CN:C₆D6 (600 μ L). HBR₂ (0.30 mmol) was added and the reaction was freeze-pump-thawed × 3. CO₂ (1 atm) was added to the J.Young tube NMR and sealed up, agitated at room temperature and monitored by multinuclear NMR spectroscopy. Yield calculated by ¹H NMR spectroscopy referenced against 1,3,5-trimethoxybenzene as the internal standard. **NB**: The theoretical maximum CO₂ inserted into the reaction was calculated to be 0.08 mmol. After 7 days at room temperature the reaction was freeze-pump-thawed × 3 and CO₂ (1 atm) was inserted again into the reaction vessel, sealed, agitated at room temperature, and monitored by multinuclear NMR spectroscopy. No additional conversion was observed suggesting not all the CO₂ was originally consumed in the first iteration.

60 °C: Fe salen catalyst (1-2 mol%) and 1,3,5-trimethoxybenzene (2.1 mg, 12.5 µmol) were dissolved in 1:1 CD₃CN:C₆D6 (600 µL). HBR₂ (0.05 mmol) was added and the reaction was freeze-pump-thawed × 3. CO₂ (1 atm) was added to the J.Young tube NMR and sealed up, agitated at room temperature and monitored by multinuclear NMR spectroscopy. Yield calculated by ¹H NMR spectroscopy referenced against 1,3,5-trimethoxybenzene as the internal standard.

[Fe]	Temp	Borane	4	5	6	CO + H ₂ + R ₂ BOBR ₂
1a (1 mol%)	RT	HBpin	5%	1%	1%	8%
1a (1 mol%)	RT	HBcat	-	-	12%	44%
1a (1 mol%)	RT	9-BBN	6%	-	-	-
1b (1 mol%)	RT	HBpin	-	-	-	20%
1c (2 mol%)	RT	HBpin	8%	2%	7%	22%
1a (1 mol%)	60 °C	HBpin	9%	1%	-	~49% ¹
1a (1 mol%)	60 °C	HBcat	1%	-	9%	21%
1a (1 mol%)	60 °C	9-BBN	1%	-	-	YES ²
1b (1 mol%)	60 °C	HBpin	1%	1%	-	~64%1
1c (2 mol%)	60 °C	HBpin	14%	1%	-	62%

¹ Formation of BOB estimated by ¹¹B NMR spectroscopy due to broadness of peaks in ¹H NMR spectroscopy

² Unable to quantify how much BOB (δ_B = 56.9 ppm) formed but observed in ¹¹B NMR spectroscopy. 9-BBN peak (δ_B = 57.9 ppm).

Figure S1. Representative ¹H NMR spectrum of product distribution from the reduction of CO₂ with HBpin (400 MHz, 1:1 CD₃CN:C₆D₆, 298 K)

Figure S2. Representative ¹¹B NMR spectrum of product distribution from the reduction of CO₂ with HBpin (128 MHz, 1:1 CD₃CN:C₆D₆, 298 K)=

Figure S3. Representative ¹H NMR spectrum of product distribution from the reduction of CO₂ with HBcat (400 MHz, 1:1 CD₃CN:C₆D₆, 298 K)

Figure S4. Representative ¹¹B NMR spectrum of product distribution from the reduction of CO₂ with HBcat (128 MHz, 1:1 CD₃CN:C₆D₆, 298 K)

Figure S5. Representative ¹H NMR spectrum of product distribution from the reduction of CO₂ with 9-BBN (400 MHz, 1:1 CD₃CN:C₆D₆, 298 K)

Figure S6. Representative ¹¹B NMR spectrum of product distribution from the reduction of CO₂ with 9-BBN (128 MHz, 1:1 CD₃CN:C₆D₆, 298 K)

1a (1 mol%) was dissolved in 1:1 CD₃CN:C₆D6 (600 μ L). HBpin (0.05 mmol) was added and the reaction was freeze-pump-thawed × 3. ¹³CO₂ (1 atm) was added to the J.Young tube NMR and sealed up, heated to 60 °C for 4 days and monitored by multinuclear NMR spectroscopy. Unfortunately, no free ¹³CO or any Fe–¹³CO species could be observed in ¹³C{¹H} NMR spectrum due to potentially small scale of the reaction, solubility of ¹³CO in solvent and/or paramagnetic nature of any iron species generated in the reaction.

Figure S7. ¹H NMR spectrum of product distribution from the reduction of ¹³CO₂ with HBpin (500 MHz, 1:1 CD₃CN:C₆D₆, 298 K)

Figure S8. ¹¹B{¹H} NMR spectrum of product distribution from the reduction of ${}^{13}CO_2$ with HBpin (160 MHz, 1:1 CD₃CN:C₆D₆, 298 K)

Figure S9. ¹³C{¹H} NMR spectrum of product distribution from the reduction of ${}^{13}CO_2$ with HBpin (126 MHz, 1:1 CD₃CN:C₆D₆, 298 K)

7. Homogeneity reactions

8. Spectra of new compounds

[S17]

-22.41

Figure S13. ¹H NMR spectrum of 3j (500 MHz, CD₃CN, 298 K)

9. Spectra of Known Compounds

[S31]

[S34]

References

- 1. K. J. Gallagher and R. L. Webster, *Chem. Commun.*, 2014, **50**, 12109-12111.
- 2. W. H. Leung, E. Y. Y. Chan, E. K. F. Chow, I. D. Williams and S. M. Peng, *J. Chem. Soc., Dalton Trans.*, 1996, DOI: 10.1039/dt9960001229, 1229-1236.
- 3. C. B. Provis-Evans, S. Lau, V. Krewald and R. L. Webster, ACS Catal., 2020, 10, 10157-10168.
- 4. M. Arrowsmith, T. J. Hadlington, M. S. Hill and G. Kociok-Köhn, *Chem. Commun.*, 2012, **48**, 4567-4569.
- 5. W. Wang, X. Shen, F. Zhao, H. Jiang, W. Yao, S. A. Pullarkat, L. Xu and M. Ma, *J. Org. Chem.*, 2018, **83**, 69-74.
- 6. Y. Wu, C. Shan, Y. Sun, P. Chen, J. Ying, J. Zhu, L. Liu and Y. Zhao, *Chem. Commun.*, 2016, **52**, 13799-13802.
- 7. S. Chen, D. Yan, M. Xue, Y. Hong, Y. Yao and Q. Shen, Org. Lett., 2017, 19, 3382-3385.
- 8. A. Baishya, S. Baruah and K. Geetharani, *Dalton Trans.*, 2018, 47, 9231-9236.
- 9. W. Wang, M. Luo, D. Zhu, W. Yao, L. Xu and M. Ma, *Org. Biomol. Chem.*, 2019, **17**, 3604-3608.
- 10. R. McLellan, A. R. Kennedy, R. E. Mulvey, S. A. Orr and S. D. Robertson, *Chem. Eur. J.*, 2017, **23**, 16853-16861.
- 11. A. A. Oluyadi, S. Ma and C. N. Muhoro, Organometallics, 2013, 32, 70-78.
- 12. W. Wang, M. Luo, W. Yao, M. Ma, S. A. Pullarkat, L. Xu and P.-H. Leung, *New J. Chem.*, 2019, **43**, 10744-10749.
- 13. T. Ghatak, K. Makarov, N. Fridman and M. S. Eisen, *Chem. Commun.*, 2018, **54**, 11001-11004.
- Z. Huang, D. Liu, J. Camacho-Bunquin, G. Zhang, D. Yang, J. M. López-Encarnación, Y. Xu, M. S. Ferrandon, J. Niklas, O. G. Poluektov, J. Jellinek, A. Lei, E. E. Bunel and M. Delferro, *Organometallics*, 2017, **36**, 3921-3930.
- 15. G. Zhang, B. L. Scott and S. K. Hanson, *Angewandte Chemie International Edition*, 2012, **51**, 12102-12106.