### **Supporting Information**

# Co-crystal $AX \cdot (H_3C_3N_3O_3)$ (A = Na, Rb, Cs; X = Br, I): a series of strongly anisotropic alkali halide cyanurates with planar structural motif and large birefringence

Jinhui Wang,<sup>a</sup> Xinyuan Zhang,<sup>\*a</sup> Fei Liang,<sup>\*b</sup> Zhanggui Hu<sup>a</sup> and Yicheng Wu<sup>a, b</sup>

<sup>a</sup> Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, Tianjin

University of Technology, Tianjin 300384, China.

<sup>b</sup> State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University,

Jinan 250100, China.

#### Contents.

- **Table S1.** Fractional atomic coordinates ( $\times 10^4$ ) and equivalent isotropic displacement parameters (Å<sup>2</sup>×10<sup>3</sup>) of **I**.
- **Table S2.** Fractional atomic coordinates ( $\times 10^4$ ) and equivalent isotropic displacement parameters ( $\mathring{A}^2 \times 10^3$ ) of **II**.
- **Table S3.** Fractional atomic coordinates ( $\times 10^4$ ) and equivalent isotropic displacement parameters ( $\mathring{A}^2 \times 10^3$ ) of **III**.
- **Table S4.** Anisotropic displacement parameters ( $Å^{2} \times 10^{3}$ ) of I.
- **Table S5.** Anisotropic displacement parameters  $(Å^2 \times 10^3)$  of II.
- **Table S6.** Anisotropic displacement parameters  $(Å^2 \times 10^3)$  of III.
- Table S7. Selected bond lengths [Å] of I III.
- Table S8. Selected bond angles (°) of I III.
- Table S9. The infrared vibrations and assignments of I IV in detail (Vibrational frequencies/cm<sup>-1</sup>).
- Figure S1. The calculated and experimental PXRD patterns for (a) I, (b) II, (c) III and (d) IV.
- Figure S2. EDS analysis of (a) I, (b) II, (c) III and (d) IV.
- Figure S3. The TG and DSC curves of (a) I, (b) II, (c) III and (d) IV.
- Figure S4. The IR spectra of (a) I, (b) II, (c) III and (d) IV.
- Figure S5. The Raman spectra of (a) I, (b) II, (c) III and (d) IV.
- Figure S6. Photographs of crystal (a) I, (b) II, (c) III and (d) IV for the measurement of birefringence.
- Figure S7. Calculated band structures (a) and the partial density of states of constituent atoms in IV (b).
- **Figure S8**. The conjugated  $\pi$ -bond state around -5 eV and anti- $\pi$  bond state around 4 eV on H<sub>3</sub>C<sub>3</sub>N<sub>3</sub>O<sub>3</sub> neutral molecule.
- Figure S9. Calculated band structures of (a) I, (b) II and (c) III.
- Figure S10. The partial density of states of constituent atoms in (a) I, (b) II and (c) III.
- Figure S11. The comparison between  $Na_3(C_3N_3O_3)$  and  $Ba_2M(C_3N_3O_3)_2$  series (M = Mg, Ca, Sr, Ba).
- Figure S12. The *p*- $\pi$ -interaction between Br 4*p* orbitals and  $\pi$ -bond on cyanuric molecules.
- Figure S13. The simulated refractive indexes of (a) I, (b) II and (c) III.

## 1. Supplementary Tables.

| $(Å^{2} \times 10^{3})$ of <b>I</b> . |             |           |         |                  |  |  |  |
|---------------------------------------|-------------|-----------|---------|------------------|--|--|--|
| Atom                                  | x           | у         | Z       | $U_{(eq)}{}^{a}$ |  |  |  |
| Br1                                   | 13781.1(11) | 4365.5(7) | 2500    | 29.3(2)          |  |  |  |
| Rb1                                   | 8652.7(10)  | 2874.6(7) | 2500    | 31.2(2)          |  |  |  |
| 01                                    | 8871(5)     | 5596(4)   | 3789(3) | 35.1(10)         |  |  |  |
| O2                                    | 3075(7)     | 7500      | 5000    | 41.2(16)         |  |  |  |
| N1                                    | 8882(8)     | 7500      | 5000    | 22.9(14          |  |  |  |
| N2                                    | 5955(6)     | 6482(5)   | 4424(4) | 26.5(12)         |  |  |  |
| C1                                    | 7961(7)     | 6460(6)   | 4360(4) | 23.4(13)         |  |  |  |
| C2                                    | 4893(10)    | 7500      | 5000    | 24.8(18)         |  |  |  |

Table S1. Fractional atomic coordinates  $(\times 10^4)$  and equivalent isotropic displacement parameters

 $^{\rm a}U_{\rm (eq)}$  is defined as one-third of the trace of the orthogonalized  $U_{\rm ij}$ 

| Atom | x         | У       | Ζ          | $U_{(eq)}{}^{a}$ |  |  |
|------|-----------|---------|------------|------------------|--|--|
| I1   | 3499.4(5) | 2500    | 10663.9(2) | 14.56(12)        |  |  |
| Rb1  | 4526.5(7) | 2500    | 7967.5(4)  | 14.88(15)        |  |  |
| 02   | 3438(4)   | 5255(4) | 3225(2)    | 18.0(7)          |  |  |
| O1   | 2901(5)   | 2500    | 6067(3)    | 16.9(10)         |  |  |
| N1   | 3310(5)   | 3893(5) | 4657(3)    | 12.9(7)          |  |  |
| N2   | 3535(7)   | 2500    | 3219(3)    | 15.3(11)         |  |  |
| C1   | 3160(7)   | 2500    | 5189(4)    | 14.4(13)         |  |  |
| C2   | 3422(5)   | 3980(6) | 3659(3)    | 13.7(9)          |  |  |

**Table S2.** Fractional atomic coordinates (×10<sup>4</sup>) and equivalent isotropic displacement parameters  $(Å^2 \times 10^3)$  of **H**.

 ${}^{\mathrm{a}}U_{(\mathrm{eq})}$  is defined as one-third of the trace of the orthogonalized  $U_{\mathrm{ij}}$ 

|      |            | (11 10) 01 111. |         |                  |
|------|------------|-----------------|---------|------------------|
| Atom | x          | У               | Ζ       | $U_{(eq)}{}^{a}$ |
| Cs1  | 11319.2(8) | 2106.4(6)       | 7500    | 30.7(2)          |
| Br1  | 6240.8(13) | 611.4(10)       | 7500    | 32.6(3)          |
| O1   | 8703(6)    | 4378(6)         | 6152(4) | 42.4(12)         |
| 02   | 2939(10)   | 2500            | 5000    | 44.8(18)         |
| N1   | 8730(11)   | 2500            | 5000    | 28.6(16)         |
| N2   | 5818(8)    | 3490(6)         | 5563(4) | 29.4(12)         |
| C1   | 7794(10)   | 3525(8)         | 5622(5) | 29.5(14)         |
| C2   | 4735(14)   | 2500            | 5000    | 28.6(19)         |
|      |            |                 |         |                  |

**Table S3.** Fractional atomic coordinates ( $\times 10^4$ ) and equivalent isotropic displacement parameters ( $\mathring{A}^2 \times 10^3$ ) of III.

 ${}^{\mathrm{a}}U_{(\mathrm{eq})}$  is defined as one-third of the trace of the orthogonalized  $U_{\mathrm{ij}}$ 

| Atom | $U_{11}$ | $U_{12}$ | $U_{33}$ | $U_{23}$  | <i>U</i> <sub>13</sub> | $U_{12}$ |
|------|----------|----------|----------|-----------|------------------------|----------|
| Br1  | 27.3(4)  | 26.9(4)  | 33.6(6)  | 0         | 0                      | -1.5(3)  |
| Rb1  | 31.4(4)  | 24.4(4)  | 38.0(6)  | 0         | 0                      | 2.6(4)   |
| 01   | 28.2(19) | 41(2)    | 36(3)    | -15.1(19) | 4.3(19)                | 4.0(19)  |
| O2   | 12(2)    | 46(4)    | 65(5)    | -7(3)     | 0                      | 0        |
| N1   | 9(3)     | 30(3)    | 30(4)    | -7(3)     | 0                      | 0        |
| N2   | 16(2)    | 27(2)    | 37(4)    | -8(2)     | -1(2)                  | -4(2)    |
| C1   | 22(3)    | 30(3)    | 19(3)    | 3(3)      | 1(2)                   | -1(2)    |
| C2   | 21(4)    | 28(4)    | 26(5)    | -1(4)     | 0                      | 0        |

Table S4. Anisotropic displacement parameters  $(Å^{2} \times 10^{3})$  of I.

 $^{\rm a}U_{\rm (eq)}$  is defined as one-third of the trace of the orthogonalized  $U_{\rm ij}$ 

| Atom | $U_{11}$ | $U_{12}$ | $U_{33}$  | $U_{23}$ | $U_{13}$ | $U_{12}$ |
|------|----------|----------|-----------|----------|----------|----------|
| I1   | 16.4(2)  | 16.8(2)  | 10.52(17) | 0        | 0.24(14) | 0        |
| Rb1  | 13.0(3)  | 20.9(4)  | 10.7(2)   | 0        | 0.7(2)   | 0        |
| O2   | 24.4(16) | 11.6(17) | 18.1(14)  | 4.2(13)  | 3.1(12)  | -0.3(14) |
| 01   | 18(2)    | 23(3)    | 10.3(19)  | 0        | -0.8(16) | 0        |
| N1   | 14.4(17) | 9(2)     | 14.9(16)  | -2.3(15) | -0.1(13) | 1.9(15)  |
| N2   | 22(3)    | 16(3)    | 8(2)      | 0        | 2(2)     | 0        |
| C1   | 9(3)     | 20(4)    | 14(3)     | 0        | -1(2)    | 0        |
| C2   | 11.4(19) | 17(3)    | 12.4(18)  | 0.2(17)  | -2.7(15) | -1.5(19) |

**Table S5.** Anisotropic displacement parameters  $(Å^{2} \times 10^{3})$  of II.

 $^{\rm a}U_{\rm (eq)}$  is defined as one-third of the trace of the orthogonalized  $U_{\rm ij}$ 

| Atom | $U_{11}$ | $U_{12}$ | $U_{33}$ | $U_{23}$ | $U_{13}$ | $U_{12}$ |
|------|----------|----------|----------|----------|----------|----------|
| Cs1  | 31.3(4)  | 26.7(3)  | 34.2(3)  | 0        | 0        | 1.9(2)   |
| Br1  | 28.8(5)  | 30.7(5)  | 38.3(5)  | 0        | 0        | -0.7(4)  |
| 01   | 34(3)    | 42(3)    | 50(3)    | -14(2)   | -6(2)    | -8(2)    |
| O2   | 19(4)    | 59(5)    | 56(4)    | -5(4)    | 0        | 0        |
| N1   | 23(4)    | 31(4)    | 31(4)    | -7(3)    | 0        | 0        |
| N2   | 24(3)    | 30(3)    | 35(3)    | -5(3)    | 3(2)     | 5(2)     |
| C1   | 32(4)    | 26(3)    | 30(3)    | 4(3)     | -4(3)    | -3(3)    |
| C2   | 30(5)    | 28(5)    | 27(4)    | 6(4)     | 0        | 0        |

**Table S6.** Anisotropic displacement parameters ( $Å^{2} \times 10^{3}$ ) of III.

 $^{\rm a}U_{\rm (eq)}$  is defined as one-third of the trace of the orthogonalized  $U_{\rm ij}$ 

| Ι     |          |       | II       | III   |           |
|-------|----------|-------|----------|-------|-----------|
| Bond  | Length/Å | Bond  | Length/Å | Bond  | Length/Å  |
| 01-C1 | 1.213(6) | O1-C1 | 1.227(7) | O1-C1 | 1.205(7)  |
| O2-C2 | 1.235(8) | O2-C2 | 1.213(5) | O2-C2 | 1.232(11) |
| N1-C1 | 1.366(5) | N1-C1 | 1.370(5) | N1-C1 | 1.384(8)  |
| N2-C1 | 1.365(6) | N1-C2 | 1.381(5) | N2-C1 | 1.359(8)  |
| N2-C2 | 1.354(5) | N2-C2 | 1.369(5) | N2-C2 | 1.372(7)  |

Table S7. Selected bond lengths [Å] of I - III.

| Ι        |          | II       |          | III      | [        |
|----------|----------|----------|----------|----------|----------|
| Angle    | (°)      | Angle    | (°)      | Angle    | (°)      |
| C2-N2-C1 | 125.0(5) | C1-N1-C2 | 125.6(4) | C1-N2-C2 | 125.8(6) |
| 01-C1-N1 | 122.1(4) | 01-C1-N1 | 122.7(3) | 01-C1-N1 | 121.2(6) |
| 01-C1-N2 | 123.6(5) | O2-C2-N1 | 122.5(4) | O1-C1-N2 | 124.3(7) |
| O2-C2-N2 | 122.2(3) | O2-C2-N2 | 124.0(4) | O2-C2-N2 | 122.8(4) |
| N2-C1-N1 | 114.3(5) | N2-C2-N1 | 113.5(4) | N2-C1-N1 | 114.6(6) |

Table S8. Selected bond angles (°) of I - III.

| Ι           | II          | III         | IV          | Assignment                               |
|-------------|-------------|-------------|-------------|------------------------------------------|
| 415         |             | 414         |             | $\delta$ (N-C-O)                         |
| 528         | 532         | 524         | 540         | δ(C=O)                                   |
| 646, 692    | 673         | 641, 692    | 690         | $\delta(\text{CNC}), \delta(\text{NCO})$ |
| 730 - 790   | 718, 758    | 730 - 770   | 769         | π(C-O)                                   |
| 1045        | 1045        | 1050        | 1063        | v(C-O)                                   |
| 1396        | 1384        | 1392        | 1388        | v(C-N)                                   |
| 1462        | 1446, 1575  | 1440 - 1580 | 1475        | $v(C_3N_3)$                              |
| 1700 - 1790 | 1710 - 1780 | 1700 - 1780 | 1700 - 1790 | v(C=O)                                   |
| 2783, 2851  | 2762, 2857  | 2778, 2843  | 2766, 2867  | Hydrogen Bonds                           |
| 3020 - 3260 | 3040 -3140  | 3030 - 3280 | 2944, 3103  | v(NH)                                    |

Table S9. The infrared vibrations and assignments of I - IV in detail (Vibrational frequencies/cm<sup>-1</sup>).

## 2. Supplementary Figures.



Figure S1. The calculated and experimental PXRD patterns for (a) I, (b) II, (c) III and (d) IV.



Figure S2. EDS analysis of (a) I, (b) II, (c) III and (d) IV.



Figure S3. The TG and DSC curves of (a) I, (b) II, (c) III and (d) IV.



Figure S4. The IR spectra of (a) I, (b) II, (c) III and (d) IV.



Figure S5. The Raman spectra of (a) I, (b) II, (c) III and (d) IV.



Figure S6. Photographs of crystal (a) I, (b) II, (c) III and (d) IV for the measurement of birefringence.



Figure S7. Calculated band structures (a) and the partial density of states of constituent atoms in IV (b).



Figure S8. The conjugated  $\pi$ -bond state around -5 eV and anti- $\pi$  bond state around 4 eV on  $H_3C_3N_3O_3$  neutral molecule.



Figure S9. Calculated band structures of (a) I, (b) II and (c) III.



Figure S10. The partial density of states of constituent atoms in (a) I, (b) II and (c) III.



Figure S11. The comparison between  $Na_3(C_3N_3O_3)$  and  $Ba_2M(C_3N_3O_3)_2$  series (M = Mg, Ca, Sr, Ba).



**Figure S12**. The *p*- $\pi$ -interaction between Br 4*p* orbitals and  $\pi$ -bond on cyanuric molecules.



Figure S13. The simulated refractive indexes of (a) I, (b) II and (c) III.