Supporting Information

Magneli-Type Tungsten Oxide Nanorods as Catalysts for the Selective Oxidation of Organic Sulfides

René Dören^a, Jens Hartmann^a, Benjamin Leibauer, Martin Panthöfer, Mihail Mondeshki, and Wolfgang Tremel*

^a These authors contributed equally to this work.

Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany

Table of Contents

TABLE S1. PRODUCT COMPOSITION WITH ADDITIONAL WATER TO STANDARD IN SITU EXPERIMENT (0.85 MG

WO _{3-X} NANORODS, 0.04 MMOL THIOANISOLE, 0.06 MMOL H ₂ O ₂ (60%) IN 0.6 ML METHANOL-D ₄)S6
TABLE S2. FIT PARAMETERS FOR WATER CURVES ACCORDING TO THE EQUATION ABOVE. S6
TABLE S3. PRODUCT COMPOSITION AFTER ANNEALING AT DIFFERENT TEMPERATURES FOR STANDARD IN SITU
EXPERIMENT (0.85 MG WO _{3-X} NANORODS, 0.04 MMOL THIOANISOLE, 0.06 MMOL H ₂ O ₂ (60%) IN 0.6 ML
METHANOL-D ₄)
TABLE S4. BET SURFACE AREA AND Z – POTENTIAL OF NANOPARTICLES USED FOR SULFIDE OXIDATION
FIG. S1. PAWLEY REFINEMENTS OF WO3-X NRS ANNEALED AT 300°C USING SPACE GROUP P2/M AND A
QUADRATIC FORM TO COMPENSATE THE ANISOTROPY. ¹ REFINED PARAMETERS ARE: R _{WP} : 2.23, GOF: 1.08,
CRYSTAL SIZE (A*B*C): 4.1*72.6*4.3 NM. LATTICE PARAMETERS: <i>A</i> =18.196 Å <i>, B</i> =3.794 Å AND <i>C</i> = 14.000 Å.
FIG. S2. TEM IMAGES OF WO _{3-X} NANORODS ANNEALED AT (A) 300 °C, (B) 400 °C, (C) 500 °C AND (D) AFTER SIX
REACTION CYCLES. (E) P-XRD PATTERNS OF ANNEALED WO _{3-X} NANORODS UP TO 500 °C AND (F) AFTER
FIVE REACTION CYCLES. REFERENCES: $W_{18}O_{49}$ (WO _{2.72} , COD, ENTRY NO.: 96-152-8167), WO ₃ (MONOCLINIC,
COD, ENTRY NO.: 96-152-8916)
FIG. S3. (A) TEM IMAGE AND (B) P-XRD PATTERN OF CEO ₂ NANOPARTICLES. REFERENCE: CERIANITE (CEO ₂), COD,
ENTRY NO.: 96-900-9009)S11
FIG. S4. (A) ¹ H-NMR SPECTRA OF A STANDARD CATALYSIS (0.04 MMOL THIOANISOLE, 0.06 MMOL H_2O_2 (60 %),
0.85 MG WO _{3-x} NANORODS IN 0.6 ML OF METHANOL-D ₄) AFTER 10 AND 30 MIN, X MARKING THE PEAKS
USED FOR INTEGRATION. (B) TIME DEPENDENT COMPOSITION DURING THE CATALYSIS BASED ON ¹ H-NMR
DATA
FIG. S5. (A) ¹ H-NMR SPECTRA OF A CATALYSIS WITH DOUBLE AMOUNTS (0.08 MMOL THIOANISOLE, 0.12 MMOL
H ₂ O ₂ (60 %), 1.7 MG WO _{3-X} NANORODS IN 0.6 ML OF METHANOL-D ₄) AFTER 10 AND 30 MIN, X MARKING
THE PEAKS USED FOR INTEGRATION. (B) TIME DEPENDENT COMPOSITION DURING THE CATALYSIS BASED
ON ¹ H-NMR DATA
FIG. S6. (A) ¹ H-NMR SPECTRA OF A CATALYSIS WITH WATER INFLUENCE (0.04 MMOL THIOANISOLE, 0.06 MMOL
H_2O_2 (60 %), 0.85 MG WO _{3-X} NANORODS IN 0.4 ML OF METHANOL-D ₄ AND 0.2 ML D ₂ O) AFTER 10 AND
30 MIN, X MARKING THE PEAKS USED FOR INTEGRATION. (B) TIME-DEPENDENT COMPOSITION DURING
THE CATALYSIS BASED ON ¹ H-NMR DATA
FIG. S7. ¹ H-NMR SPECTRA OF A STANDARD CATALYSIS (0.04 MMOL THIOANISOLE, 0.12 MMOL H ₂ O ₂ (60 %),
0.85 MG WO _{3-X} NANORODS IN 0.6 ML OF METHANOL-D ₄) AFTER 10 MIN, 30 MIN, 22H AND 13 D, X
MARKING THE PEAKS USED FOR INTEGRATION
FIG. S8. (A) ¹ H-NMR SPECTRA OF AN OXIDATION CATALYSIS USING SULFOXIDES (0.04 MMOL MP-SULFONE,

0.06 MMOL H₂O₂ (60 %), 0.85 MG WO_{3-X} NANORODS IN 0.6 ML OF METHANOL-D₄) AFTER 10 AND 30 MIN,

- FIG. S10. (A) ¹H-NMR SPECTRA OF A STANDARD CATALYSIS (0.04 MMOL THIOANISOLE, 0.06 MMOL H₂O₂ (60 %),
 0.85 MG CEO₂ NANOPARTICLES IN 0.6 ML OF METHANOL-D₄) AFTER 10 AND 30 MIN, X MARKING THE PEAKS USED FOR INTEGRATION. (B) TIME-DEPENDENT COMPOSITION DURING THE CATALYSIS BASED ON ¹H-NMR DATA.
- FIG. S12. (A) ¹H-NMR SPECTRA OF A STANDARD CATALYSIS (0.04 MMOL DI-N-PROPYL SULFIDE, 0.06 MMOL H₂O₂
 (60 %), 0.85 MG WO_{3-x} NANORODS IN 0.6 ML OF METHANOL-D₄) AFTER 10 AND 30 MIN, X MARKING THE PEAKS USED FOR INTEGRATION. (B) TIME-DEPENDENT COMPOSITION DURING THE CATALYSIS BASED ON ¹H-NMR DATA.
- FIG. S14. (A) ¹H-NMR SPECTRA OF A STANDARD CATALYSIS (0.04 MMOL DIPHENYL SULFIDE, 0.06 MMOL H₂O₂
 (60 %), 0.85 MG WO_{3-x} NANORODS IN 0.6 ML OF METHANOL-D₄) AFTER 10 AND 30 MIN, X MARKING THE
 PEAKS USED FOR INTEGRATION. (B) TIME-DEPENDENT COMPOSITION DURING THE CATALYSIS BASED ON ¹H-NMR DATA.
- FIG. S15. A) ¹H-NMR SPECTRA OF A STANDARD CATALYSIS (0.04 MMOL DIBENZYL SULFIDE, 0.06 MMOL H₂O₂ (60 %), 0.85 MG WO_{3-x} NANORODS IN 0.6 ML OF METHANOL-D₄) AFTER 10 AND 30 MIN, X MARKING THE PEAKS USED FOR INTEGRATION. (B) TIME-DEPENDENT COMPOSITION DURING THE CATALYSIS BASED ON ¹H-NMR DATA.
- FIG. S17. (A) ¹H-NMR SPECTRA OF A STANDARD CATALYSIS (0.04 MMOL 4-METHOXYPHENYL METHYL SULFIDE, 0.06 MMOL H₂O₂ (60 %), 0.85 MG WO_{3-x} NANORODS IN 0.6 ML OF METHANOL-D₄) AFTER 10 AND 30 MIN,
 X MARKING THE PEAKS USED FOR INTEGRATION. (B) TIME-DEPENDENT COMPOSITION DURING THE CATALYSIS BASED ON ¹H-NMR DATA.

- FIG. S18. (A) ¹H-NMR SPECTRA OF A STANDARD CATALYSIS (0.04 MMOL 4-AMINOPHENYL METHYL SULFIDE, 0.06 MMOL H₂O₂ (60 %), 0.85 MG WO_{3-X} NANORODS IN 0.6 ML OF METHANOL-D₄) AFTER 10 AND 30 MIN, X MARKING THE PEAKS USED FOR INTEGRATION. (B) TIME-DEPENDENT COMPOSITION DURING THE CATALYSIS BASED ON ¹H-NMR DATA.
- FIG. S19. (A) ¹H-NMR SPECTRA OF A CATALYSIS USING SULFOXIDES (0.04 MMOL DMSO, 0.06 MMOL H₂O₂ (60 %),
 0.85 MG WO_{3-X} NANORODS IN 0.6 ML OF METHANOL-D₄) AFTER 10 AND 30 MIN, X MARKING THE PEAKS USED FOR INTEGRATION. (B) TIME-DEPENDENT COMPOSITION DURING THE CATALYSIS BASED ON ¹H-NMR DATA.
- FIG. S20. (A) ¹H-NMR SPECTRA OF A STANDARD CATALYSIS (0.04 MMOL DIBENZOTHIOPHEN, 0.06 MMOL H₂O₂ (60 %), 0.85 MG WO_{3-x} NANORODS IN 0.6 ML OF METHANOL-D₄) AFTER 10 AND 30 MIN. (B) ¹H-NMR SPECTRA OF AN *EX SITU* CATALYSIS (0.04 MMOL DIBENZOTHIOPHEN, 0.06 MMOL H₂O₂ (60 %), 8.5 MG WO_{3-x} NANORODS IN 1 ML OF METHANOL-D₄) AFTER 10 AND 30 MIN. **X** MARKING THE PEAKS USED FOR INTEGRATION.

Materials. All chemicals were used as received without further purification. Choline chloride $(\geq 98 \%)$ and cerium(III) nitrate hexahydrate (99.5 \%, REacton) was purchased from Alfa Aesar, urea (99.5 %, analytical grade) was bought from Acros organics.

Tungsten oxide nanoparticle synthesis. WO_{3-x} nanorods (conditions NR-1) and ammonium tungsten bronze ((NH₄)~_{0.2}WO₃) nanoparticles (conditions ATB-15c) were synthesized according to our previous publication.¹

CeO₂ nanoparticle synthesis. CeO₂ nanoparticles were synthesized based on a synthesis of Hammond et. al.² Choline chloride and urea were mixed in molar ratio of 2:1 and heated to 80 °C for 14 h to gain the deep eutectic solvent reline. The reline was dried at 70 °C under reduced pressure for 6 h. Ce(NO₃)₃ · 6H₂O (750 mg; 1.7 mmol) was dissolved in reline (40 mL), transferred into a stainless steel autoclave (total volume: 50 mL) and heated to 100 °C for 10 h. The highly viscous gel-like reaction mixture was poured into Milli-Q-water (140 mL). The purple product was separated from the suspension by centrifugation (6000-9000 rpm, 10 min), washed three times with Milli-Q-water and three times with ethanol and dried at 80 °C for 14 h. The nanoparticles were calcined at 300 °C for 5 h bevor being used in catalytic experiments.

 TiO_2 nanoparticles. Anatase TiO_2 nanoparticles were synthesized according our previous study,³ based on a synthesis published by Dinh et. al.⁴

General Considerations. We attribute slight variations for the different standard *in situ* reactions mainly to residual moisture in the different methanol- d_4 batches, water adsorbed to the particles from air, as well as small weighing/pipetting errors.

Addition of water / µl	Ratio sulfide:sulfoxide:sulfone	Ratio sulfide:sulfoxide:sulfone
•	(10 min)	(30 min)
0	39:60:1	8:91:2
2.34ª	50:50:0	14:85:1
2.34 ^b	48:52:0	12:87:1
10 ^a	73:26:1	36:62:2
10 ^b	75:25:0	39:61:0
50 ^{a,c}	92:8:0	72:28:0
50 ^{b,c}	92:8:0	74:26:0
200 ^{a,c}	92:7:1	79:21:0
200 ^{b,c}	93:7:0	79:21:0

Table S1. Product composition with additional water to standard *in situ* experiment (0.85 mg WO_{3-x} nanorods, 0.04 mmol thioanisole, 0.06 mmol H_2O_2 (60%) in 0.6 ml methanol-d₄).

a. addition of H_2O . b. addition of D_2O . c. total volume fixed to 600 µl.

 $r = a * e^{-b * V} + c$

r = conversion / %

V= added volume of H_2O / D_2O

Table S2. F	it parameters	for water	curves	according	to the ed	quation abo	ove.
				0			

Curve	a	b	c
D ₂ O 10 min	55.059	0.108	7.256
H ₂ O 10 min	53.252	0.100	7.775
D ₂ O 30 min	72.944	0.057	21.365
H ₂ O 30 min	71.523	0.051	21.457

Annealing	Crystallographic	Ratio	Ratio
temperature / °C	phase	sulfide:sulfoxide:sulfo	sulfide:sulfoxide:sulfo
		ne (10 min)	ne (30 min)
70ª	WO _{3-x}	96:4:0	90:10:0
200	WO _{3-x}	92:8:0	88:12:0
250	WO _{3-x}	51:49:0	17:82:1
300	WO _{3-x}	39:60:1	8:90:2
350	WO _{3-x}	70:30:0	41:58:0
400	WO _{3-x}	77:23:0	55:45:0
500	WO ₃ (monoclinic)	97:3:0	97:3:0

Table S3. Product composition after annealing at different temperatures for standard *in situ* experiment (0.85 mg WO_{3-x} nanorods, 0.04 mmol thioanisole, 0.06 mmol H_2O_2 (60%) in 0.6 ml methanol-d₄).

a. Particles additionally dried @ 40 °C under reduced preasure ($\sim 1*10^{-2}$ mbar), 1.7 mg particles in 0.6 ml methanol-d₄, 0.2 mmol thioanisole, 0.3 mmol H₂O₂ (60 %).

catalyst	Specific surface area / m ² g ⁻¹	ζ – potential / mV
WO _{3-x} nanorods	47.0	-39.7
(NH ₄) _{0.2} WO ₃ nanoparticles	22.8	-36.8
WO ₃ reference (monoclinic)	2.7	-39.3
CeO ₂ nanoparticles	133.9	23.8
TiO ₂ nanoparticles	151.7	-9.1
TiO ₂ P25	49.7	17.7

Table S4. BET surface area and ζ – potential of nanoparticles used for sulfide oxidation.

Fig. S1. Pawley refinements of WO_{3-x} NRs annealed at 300°C using space group *P2/m* and a quadratic form to compensate the anisotropy.¹ Refined parameters are: R_{wp} : 2.23, GOF: 1.08, crystal size (a*b*c): 4.1*72.6*4.3 nm. Lattice parameters: *a*=18.196 Å, *b*=3.794 Å and *c*= 14.000 Å.

Fig. S2. TEM images of WO_{3-x} nanorods annealed at (a) 300 °C, (b) 400 °C, (c) 500 °C and (d) after six reaction cycles. (e) P-XRD patterns of annealed WO_{3-x} nanorods up to 500 °C and (f) after five reaction cycles. References: $W_{18}O_{49}$ (WO_{2.72}, COD, Entry No.: 96-152-8167), WO₃ (monoclinic, COD, Entry No.: 96-152-8916).

Fig. S3. (a) TEM image and (b) P-XRD pattern of CeO₂ nanoparticles. Reference: Cerianite (CeO₂), COD, Entry No.: 96-900-9009).

¹H-NMR characterization

Thioanisole (methyl phenyl sulfide)

CH₃

¹**H-NMR** (400 MHz, d₄-MeOD) δ (ppm): 7.29-7.26 (m, 4H), 7.15-7.12 (m,1H) 2.48 (s, 3H). Published elsewhere⁵: ¹**H-NMR** (400 MHz, CDCl₃) δ (ppm): 7.32-7.20 (m, 4H), 7.17-7.07 (m, 1H), 2.47 (s, 3H).

Methyl phenyl sulfoxide

¹**H-NMR** (400 MHz, d₄-MeOD) δ (ppm): 7.74-7.61 (m, 5H), 2.81 (s, 3H). Published elsewhere⁶: ¹**H-NMR** (400 MHz, CDCl₃) δ (ppm): 7.62-7.60 (m, 2H), 7.51-7.44 (m,3H), 2.68 (s, 3H).

Methyl phenyl sulfone

¹**H-NMR** (400 MHz, d₄-MeOD) δ (ppm): 7.99-7.95 (m, 2H), ~7.66-7.54 (m, 3H)^a, 3.13 (s, 3H). Published elsewhere⁶: ¹**H-NMR** (400 MHz, CDCl₃) δ (ppm): 7.92 (d, *J* = 7.5 Hz, 2H), 7.66-7.54 (m,3H), 3.04 (s, 3H).

a. Signals of the aromatic protons partially overlapping with those of MP-sulfoxide. MP-sulfone content calculated as 2.5 times the integral of the signal at 7.99-7.95 ppm. The MP-sulfoxide contend was calculated as the integral of the signal at 7.62-7.44 ppm minus the 1.5 times the integral of the signal at 7.99-7.95 ppm.

Fig. S4. (a) ¹H-NMR spectra of a standard catalysis (0.04 mmol thioanisole, 0.06 mmol H_2O_2 (60 %), 0.85 mg WO_{3-x} nanorods in 0.6 mL of methanol-d₄) after 10 and 30 min, **x** marking the peaks used for integration. (b) Time dependent composition during the catalysis based on ¹H-NMR data.

Fig. S5. (a) ¹H-NMR spectra of a catalysis with double amounts (0.08 mmol thioanisole, 0.12 mmol H_2O_2 (60 %), 1.7 mg WO_{3-x} nanorods in 0.6 mL of methanol-d₄) after 10 and 30 min, **x** marking the peaks used for integration. (b) Time dependent composition during the catalysis based on ¹H-NMR data.

Fig. S6. (a) ¹H-NMR spectra of a catalysis with water influence (0.04 mmol thioanisole, 0.06 mmol H_2O_2 (60 %), 0.85 mg WO_{3-x} nanorods in 0.4 mL of methanol-d₄ and 0.2 ml D₂O) after 10 and 30 min, **x** marking the peaks used for integration. (b) Time-dependent composition during the catalysis based on ¹H-NMR data.

Fig. S7. ¹H-NMR spectra of a standard catalysis (0.04 mmol thioanisole, 0.12 mmol H_2O_2 (60 %), 0.85 mg WO_{3-x} nanorods in 0.6 mL of methanol-d₄) after 10 min, 30 min, 22h and 13 d, **x** marking the peaks used for integration.

Fig. S8. (a) ¹H-NMR spectra of an oxidation catalysis using sulfoxides (0.04 mmol MP-sulfone, 0.06 mmol H_2O_2 (60 %), 0.85 mg WO_{3-x} nanorods in 0.6 mL of methanol-d₄) after 10 and 30 min, **x** marking the peaks used for integration. (b) Time-dependent composition during the catalysis based on ¹H-NMR data.

Fig. S9. (a) ¹H-NMR spectra of a standard oxidation catalysis (0.04 mmol thioanisole, 0.06 mmol H_2O_2 (60 %), 0.85 mg Na₂WO₄ * 2H₂O in 0.6 mL of methanol-d₄) after 10 and 30 min, **x** marking the peaks used for integration. (b) Time-dependent composition during the catalysis based on ¹H-NMR data.

Fig. S10. (a) ¹H-NMR spectra of a standard catalysis (0.04 mmol thioanisole, 0.06 mmol H_2O_2 (60 %), 0.85 mg CeO₂ nanoparticles in 0.6 mL of methanol-d₄) after 10 and 30 min, **x** marking the peaks used for integration. (b) Time-dependent composition during the catalysis based on ¹H-NMR data.

Fig. S11. (a) ¹H-NMR spectra of a catalysis using sulfoxide (0.04 mmol MP-sulfoxide, 0.06 mmol H_2O_2 (60 %), 0.85 mg CeO₂ nanoparticles in 0.6 mL of methanol-d₄) after 10 and 30 min, **x** marking the peaks used for integration. (b) Time-dependent composition during the catalysis based on ¹H-NMR data.

Di-n-propyl sulfide

S H₃C CH₃

¹**H-NMR** (400 MHz, d₄-MeOD) δ (ppm): 2.49 (t, *J* = 7.2 Hz, 4H), 1.66-1.56 (m, 4H), 1.00 (t, *J* = 7.4 Hz, 6H).

Published elsewhere⁷: ¹**H-NMR** (400 MHz, CDCl₃) δ (ppm): 2.47 (t, *J* = 7.4 Hz, 4H), 1.59 (sext, *J* = 7.4 Hz, 4H), 0.97 (t, *J* = 7.4 Hz, 6H).

Di-n-propyl sulfoxide

0 S H₃C CH_3

¹**H-NMR** (400 MHz, d₄-MeOD) δ (ppm): 2.83-2.72 (m, 4H), 1.87-1.77 (m, 4H), 1.12 (t, *J* = 7.4 Hz, 6H).

Published elsewhere⁶: ¹**H-NMR** (400 MHz, CDCl₃) δ (ppm): 2.72-2.53 (m, 4H), 1.83-1.73 (m,4H), 1.05 (t, *J* = 7.4 Hz, 6H).

Di-n-propyl sulfone

H₃C

¹**H-NMR** (400 MHz, d₄-MeOD) δ (ppm): 3.07-3.03 (m, 4H), ~1.88-1.75 (m, 4H)^a, ~1.12 (t, J = 7.4 Hz, 6H)^a.

Published elsewhere⁶: ¹**H-NMR** (400 MHz, CDCl₃) δ (ppm): 2.90-2.86 (m, 4H), 1.86-1.76 (m,4H), 1.02 (t, *J* = 7.4 Hz, 6H).

a. Signals of the protons partially overlapping with those of di-n-propyl sulfoxide.

Fig. S12. (a) ¹H-NMR spectra of a standard catalysis (0.04 mmol di-n-propyl sulfide, 0.06 mmol H_2O_2 (60 %), 0.85 mg WO_{3-x} nanorods in 0.6 mL of methanol-d₄) after 10 and 30 min, **x** marking the peaks used for integration. (b) Time-dependent composition during the catalysis based on ¹H-NMR data.

Di-tert-butyl sulfide

S,

¹H-NMR (400 MHz, d₄-MeOD) δ (ppm): 1.42 (s, 18H).
Published elsewhere⁸: ¹H-NMR (400 MHz, CDCl₃) δ (ppm): 1.42 (s, 18H).

Di-tert-butyl sulfoxide

0

¹H-NMR (400 MHz, d₄-MeOD) δ (ppm): 1.37 (s, 18H).
Published elsewhere⁹: ¹H-NMR (400 MHz, CDCl₃) δ (ppm): 1.12 (s, 18H).

Di-tert-butyl sulfone

0 Ο

Not observed. Published elsewhere⁹: ¹**H-NMR** (400 MHz, CDCl₃) δ (ppm): 1.31 (s, 18H).

Fig. S13. (a) ¹H-NMR spectra of a standard catalysis (0.04 mmol di-tert-butyl sulfide, 0.06 mmol H_2O_2 (60 %), 0.85 mg WO_{3-x} nanorods in 0.6 mL of methanol-d₄) after 10 and 30 min, **x** marking the peaks used for integration. (b) Time-dependent composition during the catalysis based on ¹H-NMR data.

Diphenyl sulfide

¹H-NMR (400 MHz, d₄-MeOD) δ (ppm): 7.33-7.24 (m, 10H).
Published elsewhere⁵: ¹H-NMR (400 MHz, CDCl₃) δ (ppm): 7.39 (d, *J* = 7.4 Hz, 4H), 7.34 (dd, *J* = 9.9, 4.8 Hz, 4H), 7.28 (dd, *J* = 7.6, 5.1 Hz, 2H).

Diphenyl sulfoxide

¹H-NMR (400 MHz, d₄-MeOD) δ (ppm): 7.72-7.69 (m, 4H), 7.55-7.53 (m, 6H).
Published elsewhere⁶: ¹H-NMR (400 MHz, CDCl₃) δ (ppm): 7.66-7.64 (m, 4H), 7.49-7.42 (m, 6H).

Diphenyl sulfone

Not observed.

Published elsewhere⁶: ¹**H-NMR** (400 MHz, CDCl₃) δ (ppm): 7.96-7.94 (m, 4H), 7.59-7.49 (m, 6H).

Fig. S14. (a) ¹H-NMR spectra of a standard catalysis (0.04 mmol diphenyl sulfide, 0.06 mmol H_2O_2 (60 %), 0.85 mg WO_{3-x} nanorods in 0.6 mL of methanol-d₄) after 10 and 30 min, **x** marking the peaks used for integration. (b) Time-dependent composition during the catalysis based on ¹H-NMR data.

Dibenzyl sulfide

S

¹**H-NMR** (400 MHz, d₄-MeOD) δ (ppm): 7.31-7.23 (m, 10H), 3.61 (s, 4H). Published elsewhere¹⁰: ¹**H-NMR** (400 MHz, CDCl₃) δ (ppm): 7.26-7.14 (m, 10H), 3.55 (s, 4H).

Dibenzyl sulfoxide

¹**H-NMR** (400 MHz, d₄-MeOD) δ (ppm): 7.41-7.36 (m, 10H), 4.20 (d, *J* = 13.0, 2H), 3.98 (d, *J* = 13.0, 2H).

Published elsewhere⁶: ¹**H-NMR** (400 MHz, CDCl₃) δ (ppm): 7.38-7.24 (m, 10H), 3.91 (d, J = 12.0, 2H), 3.86 (d, J = 12.0, 2H).

Dibenzyl sulfone

¹H-NMR (400 MHz, d₄-MeOD) δ (ppm): 7.60-7.55 (m, 10H), 4.38 (s, 4H).
 Published elsewhere¹¹: ¹H-NMR (400 MHz, CDCl₃) δ (ppm): 7.40-7.46 (m, 10H), 4.16 (s, 4H).

Fig. S15. a) ¹H-NMR spectra of a standard catalysis (0.04 mmol dibenzyl sulfide, 0.06 mmol H_2O_2 (60 %), 0.85 mg WO_{3-x} nanorods in 0.6 mL of methanol-d₄) after 10 and 30 min, **x** marking the peaks used for integration. (b) Time-dependent composition during the catalysis based on ¹H-NMR data.

4-Nitrothioanisole (4-nitrophenyl methyl sulfide)

¹**H-NMR** (400 MHz, d₄-MeOD) δ (ppm): 8.16 (d, *J* = 9.0 Hz, 2H), 7.42 (d, *J* = 9.0 Hz, 2H), 2.59 (s, 3H).

Published elsewhere¹²: ¹**H-NMR** (400 MHz, CDCl₃) δ (ppm): 8.24-8.04 (m, 2H), 7.34-7.14 (m, 2H), 2.54 (s, 3H).

4-Nitrophenyl methyl sulfoxide

¹**H-NMR** (400 MHz, d₄-MeOD) δ (ppm): 8.45 (d, *J* = 8.9 Hz, 2H), 7.96 (d, *J* = 8.9 Hz, 2H), 2.89 (s, 3H).

Published elsewhere¹³: ¹**H-NMR** (300 MHz, CDCl₃) δ (ppm): 8.36 (d, *J* = 8.7 Hz, 2H), 7.82 (d, *J* = 8.7 Hz, 2H), 2.78 (s, 3H).

4-Nitrophenyl methyl sulfone

Not observed.

Published elsewhere¹³: ¹**H-NMR** (300 MHz, CDCl₃) δ (ppm): 8.43 (d, *J* = 8.8 Hz, 2H), 8.16 (d, *J* = 8.8 Hz, 2H), 3.12 (s, 3H).

Fig. S16. (a) ¹H-NMR spectra of a standard catalysis (0.04 mmol 4-nitrophenyl methyl sulfide, 0.06 mmol H_2O_2 (60 %), 0.85 mg WO_{3-x} nanorods in 0.6 mL of methanol-d₄) after 10 and 30 min, **x** marking the peaks used for integration. (b) Time-dependent composition during the catalysis based on ¹H-NMR data.

4-Methoxythioanisole (4-methoxyphenyl methyl sulfide)

¹**H-NMR** (400 MHz, d₄-MeOD) δ (ppm): 7.27 (d, J = 8.8 Hz, 2H), 6.88 (d, J = 8.8 Hz,2H), 3.78 (s, 3H), 2,42 (s, 3H).

Published elsewhere⁵: ¹**H-NMR** (400 MHz, CDCl₃) δ (ppm): 7.23 (d, *J* = 8.6 Hz, 2H), 6.81 (d, *J* = 8.6 Hz, 2H), 3.75 (s, 3H), 2,40 (s, 3H).

4-Methoxyphenyl methyl sulfoxide

¹**H-NMR** (400 MHz, d₄-MeOD) δ (ppm): 7.68 (d, *J* = 8.7 Hz, 2H), 7.15 (d, *J* = 8.7 Hz, 2H), 3.88 (s, 3H), 2,79 (s, 3H).

Published elsewhere¹³: ¹**H-NMR** (300 MHz, CDCl₃) δ (ppm): 7.53-7.58 (m, 2H), 7.01-6.96 (m, 2H), 3.81 (s, 3H), 2,65 (s, 3H).

4-Methoxyphenyl methyl sulfone

¹**H-NMR** (400 MHz, d₄-MeOD) δ (ppm): 7.89 (d, J = 8.4 Hz, 2H), ^a(2H), ^a(3H), 3.01 (s, 3H). Published elsewhere¹³: ¹**H-NMR** (300 MHz, CDCl₃) δ (ppm): 7.87 (d, J = 8.8 Hz, 2H), 7.02 (d, J = 8.8 Hz, 2H), 3.89 (s, 3H), 3.03 (s, 3H).

a. Signal intensity partially too low for assignment.

Fig. S17. (a) ¹H-NMR spectra of a standard catalysis (0.04 mmol 4-methoxyphenyl methyl sulfide, 0.06 mmol H_2O_2 (60 %), 0.85 mg WO_{3-x} nanorods in 0.6 mL of methanol-d₄) after 10 and 30 min, **x** marking the peaks used for integration. (b) Time-dependent composition during the catalysis based on ¹H-NMR data.

4-Aminothioanisole (4-aminophenyl methyl sulfide)

¹**H-NMR** (400 MHz, d₄-MeOD) δ (ppm): 7.14 (d, *J* = 8.6 Hz, 2H), 6.68 (d, *J* = 8.6 Hz, 2H), 2.37 (s, 3H).

Published elsewhere¹²: ¹**H-NMR** (400 MHz, CDCl₃) δ (ppm): 7.21-7.11 (m, 2H), 6.65-6.60 (m, 2H), 3.38 (s, 2H), 2.41 (s, 3H).

4-Aminophenyl methyl sulfoxide

¹**H-NMR** (400 MHz, d₄-MeOD) δ (ppm): 7.46 (d, *J* = 8.7 Hz, 2H), 6.80 (d, *J* = 8.7 Hz, 2H), 2.76 (s, 3H).

Published elsewhere¹⁴: ¹**H-NMR** (400 MHz, CDCl₃) δ (ppm): 7.45 (d, *J* = 8.8 Hz, 2H), 6.76 (d, *J* = 8.8 Hz, 2H), 3.79 (s, 2H), 2.69 (s, 3H).

4-Aminophenyl methyl sulfone

Not observed.

Published elsewhere¹⁵: ¹**H-NMR** (400 MHz, CDCl₃) δ (ppm): 7.66 (d, J = 8.5 Hz, 2H), 6.69 (d, J = 8.5 Hz, 2H), 4.26 (s, 2H), 2.99 (s, 3H).

Fig. S18. (a) ¹H-NMR spectra of a standard catalysis (0.04 mmol 4-aminophenyl methyl sulfide, 0.06 mmol H_2O_2 (60 %), 0.85 mg WO_{3-x} nanorods in 0.6 mL of methanol-d₄) after 10 and 30 min, **x** marking the peaks used for integration. (b) Time-dependent composition during the catalysis based on ¹H-NMR data.

Dimethyl sulfoxide (DMSO)

0 II H₃C^{-S}СН₃

¹H-NMR (400 MHz, d₄-MeOD) δ (ppm): 2.68 (s, 3H).
 Published elsewhere¹⁶: ¹H-NMR (400 MHz, CDCl₃) δ (ppm): 2.50 (s, 6H).

Dimethyl sulfone

۰<u>ر</u> H₃C^S CH₃

¹H-NMR (400 MHz, d₄-MeOD) δ (ppm): 3.03 (s, 3H).
Published elsewhere¹⁶: ¹H-NMR (400 MHz, CDCl₃) δ (ppm): 2.97 (s, 6H).

Fig. S19. (a) ¹H-NMR spectra of a catalysis using sulfoxides (0.04 mmol DMSO, 0.06 mmol H_2O_2 (60 %), 0.85 mg WO_{3-x} nanorods in 0.6 mL of methanol-d₄) after 10 and 30 min, **x** marking the peaks used for integration. (b) Time-dependent composition during the catalysis based on ¹H-NMR data.

Dibenzothiophene (DBT)

¹**H-NMR** (400 MHz, d₄-MeOD) δ (ppm): 8.27-8.24 (m, 2H), 7.91-7.89 (m, 2H), 7.51-7.49 (m, 4H).

Published elsewhere¹⁷: ¹**H-NMR** (400 MHz, CDCl₃) δ (ppm): 8.21-8.13 (m, 2H), 7.91-7.82 (m, 2H), 7.51-42 (m, 4H).

Dibenzothiophene sulfoxide

¹**H-NMR** (400 MHz, d₄-MeOD) δ (ppm): 8.05 (dd, *J* = 7.7, 4.3 Hz, 4H), 7.75 (t, *J* = 7.6 Hz, 2H), 7.63 (t, *J* = 7.7 Hz, 2H).

Published elsewhere¹⁶: ¹**H-NMR** (400 MHz, CDCl₃) δ (ppm): 7.99 (d, *J* = 7.6 Hz, 2H), 7.82 (d. *J* = 7.7 Hz, 2H), 7.61 (t, *J* = 7.5 Hz, 2H), 7.51 (t, *J* = 7.5 Hz, 2H).

Dibenzothiophene sulfone

¹**H-NMR** (400 MHz, d₄-MeOD) δ (ppm): 8.08-8.03 (m, 4H), 7.80 (t, *J* = 8.8 Hz, 2H), 7.66 (t, *J* = 8.4 Hz, 2H).

Published elsewhere¹⁶: ¹**H-NMR** (400 MHz, CDCl₃) δ (ppm): 7.83-7.78 (m, 4H), 7.66-7.62 (m, 2H), 7.55-7.51 (m, 2H).

Fig. S20. (a) ¹H-NMR spectra of a standard catalysis (0.04 mmol dibenzothiophen, 0.06 mmol H_2O_2 (60 %), 0.85 mg WO_{3-x} nanorods in 0.6 mL of methanol-d₄) after 10 and 30 min. (b) ¹H-NMR spectra of an *ex situ* catalysis (0.04 mmol dibenzothiophen, 0.06 mmol H_2O_2 (60 %), 8.5 mg WO_{3-x} nanorods in 1 mL of methanol-d₄) after 10 and 30 min. **x** marking the peaks used for integration.

References

- 1 R. Dören, B. Leibauer, M. A. Lange, E. Schechtel, L. Prädel, M. Panthöfer, M. Mondeshki and W. Tremel, *Nanoscale*, 2021, **13**, 8146–8162.
- 2 O. S. Hammond, K. J. Edler, D. T. Bowron and L. Torrente-Murciano, *Nat. Commun.*, 2017, **8**, 14150.
- 3 E. Schechtel, R. Dören, H. Frerichs, M. Panthöfer, M. Mondeshki and W. Tremel, *Langmuir*, 2019, **35**, 12518–12531.
- 4 C.-T. Dinh, T.-D. Nguyen, F. Kleitz and T.-O. Do, ACS Nano, 2009, 3, 3737–3743.
- 5 R. Ma, A.-H. Liu, C.-B. Huang, X.-D. Li and L.-N. He, Green Chem., 2013, 15, 1274.
- B. Yu, C.-X. Guo, C.-L. Zhong, Z.-F. Diao and L.-N. He, *Tetrahedron Lett.*, 2014, 55, 1818–1821.
- 7 E. P. Levanova, V. S. Nikonova, V. A. Grabel'nykh, N. V. Russavskaya, A. I. Albanov, I.
 B. Rozentsveig and N. A. Korchevin, *Russ. J. Gen. Chem.*, 2018, 88, 383–388.
- 8 Spectral Database for Organic Compounds (SDBS), https://sdbs.db.aist.go.jp/sdbs/cgibin/direct frame top.cgi, (accessed 29 June 2021).
- 9 Y. Li, S. A.-E.-A. Rizvi, D. Hu, D. Sun, A. Gao, Y. Zhou, J. Li and X. Jiang, Angew. Chem. Int. Ed., 2019, 58, 13499–13506.
- 10 E. Voutyritsa, M. Garreau, M. G. Kokotou, I. Triandafillidi, J. Waser and C. G. Kokotos, *Chemistry*, 2020, 26, 14453–14460.
- 11 B. Zhang, S. Li, S. Yue, M. Cokoja, M.-D. Zhou, S.-L. Zang and F. E. Kühn, J. Organomet. Chem., 2013, 744, 108–112.
- 12 L. Blank, M. Fagnoni, S. Protti and M. Rueping, Synthesis, 2019, 51, 1243–1252.
- 13 C. Yang, Q. Jin, H. Zhang, J. Liao, J. Zhu, B. Yu and J. Deng, *Green Chem.*, 2009, 11, 1401.
- 14 Y. Monguchi, T. Ida, T. Maejima, T. Yanase, Y. Sawama, Y. Sasai, S. Kondo and H. Sajiki, *Adv. Synth. Catal.*, 2014, **356**, 313–318.
- 15 D. Han, S. Li, S. Xia, M. Su and J. Jin, Chemistry, 2020, 26, 12349–12354.
- 16 B. Yu, A.-H. Liu, L.-N. He, B. Li, Z.-F. Diao and Y.-N. Li, Green Chem., 2012, 14, 957.
- 17 B. Higginson, J. Sanjosé-Orduna, Y. Gu and R. Martin, Synlett, 2021.