Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021

SUPPORTING INFORMATION

Supporting Information

Simple synthesis of [Ru(CO₃)(NHC)(*p*-cymene)] complexes and their use in transfer hydrogenation catalysis

Xinyuan Ma, Sébastien G. Guillet, Yaxu Liu, Catherine S. J. Cazin and Steven P. Nolan *

Department of Chemistry and Centre for Sustainable Chemistry,

Ghent University, Ghent, 9000, Belgium

E-mail: steven.nolan@ugent.be

Synthesis of IMe⋅HBF₄	2
Selected Optimization of the Reaction Conditions	3
Table S1 Optimization of the reaction conditions for 3a	4
NMR spectra	4
References	18

Synthesis of IMe·HBF₄

The synthesis process is similar to the literature.¹ In a 20 mL vial, 132.6 mg of IMe·HCI (1 mmol, 1 eq.) and 164.6 mg of NaBF₄ (1.2 mmol, 1.2 eq.) were stirred in 2 mL of acetone at 50 °C for 6 hours. The mixture was allowed to cool down to room temperature, filtered the suspension and washed the solid by 2 mL of acetone. The filtrate was collected and added extra 82.4 mg of NaBF₄ (0.75 mmol, 0.75 eq.) to the solvent, stirred at 50 °C for 3h. Filtered through a microfilter and washed with 6 mL of acetone (3 x 2 mL), and concentrated under reduced pressure. The product was dried in high vacuum overnight. Yield of product is 81 %.

¹H NMR (300 MHz, Acetone) δ 8.90 (s, 1H, N=C*H*N), 7.66 (d, *J* = 1.6 Hz, 2H, C*H*=C*H*), 4.02 (d, *J* = 0.5 Hz, 7H, NC*H*₃). ¹⁹F NMR: δ -153.24 (s, 4F, BF₄).

Selected Optimization of the Reaction Conditions

		Cat. 3, Base Solvent, Temp., Time			OH		
		5a	6a				
Entry	Ru-NHC	Base	Solvent	T(°C)	Time (h)	Yield (%) ^b	
1	3a	NaOH (20%)	ⁱ PrOH	100	16	84	
2	3a	K ^t BuO (20%)	ⁱ PrOH	100	16	91	
3	3a	K ₃ PO ₄ (20 %)	ⁱ PrOH	100	16	trace	
4	3a	K ₂ CO ₃ (20%)	ⁱ PrOH	100	16	47	
5	3a	KOH (10%)	ⁱ PrOH	100	16	93	
6	3a	KOH (5%)	ⁱ PrOH	100	16	76	
7	3a	KOH (5%)	ⁱ PrOH	100	36	83	
8	3a	KOH (2.5%)	ⁱ PrOH	100	16	56	
9	-	KOH (10%)	ⁱ PrOH	80	4	25	
10	3e	KOH (10%)	EtOH	80	4	-	
11	3e	KOH (10%)	MeOH	80	4	-	
12	3e	KOH (10%)	H ₂ O	80	4	-	
13	3e(2 mol%)	KOH (10%)	ⁱ PrOH	80	2	94	
14	3e(0.5 mol%)	KOH (10%)	ⁱ PrOH	80	2	61	

Table S1 Optimization of the reaction conditions for hydrogenation.

^a Reaction conditions: **5a** (0.5 mmol, 1 eq.), **3** (1 mol%), Base, Solvent (1.5 mL) in a 4 mL vial. ^b NMR yields using 1,3,5-trimethoxybenzene as internal standard.

NMR spectra

¹H and ¹³C {1H} apt NMR of [Ru(CO₃)(IMes)(*p*-cymene)] (**3b**)

¹H and ¹³C {1H} apt NMR of [Ru(CO₃)(SIMes)(*p*-cymene)] (**3c**)

¹H and ¹³C {1H} apt NMR of $[Ru(CO_3)(ICy)(p-cymene)]$ (**3d**)

¹H and ¹³C {1H} apt NMR of $[Ru(CO_3)(IMe)(p-cymene)]$ (3e)

S11

90 80 fl (ppm)

¹H and ¹³C {1H} apt NMR of 4-chlorobenzenemethanol (6b)

100 90 fl (ppm)

¹H and ¹³C {1H} apt NMR of 4,4'-Dimethylbenzhydrol (6e)

References

1. O. D. Bakulina, M. Yu. Ivanov, S. A. Prikhod'ko, S. Pylaeva, I. V. Zaytseva, N. V. Surovtsev, N. Y. Adonin and M. V. Fedin, *Nanoscale*, **2020**, *12*, 19982–19991.