Half-sandwich manganese complexes Cp(CO)₂Mn(NHC) as redox-active organometallic fragments

Rémy Brousses,^a Vincent Maurel,^b Jean-Marie Mouesca,^{*b} Vincent César,^a Noël Lugan^{*a} and Dmitry A. Valyaev^{*a}

^a LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France

^b Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES, F-38000 Grenoble, France

Electronic Supplementary Information

Table of contents

Figure S1. Cyclic voltammograms of Mn ^I NHC complexes 1-3	S2
Figure S2. Plot of calculated SOMO orbitals for Mn ^{II} complexes [1-3] ⁺	S2
Figure S3-S5. IR spectra of neutral (1-3) and cationic ([1-3](BF ₄)) Mn NHC complexes	S3
Figure S6-S7. UV-Vis spectra of neutral (1-3) and cationic ([1-3](BF ₄)) Mn NHC complexes	S4
Figure S8. Energy profile of the DFT geometry-optimized cations [1-3] ⁺ with a constrained Cp _{cnt} -Mn1-C3-N2 dihedral angle	S5
Figure S9. Molecular geometries of different conformers of complex [3] ⁺	S6
Table S1. Calculated values of g ₃ component for [1-3] ⁺ having different NHC orientation	S6
Figure S10. Plot of experimental vs. calculated g-tensor values for complexes [1-3] ⁺	S7
Figures S11-S13. ¹ H NMR spectra of Mn ^{II} NHC complexes [1-3](BF ₄)	S8
Table S2. Crystal data and structure refinement for Mn NHC complexes	S11
Cartesian coordinates for DFT optimized structures of Mn ^{II} NHC complexes	S12

Figure S1. Superposition of cyclic voltammograms of Mn^{I} NHC complexes **1-3** (Pt electrode, CH_2Cl_2 , 1 mM sample concentration, 0.1 M Bu_4NPF_6 as supporting electrolyte, 100 mV/s, potentials *vs*. Fc/Fc⁺).

Figure S2. Plot of calculated SOMO orbitals for Mn^{II} complexes [1]⁺ (left), [2]⁺ (center) and [3]⁺ (right) on a 0.04 a.u. isodensity surface.

Figure S3. Superposition of normalized IR spectra of NHC complexes **1** and [**1**](BF₄) in 2100-1700 cm⁻¹ range (CH₂Cl₂, 0.5 cm⁻¹ resolution).

Figure S4. Superposition of normalized IR spectra of NHC complexes **2** and [**2**](BF₄) in 2100-1700 cm⁻¹ range (CH₂Cl₂, 0.5 cm⁻¹ resolution).

Figure S5. Superposition of normalized IR spectra of NHC complexes **3** and [**3**](BF₄) in 2100-1700 cm⁻¹ range (CH₂Cl₂, 0.5 cm⁻¹ resolution).

Figure S7. Superposition of normalized UV-Vis spectra of Mn^{II} NHC complexes [1-3](BF₄) in CH₂Cl₂ solution.

Figure S8. Energy profile (kcal/mol) of the DFT geometry-optimized cations $[1]^+$ (blue), $[2]^+$ (green) and $[3]^+$ (red) in a gas phase with a constrained Cp_{cnt}-Mn1-C3-N2 dihedral angle. The values of Cp_{cnt}-Mn1-C3-N2 -45° (-135°), -90° (-270°) and -180° correspond to eclipsed, horizontal and vertical NHC ligand orientations, respectively.

Figure S9. Molecular geometries of the conformations corresponding to four extrema points on the energy profile of $[3]^+$ with eclipsed (-45°, (a); -135° (b)), horizontal (-90°C, (c)) and vertical (-180° (d)) IMes ligand orientation.

Table S1.	. Calculated	values c	of g₃	component for	⁻ cations	[1-3] ⁺	in a	gas	phase	with	a١	variation	of
Cp _{cnt} –Mn	1–C3–N2 dil	hedral ar	ngle	(45° step).									

Cp _{cnt} -Mn1-C3-N2	0° (-360°)	−45° (−315°)	-90° (-270°)	–135° (–225°)	-180°
g ₃ for [1] ⁺	2.073	2.084	2.100	2.084	2.073
g ₃ for [2] ⁺	2.072	2.087	2.083	2.083	2.070
g ₃ for [3] ⁺	2.069	2.078	2.087	2.078	2.069
$\Delta g_3 [1]^+ vs. [2]^+$	0.001	-0.003	0.017	0.001	0.003
$\Delta g_3 [1]^+ vs. [3]^+$	0.004	0.006	0.013	0.006	0.004
$\Delta g_3 [2]^+ vs. [3]^+$	0.003	0.007	-0.004	0.005	0.001

Figure S10. Plot of experimental *vs.* calculated g-tensor values for $[1]^+$, $[2]^+$ and both components $[3a]^+$ and $[3b]^+$. For calculated cation $[3]^+$ both geometry-optimized conformers with Cp_{cnt}-Mn1-C3-N2 dihedral angle values of -45° (e = eclipsed) and -90° (h = horizontal) were considered. In view of the good agreement between experimental (crystal) and *in vacuo* DFT geometry-optimized dihedral angles for $[1]^+$ and $[2]^+$, these data were used as a reference (black points and dotted correlation line).

Figure S11. ¹H NMR spectrum of complex [**1**]BF₄ (400.1 MHz, CD₂Cl₂, 25°C), the signals of unidentified diamagnetic impurities are marked with asterisk

Figure S12. ¹H NMR spectrum of complex [2]BF₄ (400.1 MHz, CD₂Cl₂, 25°C), the signals of unidentified diamagnetic impurities are marked with asterisk

Figure S13. ¹H NMR spectrum of complex [**3**]BF₄ (400.1 MHz, CD₂Cl₂, 25°C), the signals of traces of ether, silicon grease and unidentified diamagnetic impurities are marked with asterisk

Complex	1	[1]((BF ₄)	2	[2]((BF ₄)	[3]((BF ₄)
Empirical formula	C ₁₂ H ₁₃ MnN ₂ O ₂	$C_{12}H_{13}BF_4MnN_2O_2$	$C_{20}H_{21}MnN_2O_2$	$C_{20}H_{21}BF_4MnN_2O_2$	C ₂₈ H ₂₉ BF ₄ MnN ₂ O ₂
<i>M</i> r	272.18	358.99	376.33	463.14	567.28
Т/К	173	100	173	173	173
λ/Å	0.71073	0.71073	0.71073	0.71073	0.71073
Crystal system	monoclinic	monoclinic	monoclinic	triclinic	monoclinic
Space group (no.)	P21/c (#14)	P21 (#4)	P21/n (#14)	P1 bar (#2)	C2/c (#15)
a/Å	13.3975(8)	6.506(5)	11.5587(5)	8.160(5)	23.385(5)
b/Å	20.5591(13)	15.326(5)	10.2736(4)	11.501(5)	22.343(5)
c/Å	8.7407(5)	14.777(5)	15.0530(6)	11.720(5)	13.538(5)
α/°	90	90	90	88.848(5)	90
в/°	90.615(3)	90.876(5)	98.434(2)	76.657(5)	119.785(5)
v/°	90	90	90	74.499(5)	90
V/Å ³	2407.4(3)	1473.3(13)	1768.20(13)	1030.3(9)	6139(3)
Z	4	2	4	2	8
D _c /g.cm ⁻³	1.502	1.619	1.414	1.493	1.228
µ/mm ⁻¹	1.087	0.946	0.762	0.695	0.479
F(000)	1120	724	784	474	2344
θmax /°	26.4	26.4	26.4	26.4	26.4
Completeness					
to θ _{max} (%)	0.998	0.999	0.998	0.998	0.998
Index range, hkl	-16 <h<16< td=""><td>-8<h<8< td=""><td>-14<h<14< td=""><td>-10<h<10< td=""><td>-29<h<29< td=""></h<29<></td></h<10<></td></h<14<></td></h<8<></td></h<16<>	-8 <h<8< td=""><td>-14<h<14< td=""><td>-10<h<10< td=""><td>-29<h<29< td=""></h<29<></td></h<10<></td></h<14<></td></h<8<>	-14 <h<14< td=""><td>-10<h<10< td=""><td>-29<h<29< td=""></h<29<></td></h<10<></td></h<14<>	-10 <h<10< td=""><td>-29<h<29< td=""></h<29<></td></h<10<>	-29 <h<29< td=""></h<29<>
0	-25 <k<25< td=""><td>-19<k<19< td=""><td>-12<k<12< td=""><td>-14<k<14< td=""><td>-27<k<27< td=""></k<27<></td></k<14<></td></k<12<></td></k<19<></td></k<25<>	-19 <k<19< td=""><td>-12<k<12< td=""><td>-14<k<14< td=""><td>-27<k<27< td=""></k<27<></td></k<14<></td></k<12<></td></k<19<>	-12 <k<12< td=""><td>-14<k<14< td=""><td>-27<k<27< td=""></k<27<></td></k<14<></td></k<12<>	-14 <k<14< td=""><td>-27<k<27< td=""></k<27<></td></k<14<>	-27 <k<27< td=""></k<27<>
	-10< <10	-18< <18	-18< <18	-14< <14	-16< <16
Reflections					
collected	80410	77300	87471	77840	81174
Independent					
reflections	4916	5238	3341	4214	6282
Parameters	311	402	230	275	349
GOF	1.13	1.04	0.98	1.024	1.036
R (all data)	0.0439	0.0552	0.0263	0.0237	0.076
R [I>2σ(I)]	0.0406	0.0473	0.0231	0.0229	0.0639
Rw (all data)	0.1054	0.1342	0.0773	0.0593	0.1792
<i>R</i> _w [l>2σ(l)]	0.1036	0.1255	0.072	0.0582	0.1712
$\Delta ho_{max/min}$ /e.Å ⁻³	-1.04/0.82	-0.74/1.06	-0.23/0.33	-0.26/0.32	-0.53/1.56

 Table S2. Crystal data and structure refinement for manganese NHC complexes 1, 2, and [1-3](BF₄)

Complex [1]⁺

Mn	0.0069	-0.0147	0.0037
С	1.0507	1.1978	0.8596
С	2.2080	-0.6807	-3.5708
Н	2.6336	-1.3891	-4.2691
С	1.0584	-1.2020	0.8830
Ν	1.4953	1.0761	-2.4469
0	1.7087	1.9548	1.4314
Ν	1.5139	-1.0827	-2.4378
0	1.7196	-1.9437	1.4711
С	1.3401	-2.4880	-2.0745
Н	2.1921	-2.8439	-1.4833
Н	1.2609	-3.0848	-2.9884
Н	0.4213	-2.6063	-1.4946
С	1.2993	2.4823	-2.0983
н	2.1625	2.8675	-1.5426

Complex [2]⁺

Mn	-0.0297	-0.0109	0.0517
С	-0.1317	0.3573	-1.7369
С	0.7386	1.6147	0.1410
С	1.8048	-0.8448	0.2686
С	3.6718	-2.0741	-0.1382
Н	4.3217	-2.7260	-0.7070
С	3.8141	-1.5148	1.0898
Н	4.6202	-1.5764	1.8088
С	2.4558	-0.0332	2.5717
С	-2.1917	-0.4068	0.0008
Н	-2.7978	-0.3636	-0.8983
С	-1.9147	0.6823	0.8730
Н	-2.2852	1.6957	0.7648
С	-1.0764	0.1947	1.9272
Н	-0.7226	0.7735	2.7733
С	-0.8453	-1.1955	1.6961
Н	-0.2669	-1.8628	2.3259
С	-1.5391	-1.5662	0.5094
Н	-1.5564	-2.5518	0.0573
С	1.9618	-2.0387	-1.9427
С	2.3897	-1.2950	-3.0602
С	1.9744	-1.7276	-4.3210
С	1.1765	-2.8676	-4.4950

Н	0.3994	2.5865	-1.4873
Н	1.1730	3.0635	-3.0171
С	1.0725	-0.0040	-1.7271
С	2.1962	0.6763	-3.5766
Н	2.6095	1.3860	-4.2810
С	-1.8915	-0.6763	-0.9024
Н	-1.9710	-1.2600	-1.8135
С	-1.9018	0.7450	-0.8229
Н	-1.9884	1.4265	-1.6628
С	-1.7831	1.1114	0.5486
Н	-1.7749	2.1239	0.9392
С	-1.7032	-0.0841	1.3253
Н	-1.6334	-0.1415	2.4058
С	-1.7676	-1.1911	0.4212
Н	-1.7552	-2.2396	0.7005

С	0.7931	-3.5853	-3.3585
С	1.1861	-3.2042	-2.0691
С	3.2822	-0.0871	-2.9227
С	0.7661	-3.3108	-5.8756
С	0.8491	-4.0860	-0.8918
Ν	2.4435	-1.6518	-0.6325
Ν	2.6688	-0.7646	1.3250
0	-0.2922	0.6761	-2.8336
0	1.2272	2.6625	0.1922
Н	3.4241	0.3030	2.9551
Н	1.8300	0.8419	2.3860
Н	1.9787	-0.6744	3.3233
Н	2.2907	-1.1582	-5.1965
Н	0.1888	-4.4864	-3.4754
Н	2.9056	0.6261	-2.1773
Н	4.2966	-0.3725	-2.6073
Н	3.3692	0.4376	-3.8799
Н	0.2101	-2.5176	-6.3943
Н	1.6484	-3.5389	-6.4896
Н	0.1356	-4.2064	-5.8433
Н	0.7214	-3.5214	0.0385
Н	-0.0656	-4.6590	-1.0841
Н	1.6529	-4.8169	-0.7152

Ν	0.0177	0.0199	-0.0963	С	-3.6330	4.4466	0.2573
С	1.3903	0.0229	-0.0207	С	-0.6457	1.0635	2.5261
Mn	2.6290	1.6603	-0.0099	Н	-1.5417	-1.4721	-0.2222
С	1.4167	3.0395	-0.1250	Н	0.6559	-3.1855	-0.2426
0	0.8211	4.0255	-0.2014	Н	5.6795	-2.7220	-1.9771
С	2.6407	1.7597	-1.8288	Н	5.1554	-3.2931	2.2469
0	2.6622	1.8590	-2.9811	Н	-2.7655	3.1584	-1.9811
С	-0.4790	-1.2713	-0.1799	Н	-2.3659	3.1388	2.2964
С	0.5913	-2.1072	-0.1774	Н	3.4462	0.4228	2.5560
Ν	1.7230	-1.3122	-0.0748	Н	5.0461	-0.0583	0.4286
С	3.7639	1.1521	1.8191	Н	5.4024	2.2667	-0.8858
С	3.4381	2.5406	1.8203	Н	4.0493	4.1960	0.4233
С	4.0876	3.1463	0.6955	Н	2.8272	3.0578	2.5534
С	4.8046	2.1285	0.0096	Н	1.9793	-3.1943	2.5200
С	4.6149	0.8997	0.7030	Н	2.0194	-1.4314	2.5256
С	3.0485	-1.8934	-0.0114	Н	3.2780	-2.3603	3.3779
С	3.5063	-2.3690	1.2333	Н	7.5988	-3.3931	-0.5921
С	4.7831	-2.9330	1.2860	Н	6.8525	-4.8047	0.1716
С	5.5896	-3.0603	0.1467	Н	7.4474	-3.4797	1.1793
С	5.0775	-2.6112	-1.0728	Н	2.3091	-1.1728	-2.5208
С	3.8035	-2.0368	-1.1864	Н	3.2162	-2.5377	-3.1913
С	3.2945	-1.6467	-2.5523	Н	3.9889	-0.9582	-3.0512
С	6.9475	-3.7101	0.2305	Н	-0.9531	0.0135	2.6396
С	2.6531	-2.3253	2.4782	Н	-1.0082	1.6117	3.4024
С	-0.8648	1.1657	-0.0122	Н	0.4526	1.0825	2.5415
С	-1.1998	1.6655	1.2588	Н	-3.2915	5.2949	-0.3513
С	-2.0982	2.7354	1.3184	Н	-3.7535	4.7935	1.2896
С	-2.6662	3.2937	0.1690	Н	-4.6235	4.1571	-0.1209
С	-2.3249	2.7425	-1.0729	Н	-0.0632	0.8925	-2.6907
С	-1.4380	1.6704	-1.1940	Н	-1.4668	1.7591	-3.3448
С	-1.1344	1.0827	-2.5498	н	-1.6545	0.1240	-2.6955

Complex [3]⁺ (dihedral angle Cp_{cnt}-Mn1-C3-N2 -90°)

Ν	0.0000	0.0000	0.0000	С	3.3837	3.5022	0.8769
С	1.3696	0.0000	0.0000	С	4.4433	2.5605	0.9487
Mn	2.6688	1.5987	0.0000	С	4.0172	1.4682	1.7606
С	1.7959	2.5636	-1.2860	С	3.0534	-1.8688	0.0553
0	1.3347	3.2250	-2.1124	С	3.6672	-2.1284	1.2951
С	3.7584	1.1466	-1.4091	С	4.9568	-2.6684	1.2827
0	4.4722	0.9763	-2.2999	С	5.6231	-2.9767	0.0902
С	-0.4961	-1.3002	0.0351	С	4.9572	-2.7407	-1.1171
С	0.5749	-2.1310	0.0597	С	3.6667	-2.2025	-1.1653
Ν	1.7096	-1.3258	0.0382	С	2.9635	-2.0414	-2.4902
С	2.6849	1.7380	2.1916	С	7.0003	-3.5901	0.1093
С	2.2868	2.9952	1.6432	С	2.9545	-1.9094	2.6071

С	-0.8723	1.1577	-0.0413	Н	1.3307	3.4880	1.7885
С	-1.3196	1.7255	1.1627	Н	2.2807	-2.7511	2.8281
С	-2.1748	2.8331	1.0834	Н	2.3390	-1.0028	2.6040
С	-2.6072	3.3538	-0.1383	Н	3.6701	-1.8436	3.4346
С	-2.1757	2.7233	-1.3131	Н	7.5575	-3.3569	-0.8057
С	-1.3220	1.6183	-1.2950	Н	6.9324	-4.6860	0.1817
С	-0.9583	0.9276	-2.5863	Н	7.5843	-3.2432	0.9703
С	-3.5330	4.5425	-0.1995	Н	2.3635	-1.1249	-2.5401
С	-0.9814	1.1551	2.5195	Н	2.2800	-2.8847	-2.6717
Н	-1.5592	-1.5018	0.0388	Н	3.6872	-2.0225	-3.3121
Н	0.6428	-3.2106	0.0894	Н	-1.8631	0.6599	2.9517
Н	5.4531	-2.9879	-2.0574	Н	-0.6906	1.9475	3.2211
Н	5.4494	-2.8672	2.2367	Н	-0.1799	0.4110	2.4791
Н	-2.5201	3.0987	-2.2786	Н	-3.0856	5.3629	-0.7776
Н	-2.5268	3.2881	2.0116	Н	-3.7711	4.9205	0.8010
Н	2.0865	1.1153	2.8467	Н	-4.4772	4.2783	-0.6958
Н	4.6065	0.5875	1.9955	Н	0.0584	0.5184	-2.5763
Н	5.4108	2.6537	0.4652	Н	-1.0403	1.6203	-3.4310
Н	3.4047	4.4430	0.3362	Н	-1.6432	0.0884	-2.7812