SUPPORTING INFORMATION

$\mathrm{Mn}(\mathrm{I})$ Phosphine-Amino-Phosphinites: A Highly Modular Class of Pincer Complexes for Enantioselective Transfer Hydrogenation of Aryl-Alkyl ketones

Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland

Table of Contents

1. General 02
2. Synthesis and characterization of Ligand Precursors (1a-1b) 03
3. Synthesis and characterization of Ligand (2a-2b) 09
4. Synthesis and characterization of complexes ($\mathbf{3 a} \mathbf{a} \mathbf{3 b}$) 15
5. Synthesis and characterization of Ligand (8) 27
6. Synthesis and characterization of complexes (9) 31
7. Comparison between $\mathrm{Mn}(\mathrm{I})$ phosphenes and phosphinite pincer complexes 35 35
8. General procedures for catalysis ($\mathbf{C} 1$ and $\mathbf{C} 2$) and racemic alcohols ($\mathbf{C} 3$) 36
9. Asymmetric Transfer Hydrogenation 38
10. Characterization of catalysis product 41
10.1. GC and HPLC trace 41
10.2. NMR spectra of alcohols (7/8) 79
11. Reference 103

1. General

Reactions were performed under an argon atmosphere using Schlenk techniques and flamedried glassware or in a glove box. All the chemicals were used as received. Apart from acetone and ethyl acetate, all organic solvents were distilled over standard drying agents (2-propanol, methanol, triethylamine, dichloromethane: calcium hydride; tetrahydrofuran, pentane, hexane: sodium/benzophenone; toluene: sodium) and freshly used or stored over molecular sieves. All solvents, including deionized water, were degassed prior to use by nitrogen bubbling for 1 h . NMR spectra were measured on Bruker Avance DPX $300\left({ }^{1} \mathrm{H}, 300.1 ;{ }^{13} \mathrm{C}, 75.5 ;{ }^{19} \mathrm{~F}, 282.4\right.$; $\left.{ }^{31} \mathrm{P}, 121.5\right), 400\left({ }^{1} \mathrm{H}, 400.1 ;{ }^{13} \mathrm{C}, 100.6 ;{ }^{19} \mathrm{~F}, 376.5 ;{ }^{31} \mathrm{P}, 162.0\right)$ or $500\left({ }^{1} \mathrm{H}, 500.2 ;{ }^{13} \mathrm{C}, 125.8\right.$; ${ }^{19} \mathrm{~F}, 470.7$; ${ }^{31} \mathrm{P}, 202.5$) spectrometers at room temperature (frequencies in MHz). Chemical shifts (δ) are reported in ppm and the multiplicity is indicated as: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{ddd}=$ doublet of doublet of doublets, $\mathrm{dt}=$ doublet of triplets, $\mathrm{t}=$ triplet, td $=$ triplet of doublets, $\mathrm{q}=$ quartet, quint $=$ quintet, hept $=$ heptet, $\mathrm{br}=$ broad, $\mathrm{m}=$ multiplet). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are referenced to the solvent residual peak as internal standard $\left(\mathrm{CDCl}_{3}\right.$: $\delta 7.26$ for ${ }^{1} \mathrm{H}, \delta 77.16$ for ${ }^{13} \mathrm{C} ; \mathrm{CD}_{2} \mathrm{Cl}_{2}: \delta 5.32$ for ${ }^{1} \mathrm{H}, \delta 54.00$ for $\left.{ }^{13} \mathrm{C}\right),{ }^{19} \mathrm{~F}$ NMR spectra to external CFCl_{3} and ${ }^{31} \mathrm{P}$ NMR spectra to external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$. Infrared spectra were measured on a Nicolet 6700 FT-IR Spectrometer - Thermo Scientific. Wavenumbers (v) are reported in cm^{-1}. High-resolution mass spectra were measured on a BrukerDaltonics maXis - ESI-Qq-TOF-MS spectrometer (Laboratory of Organic Chemistry, ETH Zürich). The molecular ion is reported in m / z unit. Elemental analyses were performed on a TruSpec Micro - LECO instrument (Laboratory of Microelemental Analysis, ETH Zürich). Enantiomeric excesses were determined by chiral HPLC on a UltiMate 3000 HPLC - Thermo Fisher Scientific with Chiralpak IB-3 columns and by chiral GC using a Trace1310 GC - Thermo Fisher Scientific gas chromatograph with a β-DEX column at constant oven temperature. Yields were determined by chiral GC using a Trace1310 GC - Thermo Fisher Scientific with a β-DEX column at constant oven temperature or by ${ }^{1} \mathrm{H}$ NMR spectroscopy. All the reactions has been repeated at least twice for confirming the reproducibility.

2. Synthesis of Ligand Precursors (1a-1b)

Synthesis of ($\mathbf{1 S , 2 S}$)-2-((2-(diphenylphosphaneyl)benzyl) amino)cyclohexa-n-1-ol (1a): A 0.02 M solution of of 2-(diphenylphosphaneyl)benzaldehyde ($2.5 \mathrm{~g}, 8.68 \mathrm{mmol}$, 1.0 equiv) and ($1 S, 2 S$)-2-aminocyclohexan-1-ol ($1 \mathrm{~g}, 8.68 \mathrm{mmol}, 1.0$ equiv) in anhydrous MeOH was stirred at room temperature for 18 h . After full conversion (monitored by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$), NaBH_{4} ($1.64 \mathrm{~g}, 5.0$ equiv) was added, and the solution was stirred further for 3 h . Then the reaction was quenched with degassed water after confirming the disappearance of the imine proton by ${ }^{1} \mathrm{H}$ NMR. The volatiles were removed by rotary evaporation under inert atmosphere. The aqueous phase was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with degassed $\mathrm{H}_{2} \mathrm{O}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo for 24 h . The crude product was purified by column chromatography (Hexane: Ethyl acetate $=1: 1$) to obtain the desired product as a white solid ($2.97 \mathrm{~g}, 88 \%$ yield). ${ }^{1} \mathbf{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.48-7.46(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-H), 7.36-7.32(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar}-H), 7.29-7.25(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-$ $H), 7.20-7.16$ (m, 1H, Ar-H), 6.93-6.91 (m, 1H, Ar-H), 4.12 (d, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{BzCHH})$, $3.90(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{BzCHH}), 3.28(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 3.03-2.98(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OC} H), 2.20-2.15$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{NCHH}), 2.07-2.03(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}), 1.94-1.91(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CyCH}), 1.68-1.64(\mathrm{~m}, 2 \mathrm{H}$, CyCH), 1.28-1.11 (m, 4H, CyCH), 0.90-0.82 (m, 1H, CyCH). ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ APT (126 MHz , $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 145.2$ (arom.), 145.0 (arom.), 137.3 (d, $J=10.6 \mathrm{~Hz}$, arom.), 137.1 (d, $J=10.1 \mathrm{~Hz}$, arom.), 136.1 (d, $J=13.1 \mathrm{~Hz}$, arom.), 133.9 (arom.), 133.8 (arom.), 133.7 (arom.), 129.4 (arom.), 129.0 (arom.), 128.8 (arom.), 128.7 (arom.), 128.6 (arom.), 127.3 (arom.), 73.8 $(\mathrm{OCH}), 63.4(\mathrm{NCH}), 49.7(\mathrm{~d}, J=19.9 \mathrm{~Hz}, \mathrm{BzCH}), 33.3(\mathrm{CyCH}), 30.6(\mathrm{CyCH}), 25.3(\mathrm{CyCH})$, $24.4(\mathrm{CyCH}) .{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(203 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta-16.0$. HRMS (ESI) m / z calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{NNaOP}\right]^{+}: 412.18[\mathrm{M}]^{+}$; found: 412.1801. EA Calcd. for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{NOP}: \mathrm{C}, 77.10 ; \mathrm{H}$, 7.25; N, 3.60s; Found: C, 77.24; H, 7.10; N, 3.66.

Co

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 a}\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

Figure S2. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT NMR spectrum of 1a $\left(126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

Figure S3. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 a}\left(203 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

Synthesis of (1S,2S)-2-((2-(bis(3,5-dimethylphenyl)phosphene)benzyl) amino)cyclohexan-1-ol (1b): A 0.02 M solution of of 2-(3,5-dimethylphenyl phosphaneyl)benzaldehyde ($3 \mathrm{~g}, 8.68 \mathrm{mmol}, 1.0$ equiv) and ($1 S, 2 S$)-2-aminocyclohexan-1-ol ($1 \mathrm{~g}, 8.68 \mathrm{mmol}, 1.0$ equiv) in anhydrous MeOH was stirred at room temperature for 18 h . After full conversion (monitored by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$), NaBH_{4} ($1.65 \mathrm{~g}, 5.0$ equiv) was added, and the solution was stirred further for 3 h . The reaction was quenched with degassed water after confirming the disappearance of the imine proton by ${ }^{1} \mathrm{H} N M R$, and then the volatiles were removed by rotary evaporation under inert atmosphere. The aqueous phase was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with degassed $\mathrm{H}_{2} \mathrm{O}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo for 24 h . The crude product was purified by column chromatography (Hexane: Ethyl acetate $=1: 1$) to obtain the desired product as a white solid ($3.32 \mathrm{~g}, 86 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.48-7.46(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$,
7.34-7.30 (m, 1H, Ar-H), 7.19-7.15 (m, 1H, Ar-H), 6.99 (s, 1H, Ar-H), 6.95-6.92 (m, 1H, Ar$H), 6.90-6.87(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-H), 4.10(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{BzCHH}), 3.84(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{BzCHH}), 3.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 3.05-3.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}), 2.25\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3} H\right), 2.18-2.12(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{NCHH}), 2.05-2.01(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N} H), 1.95-1.92(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CyCH}), 1.68-1.64(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CyCH}), 1.28-1.12(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CyCH}), 0.90-0.81(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CyCH}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{A P T}(126 \mathrm{MHz}$, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 145.0$ (arom.), 144.8 (arom.), 138.1 (d, $J=7.2 \mathrm{~Hz}$, arom.), 138.0 (d, $J=7.2 \mathrm{~Hz}$, arom.), 136.8 (d, $J=9.6 \mathrm{~Hz}$, arom.), 136.6 (arom.), 136.5 (d, $J=9.6 \mathrm{~Hz}$, arom.), 133.8 (arom.), 131.6 (arom.), 131.6 (arom.), 131.5 (arom.), 131.4 (arom.), 130.5 (d, $J=5.0 \mathrm{~Hz}$, arom.), 129.3 (d, $J=5.1 \mathrm{~Hz}$, arom.), 128.8 (arom.), 127.2 (arom.), $73.8(\mathrm{OCH}), 63.4(\mathrm{NCH}), 49.5(\mathrm{~d}, J=20.3$ $\mathrm{Hz}, \mathrm{BzCH}), 33.3(\mathrm{CyCH}), 30.6(\mathrm{CyCH}), 25.4(\mathrm{CyCH}), 24.4(\mathrm{CyCH}), 21.1\left(\mathrm{CH}_{3}\right) \cdot{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($203 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta-15.9$. HRMS (ESI) m / z calcd for $\left[\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{NNaOP}\right]^{+}: 468.2427$ $[\mathrm{M}]^{+}$; found: 468.2423. EA Calcd. for $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{NOP}: \mathrm{C}, 78.17$; $\mathrm{H}, 8.14$; $\mathrm{N}, 3.14$; Found: C, 78.21; H, 8.11; N, 3.27.

Figure S4. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 b}\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

$\begin{array}{llllllllllllllllllllllllllll}0 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80\end{array}$
Figure S6. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 b}\left(203 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

Figure S7. ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{HHSQC}$ (red) and ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ HMBC (green) of $\mathbf{1 b}$ superimposed.

Figure S8. ${ }^{31} \mathrm{P}-{ }^{1} \mathrm{H}$ HSQC of ligand processor $\mathbf{1 b}$.

3. Synthesis of $\mathrm{P}^{\mathbf{\prime}}(\mathbf{O}) \mathbf{N}(\mathbf{H}) \mathbf{P}$ Ligands (2a-2b)

Synthesis of \boldsymbol{N}-(2-(diphenylphosphaneyl)benzyl)-2-((diphenylphospha-neyl)oxy)cyclo-hexan-1-amine (2a): To a 0.2 M solution of ($1 S, 2 S$)-2-((2-(diphenylphospha-neyl)benzyl)amino)-cycloh-exa-1-ol ($1 \mathrm{~g}, 2.56 \mathrm{mmol}, 1.0$ equiv) in toluene, trimethylamine (5 $\mathrm{mL}, 12.84 \mathrm{mmol}, 5.0$ equiv) was added and stirred at room temperature for 6 h . Then chlorodiphenylphosphine ($0.55 \mathrm{~mL}, 3.08 \mathrm{mmol}, 1.2$ equiv) was added to the reaction mixture and stirred for 3 h . The formed suspension was then filtered with a cannula over whatman filter paper. After evaporation of the solvent in vacuo (Traces of trimethylamine will be removed), the product was obtained as a white solid with a purity of 95% (by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$) which was directly used for complexation without any further purification. (Note: The mode of addition is highly important, since the by-product (1,1,2,2-tetraaryldiphosphane) will be formed in higher concentration, if both trimethylamine and chloro-diarylphosphine are directly added to the solution of $\mathbf{1 a}$ in toluene.) ($1.35 \mathrm{~g}, 92 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.83-7.57$ (m, 1H, Ar-H), 7.51-7.47 (m, 4H, Ar-H), 7.36-7.29 (m, 9H, Ar-H), 7.27-7.20 (m, 8H, Ar-H), 7.15-7.11 (m, 1H, Ar-H), 6.85-6.82 (m, 1H, Ar-H), 3.94 (d, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{BzCHH}), 3.82$ (d, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{BzCHH}), 3.71-3.61$ (m, 1H, OCH), 2.64-2.58 (m, 1H, NCHH), 2.06-2.02 (m, 1H, NH), 1.94-1.91 (m, 1H, CyCH), 1.69-1.56 (m, 2H, CyCH), 1.45-1.36 (m, 1H, $\mathrm{CyCH}), 1.28-1.11(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CyCH}), 1.06-0.98(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CyCH}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ APT (126 MHz , $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 143.6(\mathrm{~d}, J=16.6 \mathrm{~Hz}$, arom.) , 142.9 ($\mathrm{d}, J=16.3 \mathrm{~Hz}$, arom.), 137.1 (d, $J=10.6 \mathrm{~Hz}$, arom.), 137.0 (d, $J=10.6 \mathrm{~Hz}$, arom.), 135.4 (d, $J=13.8 \mathrm{~Hz}$, arom.), 135.3 ($\mathrm{d}, J=7.5 \mathrm{~Hz}$, arom.), 135.2 (d, $J=7.3 \mathrm{~Hz}$, arom.), 134.0 ($\mathrm{d}, J=7.8 \mathrm{~Hz}$, arom.), 133.8 ($\mathrm{d}, J=8.1 \mathrm{~Hz}$, arom.), 133.3 (arom.), 128.9 (arom.), 128.7 (arom.), 128.6 (arom.), 128.6 (arom.), 128.5 (arom.), 128.5 (arom.), 128.5 (arom.), 128.4 (arom.), 128.3 (arom.), 128.2 (arom.), 128.1 (arom.), 126.9 (arom.), 83.5 (d, $J=18.4 \mathrm{~Hz}, \mathrm{OCH}), 61.6(\mathrm{~d}, J=5.6 \mathrm{~Hz}, \mathrm{NCH}), 48.9(\mathrm{~d}, J=23.4 \mathrm{~Hz}, \mathrm{BzCH})$, $32.7(\mathrm{~d}, J=5.3 \mathrm{~Hz}, \mathrm{CyCH}), 30.1(\mathrm{CyCH}), 24.3(\mathrm{CyCH}), 23.9(\mathrm{CyCH}) .{ }^{\mathbf{3 1} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}(203}$ $\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ 106.7, -16.2 . HRMS (ESI) m / z calcd for $\left[\mathrm{C}_{37} \mathrm{H}_{38} \mathrm{NOP}_{2}\right]^{+}: 574.2423$ [M]+; found: 574.2423.

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 a}\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

Figure S10. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT NMR spectrum of $\mathbf{2 a}\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

Figure S11. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 a}\left(203 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

Synthesis of \boldsymbol{N}-(2-(bis(3,5-dimethylphenyl)phosphene)benzyl)-2-((diphenylphosph-aneyl)oxy)cyclo-hexan-1-amine (2b): To a 0.2 M solution of ($1 S, 2 S$)-2-((2-(bis(3,5-dimethylphenyl)phosphene) benzyl)amino)cyclohexan-1-ol (1.14 g, 2.56 mmol , 1.0 equiv) in toluene, trimethylamine ($1.8 \mathrm{~mL}, 12.84 \mathrm{mmol}, 5.0$ equiv) was added and stirred at room temperature for 6 h . Then chloro-diarylphosphine ($0.55 \mathrm{~mL}, 3.08 \mathrm{mmol}, 1.2$ equiv) was added to the reaction mixture and stirred for 3 h . The formed suspension was then filtered with a cannula over whatman filter paper. After evaporation of the solvent in vacuo (Traces of trimethylamine will be removed), the product was obtained as a white solid with a purity of 96% (by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR) which was directly used for complexation without any further purification. (Note: The mode of addition is highly important, since the by-product (1,1,2,2tetraaryldiphosphane) will be formed in higher concentration, if both trimethylamine and chloro-diarylphosphine are directly added to the solution of 1 a in toluene.) ($1.45 \mathrm{~g}, 90 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.86-7.55(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-H)$, 7.52-7.46 (m, 4H, Ar- H), 7.34-7.09 (m, 9H, Ar-H), 6.97 (s, 2H, Ar-H), 6.86-6.83 (m, 4H, Ar-H), 3.90 (d, $J=13.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{BzCHH}), 3.81(\mathrm{~d}, ~ J=13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{BzCHH}), 3.74-3.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}), 2.65-2.57(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{NCH}), 2.27-2.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N} H), 2.23\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3} \mathrm{H}\right), 1.93-1.89(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CyCH}), 1.68-1.64(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CyCH}), 1.59-1.55(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CyCH}), 1.43-1.37(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CyCH}), 1.30-1.27(\mathrm{~m}, 1 \mathrm{H}$, СуCH),1.22-1.16 (m, 1H, CyCH), 1.10-0.98 (m, 1H, CyCH), 0.91-0.87 (m, 1H, CyCH). ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ APT $\left(126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 145.2(\mathrm{~d}, J=24.1 \mathrm{~Hz}$, arom.), $143.1(\mathrm{~d}, J=17.8 \mathrm{~Hz}$, arom.), 138.0 (d, $J=7.8 \mathrm{~Hz}$, arom.), 136.7 (d, $J=4.5 \mathrm{~Hz}$, arom.), 136.6 (d, $J=4.5 \mathrm{~Hz}$, arom.), 135.9 (d, $J=13.6 \mathrm{~Hz}$, arom.), 135.4 (d, $J=7.1 \mathrm{~Hz}$, arom.), 135.4 (d, $J=7.0 \mathrm{~Hz}$, arom.), 133.2 (d, $J=7.0 \mathrm{~Hz}$, arom.), 133.2 (arom.), 131.7 (d, $J=6.2 \mathrm{~Hz}$, arom.), 131.5 (d, $J=6.2 \mathrm{~Hz}$, arom.), 130.7 (arom.), 130.5 (arom.), 130.4 (arom.), 130.4 (arom.), 130.0 (arom.), 129.8 (arom.), 128.6 (arom.), 128.3 (d, $J=6.6 \mathrm{~Hz}$, arom.), 128.2 (d, $J=6.6 \mathrm{~Hz}$, arom.), 126.7 (arom.), 83.6 (d, $J=$ $18.6 \mathrm{~Hz}, \mathrm{OCH}), 61.5(\mathrm{~d}, J=5.7 \mathrm{~Hz}, \mathrm{NCH}), 48.9(\mathrm{~d}, J=23.1 \mathrm{~Hz}, \mathrm{BzCH}), 32.7(\mathrm{~d}, J=5.2 \mathrm{~Hz}$, $\mathrm{CyCH}), 30.2(\mathrm{CyCH}), 24.3(\mathrm{CyCH}), 24.0(\mathrm{CyCH}), 21.1\left(\mathrm{CH}_{3}\right) .{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}(203 \mathrm{MHz}$, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ-15.9. HRMS (ESI) m / z calcd for $\left[\mathrm{C}_{41} \mathrm{H}_{45} \mathrm{NOP}_{2}\right]^{+}: 630.3049$ [M]+; found: 630.3046.

Figure S12. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 b}\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

Figure S13. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT NMR spectrum of $\mathbf{2 b}\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

Figure S14. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 b}\left(203 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

Figure S15. ${ }^{13} \mathrm{C}-{ }^{-1} \mathrm{HHSQC}$ (red) and ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ HMBC (green) of 2b superimposed.

Figure S17. ${ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}$ HSQC of ligand $\mathbf{2 b}$.

4. Synthesis of $\mathrm{P}^{\prime}(\mathbf{O}) \mathbf{N}(\mathbf{H}) \mathbf{P}$ manganese complexes (3a-3b)

Synthesis of $\left[\mathbf{M n B r}(\mathbf{C O})_{\mathbf{2}} \mathbf{(2 a)}\right] \mathbf{(3 a) :}$ A suspension of $\left[\mathrm{MnBr}(\mathrm{CO})_{5}\right](0.43$ $\mathrm{g}, 1.58 \mathrm{mmol}, 1.0$ equiv) and $\mathbf{2 a}(0.95 \mathrm{~g}, 1.66 \mathrm{mmol}, 1.05$ equiv) in anhydrous toluene was stirred at $80^{\circ} \mathrm{C}$ for 3 h . Then the amount of solvent was reduced in vacuo to $\sim 2 \mathrm{~mL}$ and was precipitated with anhydrous hexane. The solids were then filtered with a cannula. The process of precipitation and filtration was carried out several times and then the solid was dried under high vacuo ($10^{-3} \mathrm{mbar}$) to give the desired bis(carbonyl) $\mathrm{Mn}(\mathrm{I})$ complex $\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathbf{2 a})\right] \operatorname{Br}(\mathbf{3 a})$ as a yellow powder $(0.99 \mathrm{~g}$, Yield: $82 \%) .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 8.16(\mathrm{t}, J=8.9 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ar}-H), 7.98(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$, OPAr-H), 7.66 (t, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$, OPAr- H), 7.50-7.40 (m, 9H, OPAr-H, PAr- H, Ar-H), 7.30-7.19 (m, 6H, OPAr-H, PAr-H), 7.03 (m, 2H, PAr-H), 7.07$6.95(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PAr}-H), 4.18-4.14(\mathrm{~m}, 2 \mathrm{H}, \mathrm{BzCHH}, \mathrm{OCH}), 4.00-3.88(\mathrm{~m}, 1 \mathrm{H}, \mathrm{BzCHH}), 2.75(\mathrm{~m}$, 3H, NH, NCHH, CyCH), 2.39-2.26 (m, 1H, CyCH), 1.87-1.69 (m, 2H, CyCH), 1.4-1.20 (m, $3 \mathrm{H}, \mathrm{CyCH}), 0.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CyCH}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{A P T}\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 143.1$ (arom.), 142.4 (d, $J=9.42 \mathrm{~Hz}$, arom.), 142.3 (arom.), 139.6 (d, $J=12.9 \mathrm{~Hz}$, arom.), 138.7 (arom.), 137.6 (d, $J=$ 8.9 Hz , arom.), 137.0 (arom.), 136.6 (arom.), 134.0 (arom.), 132.9 (d, $J=9.6 \mathrm{~Hz}$, arom.), 132.5 (d, $J=10.6 \mathrm{~Hz}$, arom.), 131.7 (arom.), 131.0 (arom.), 130.8 (arom.), 130.7 (d, $J=4.7 \mathrm{~Hz}$, arom.), 130.2 (arom.), 130.1 (d, $J=4.7 \mathrm{~Hz}$, arom.), 129.8 (arom.), 129.7 (d, $J=10.6 \mathrm{~Hz}$, arom.), 128.9 (d, $J=8.3 \mathrm{~Hz}$, arom.), 128.7 (d, $J=10.8 \mathrm{~Hz}$, arom.), 128.5 (arom.), 126.0 (arom.), $76.3(\mathrm{OCH}), 67.0(\mathrm{NCH}), 59.7(\mathrm{~d}, J=14.0 \mathrm{~Hz}, \mathrm{BzCH}), 35.5(\mathrm{~d}, J=7.1 \mathrm{~Hz}, \mathrm{CyCH}), 33.6$ $(\mathrm{CyCH}), 26.2(\mathrm{CyCH}), 25.1(\mathrm{CyCH}), 21.8(\mathrm{CyCH}) .{ }^{31} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 160.8$ (d, $J_{\mathrm{P}, \mathrm{P}}=116.0 \mathrm{~Hz}$), $37.9\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{P}}=116.0 \mathrm{~Hz}\right.$). IR ATR $v: 1930$, 1851. HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{39} \mathrm{H}_{37} \mathrm{MnNO}_{3} \mathrm{P}_{2}\right]^{+}$: $684.162[\mathrm{M}]+$; found: 684.1616. EA Calcd. for $\mathrm{C}_{39} \mathrm{H}_{37} \mathrm{BrMnNO}_{3} \mathrm{P}_{2}$: C, 61.27; H, 4.88; N, 1.83; Found: C, 61.18; H, 4.70; N, 1.87.

X-Ray Structure of $\left[\operatorname{MnBr}(\mathbf{C O})_{\mathbf{2}}(\mathbf{2 a})\right]$ (3a):

Empirical formula	$\mathrm{C}_{39} \mathrm{H}_{37} \mathrm{BrMnNO}_{3} \mathrm{P}_{2}$
Formula weight	764.48
Temperature/K	100.0
Crystal system	monoclinic
Space group	$P 2_{1}$
a/ \AA	$10.5751(3)$
b/ \AA	$29.5477(10)$

c / \AA	$12.0766(4)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	$108.7480(10)$
$\gamma /{ }^{\circ}$	90
Volume $/ \AA^{3}$	$3573.4(2)$
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.421
μ / mm^{-1}	5.460
$\mathrm{~F}(000)$	1572.0
Crystal size $/ \mathrm{mm}^{3}$	$0.3 \times 0.2 \times 0.1$
Radiation	$\mathrm{CuK} \mathrm{\alpha}(\lambda=1.54178)$
2Θ range for data collection $/{ }^{\circ} 5.982$ to 162.328	
Index ranges	$-13 \leq \mathrm{h} \leq 13,-36 \leq \mathrm{k} \leq 37,-12 \leq \mathrm{l} \leq$
	14
Reflections collected	53870
Independent reflections	$14930\left[\mathrm{R}_{\text {int }}=0.0456, \mathrm{R}_{\text {sigma }}=0.0446\right]$
Data/restraints/parameters	$14930 / 6 / 873$
Goodness-of-fit on F^{2}	1.026
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0531, \mathrm{wR}_{2}=0.1296$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0537, \mathrm{wR}_{2}=0.1308$
Largest diff. peak/hole $/ \mathrm{e} \AA \AA^{\AA 3}$	$0.50 /-0.44$
Flack parameter	$0.014(6)$

Figure S18: Thermal ellipsoid plot (Ortep-3) ${ }^{14 a}$ of both crystallographically independent molecules $\left[\operatorname{MnBr}(\mathrm{CO})_{2}(\mathbf{2 a})\right]$ (3a) with 50% probability. Both molecules show positional disorder of the Br -atom and one of the carbonyl units. (a) In molecule 1 the disorder (about 8.2% occupancy) affects the carbonyl group situated trans to the bromine atom while in (b) molecule 2 the disorder (about 6.4% occupancy) involves the carbonyl molecule situated cis to the bromine atom. The atoms belonging to the minor components are shown with empty spheres while all other non-hydrogen atoms are shown as ellipsoids. The hydrogen atoms were omitted for clarity.

Br1	Mn1	$2.5368(12)$	Br 2	Mn 2	$2.5297(12)$
Mn 1	P 1	$2.3083(19)$	Mn 2	P 3	$2.3420(19)$
Mn 1	P 2	$2.2274(19)$	Mn 2	P 4	$2.2356(19)$

Mn1	N 1	$2.163(6)$	Mn 2	N 2	$2.191(6)$
C 20	C 21	$1.530(9)$	C 59	C 60	$1.533(9)$
C 13	C 18	$1.401(10)$	C 52	C 57	$1.408(9)$

$\mathrm{C}(59)-\mathrm{N}(2)-\mathrm{C}(58)$	$110.0(5)$	$\mathrm{C}(20)-\mathrm{N}(1)-\mathrm{C}(19)$	$109.3(5)$
$\mathrm{O}(6)-\mathrm{P}(4)-\mathrm{C}(60)$	$119.1(4)$	$\mathrm{O}(3)-\mathrm{P}(2)-\mathrm{C}(21)$	$119.1(4)$
$\mathrm{P}(4)-\mathrm{Mn}(2)-\mathrm{Br}(2)$	$92.98(6)$	$\mathrm{P}(2)-\mathrm{Mn}(1)-\mathrm{Br}(1)$	$89.74(6)$
$\mathrm{P}(4)-\mathrm{Mn}(2)-\mathrm{P}(3)$	$178.41(8)$	$\mathrm{P}(2)-\mathrm{Mn}(1)-\mathrm{P}(1)$	$178.09(8)$
$\mathrm{Mn}(2)-\mathrm{C}(78)-\mathrm{O}(5)$	$178.8(6)$	$\mathrm{Mn}(1)-\mathrm{C}(39)-\mathrm{O}(2)$	$178.9(9)$
$\mathrm{P}(4)-\mathrm{Mn}(2)-\mathrm{C}(78)$	$90.1(2)$	$\mathrm{P}(2)-\mathrm{Mn}(1)-\mathrm{C}(39)$	$90.2(2)$
$\mathrm{P}(3)-\mathrm{Mn}(2)-\mathrm{C}(78)$	$89.7(2)$	$\mathrm{P}(1)-\mathrm{Mn}(1)-\mathrm{C}(39)$	$88.2(2)$

Table T1: Selected distances (\AA) and angles $\left({ }^{\circ}\right)$ of $\left[\operatorname{MnBr}(\mathbf{C O})_{2}(\mathbf{2 a})\right](3 a):$

A suitable crystal was measured at 100 K on a Bruker Venture Dual Source diffractometer using Cu radiation. The structure was solved with SHELXT ${ }^{14 b}$ and refined with SHELXL $2018 / 3^{14 \mathrm{c}}$ embedded in Olex2. ${ }^{14 \mathrm{~d}}$ The crystallographic details are given in Table T1 (CCDC 2083796). The crystal structure analysis of $\left[\operatorname{MnBr}(\mathrm{CO})_{2}(2 \mathrm{a})\right]$ (3a) showed some residual density in both molecules, located close to one of the carbonyl ligands. Accordingly, the carbonyl position was described by a mixed occupancy with Br -atoms (8.2% occupancy in molecule 1 and 6.4% occupancy in molecule 2, respectively). However, if an occasional exchange of the $\mathrm{CO} / \mathrm{Br}$-positions is assumed (and not the presence of a complex with the sum formula $\left[\mathrm{MnBr}_{2}(\mathrm{CO})(2 \mathrm{a})\right]$, which has a 17 -electron count), there should be residual electron density corresponding to 6.4% and 8.2% occupancy of a carbonyl group at the bromide positions, too. Such small electron density of less than $0.5 \mathrm{e}^{-} / \AA^{3} \mathrm{per} \mathrm{C/O}$ atom is hard to detect and refine in the proximity of an almost fully occupied bromine atom with 35 electrons. Accordingly, for the refinement of the corresponding carbonyl groups the $\mathrm{Mn}-\mathrm{C}, \mathrm{Mn}-\mathrm{O}$ and $\mathrm{C}-$ O distances were restrained to be similar to the distances (with a standard uncertainty of 0.01) observed in the non-disordered carbonyl group. Interestingly, in molecule 1 (Fig. S18 a) the bromine atom is disordered with the carbonyl group situated in the trans-position, while in molecule 2 (Fig. S18 b) the carbonyl in cis position is affected.

NMR of $\left[\mathrm{MnBr}(\mathrm{CO})_{2}(2 a)\right]$ (3a).

Figure S19. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a}\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

Figure S20. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT NMR spectrum of 3a (101 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$).

Figure S21. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3 a}\left(121 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

Figure S22. ${ }^{13} \mathrm{C}-{ }^{-1} \mathrm{HHSQC}$ (red) and ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ HMBC (green) of 3a superimposed.

Figure S23. ${ }^{31} \mathrm{P}-{ }^{1} \mathrm{H}$ HSQC of $\left[\operatorname{MnBr}(\mathrm{CO})_{2}(\mathbf{2 a})\right]$ (3a).

Figure S24. ${ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}$ HSQC of $\left[\operatorname{MnBr}(\mathrm{CO})_{2}(\mathbf{2 a})\right]$ (3a).

Figure S25. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} \operatorname{COSY}$ of $\left[\operatorname{MnBr}(\mathrm{CO})_{2}(\mathbf{2 a})\right]$ (3a).

Synthesis of $\left[\mathbf{M n B r}(\mathbf{C O})_{\mathbf{2}} \mathbf{(2 b)}\right] \mathbf{(3 b) : ~ A ~ s u s p e n s i o n ~ o f ~}\left[\mathrm{MnBr}(\mathrm{CO})_{5}\right]$ ($0.43 \mathrm{~g}, 1.58 \mathrm{mmol}, 1.0$ equiv) and $\mathbf{2 b}$ ($1.05 \mathrm{~g}, 1.66 \mathrm{mmol}, 1.05$ equiv) in anhydrous toluene was stirred at $80^{\circ} \mathrm{C}$ for 3 h . Then the amount of solvent was reduced in vacuo to $\sim 2 \mathrm{~mL}$ and was precipitated with anhydrous hexane. The solids were then filtered with a cannula. The process of precipitation and filtration was carried out several times and then the solid was dried under high vacuo ($10^{-3} \mathrm{mbar}$) to give the desired bis(carbonyl) $\mathrm{Mn}(\mathrm{I})$ complex $\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathbf{2 b})\right] \mathrm{Br}(\mathbf{3 b})$ as a yellow powder (1.04 g , Yield: $\left.80 \%\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$反 7.96-7.93 (m, 2H, OPAr- H), 7.74-7.73 (m, 1H, PAr- H), 7.69-7.65 (m, 2H, OPAr-H), 7.517.28 (m, 10H, OPAr-H, PAr-H), 7.16 (s, 1H, PAr-H), 7.03-6.97 (m, 2H, PAr-H), 6.73 (d, $J=$ 9.3 Hz, PAr- -1), 4.18-4.12 (m, 2H, BzCHH, OCH), 3.92-3.88 (m, 1H, BzCHH), 2.78-2.71 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{NH}, \mathrm{NCHH}, \mathrm{CyCH}$), $2.34\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{H}\right), 2.30-2.21(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CyCH}), 2.17(\mathrm{~s}, 6 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{H}$), 1.82-1.74 (m, 3H, CyCH), 1.40-1.27 (m, 2H, CyCH), 0.90-0.87 (m, 1H, CyCH).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ APT ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 142.6$ (arom.), 142.1 (arom.), 141.6 (d, $J=16.8 \mathrm{~Hz}$, arom.), 139.4 (d, $J=4.1 \mathrm{~Hz}$, arom.), 139.2 (d, $J=4.1 \mathrm{~Hz}$, arom.), 137.6 (d, $J=9.6 \mathrm{~Hz}$, arom.), 137.3 (d, $J=9.6 \mathrm{~Hz}$, arom.), 135.5 (arom.), 135.1 (arom.), 134.2 (d, $J=9.4 \mathrm{~Hz}$, arom.), 133.7 (d, $J=$ 9.5 Hz , arom.), 133.5 (arom.), 132.1 (d, $J=3.0 \mathrm{~Hz}$, arom.), 131.7 (d, $J=11.6 \mathrm{~Hz}$, arom.), 131.4 (d, $J=11.6 \mathrm{~Hz}$, arom.), 131.0 (arom.), 130.8 (arom.), 130.0 (d, $J=9.8 \mathrm{~Hz}$, arom.), 129.9 (d, $J=3.0 \mathrm{~Hz}$, arom.), 129.7 (d, $J=4.7 \mathrm{~Hz}$, arom.), 129.3 (d, $J=9.7 \mathrm{~Hz}$, arom.), $129.0,128.9$ (d, $J=10.3 \mathrm{~Hz}$, arom.), 127.9 , (d, $J=9.4 \mathrm{~Hz}$, arom.), 127.7 (d, $J=9.5 \mathrm{~Hz}$, arom.), 75.6 (OCH), $66.3(\mathrm{NCH}), 55.8(\mathrm{~d}, J=13.6 \mathrm{~Hz}, \mathrm{BzCH}), 34.8(\mathrm{~d}, J=6.2 \mathrm{~Hz}, \mathrm{CyCH}), 32.9(\mathrm{CyCH}), 25.5$ $(\mathrm{CyCH}), 24.4(\mathrm{CyCH}), 21.3\left(\mathrm{CH}_{3}\right), 21.2\left(\mathrm{CH}_{3}\right) .{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(203 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 160.9(\mathrm{~d}$, $J=116.0 \mathrm{~Hz}$), $36.6(\mathrm{~d}, J=116.0 \mathrm{~Hz}$). IR ATR $v: 1931$, 1852. HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{43} \mathrm{H}_{45} \mathrm{MnNO}_{4} \mathrm{P}_{2}\right]^{+}: 740.225[\mathrm{M}]+$; found: 740.2246. EA Calcd. for $\mathrm{C}_{43} \mathrm{H}_{45} \mathrm{BrMnNO}_{3} \mathrm{P}_{2}$: C, 62.94; H, 5.53; N, 1.71; Found: C, 63.07; H, 5.62; N, 1.56.

Figure S26. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 b}\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

Figure S27. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT NMR spectrum of $\mathbf{3 b}\left(126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

Figure S28. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3 b}\left(203 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

Figure S29. ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{HHSQC}$ (red) and ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ HMBC (green) of 3b superimposed.

Figure S30. ${ }^{31} \mathrm{P}-{ }^{1} \mathrm{H} \operatorname{HSQC}$ of $\left[\operatorname{MnBr}(\mathrm{CO})_{2}(\mathbf{2 b})\right]$ (3b).

Figure S31. ${ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}$ HSQC of $\left[\operatorname{MnBr}(\mathrm{CO})_{2}(\mathbf{2 b})\right](\mathbf{3 b})$.

Figure S32. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} \operatorname{COSY}$ of $\left[\mathrm{MnBr}(\mathrm{CO})_{2}(\mathbf{2 b})\right](\mathbf{3 b})$.

5. Synthesis and characterization of Ligand (10)

Synthesis of 2-(diphenylphosphaneyl)-N-(2-(diphenylphosphaneyl)benzyl) cyclohexan-1-amine (10): To a 0.02 M solution of 2-(diphenylphosphaneyl)benzaldehyde (0.74 g , $2.56 \mathrm{mmol}, 1.0$ equiv) and 2-(diphenylphosphino)cyclohexylamine ($0.73 \mathrm{~g}, 2.56 \mathrm{mmol}, 1.0$ equiv) in anhydrous MeOH was stirred at room temperature for 18 h . After full conversion, $\mathrm{NaBH}_{4}(2.4 \mathrm{~g}, 12.8$ mmol, 5.0 equiv) was added, and the solution was stirred further for 18 h . The reaction was quenched with degassed water, and the volatiles were removed by rotary evaporation under inert atmosphere. After addition of degassed water and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to the residue, the layers were separated, and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$. The combined organic layers were washed with degassed $\mathrm{H}_{2} \mathrm{O}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}$, filtered, and concentrated in vacuo. The crude product was then passed through a short pad of silica and washed with 50:50 mixture of ethyl acetate: hexane. The solution was then concentrated and dried to obtain the product as a white solid with a purity of 92% (by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR) which was directly used for complexation without any further purification ($1.29 \mathrm{~g}, 90 \%$ yield). ${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.51-7.46(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-H), 7.39-7.33(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-H)$, 7.30-7.24 (m, 10H, Ar-H), 7.18-7.13 (m, 1H, Ar-H), 6.88-6.85 (m, 1H, Ar-H), 4.03-3.99 (m, $1 \mathrm{H}, \mathrm{BzCHH}), 3.90-3.87$ (m, 1H, BzCHH), 2.49-2.41 (m, 1H, NCH), 2.33-2.28 (m, 1H, NPH), 2.16-2.10 (m, 1H, NH), 1.71-1.59 (m, 3H, CyCH), 1.29-1.26 (m, 3H, CyCH), 0.99-0.84 (m, $2 \mathrm{H}, \mathrm{CyCH}) .{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ APT ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 137.1,135.5$ (d, $J=13.6 \mathrm{~Hz}$, arom.), 134.7, $134.5,134.0$ (d, $J=4.6 \mathrm{~Hz}$, arom.), 133.7 (d, $J=4.6 \mathrm{~Hz}$, arom.), 133.4, 132.7, 132.6, 128.9, 128.7, 128.7, 128.6 (d, $J=1.1 \mathrm{~Hz}$, arom.), 128.5 (d, $J=1.1 \mathrm{~Hz}$, arom.), 128.4 (d, $J=7.1 \mathrm{~Hz}$, arom.), 128.1 (d, $J=6.9 \mathrm{~Hz}$, arom.), $127.9,126.9,57.4$ (d, $J=14.4 \mathrm{~Hz}, \mathrm{NCH}), 49.2(\mathrm{~d}, J=$ $23.4 \mathrm{~Hz}, \mathrm{BzCH}), 40.1$ (d, $J=13.5 \mathrm{~Hz}, \mathrm{PCyCH}), 31.9$ (d, $J=4.5 \mathrm{~Hz}, \mathrm{CyCH}), 26.6$ (d, $J=4.6$ $\mathrm{Hz}, \mathrm{CyCH}), 25.5(\mathrm{~d}, J=4.6 \mathrm{~Hz}, \mathrm{CyCH}), 23.9(\mathrm{CyCH}) .{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(203 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta-$ 9.8, -16.1. HRMS (ESI) m/z calcd for $\left[\mathrm{C}_{37} \mathrm{H}_{38} \mathrm{NP}_{2}\right]^{+}: 558.2474$ [M]+; found:558.2471.

NH 10

Figure S33．${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 0}\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ ．

Figure S34．${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT NMR spectrum of $\mathbf{1 0}\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ ．

Figure S35. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 0}\left(203 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

Figure S36. ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{HHSQC}$ (red) and ${ }^{13} \mathrm{C}^{-1} \mathrm{H}$ HMBC (green) of $\mathbf{1 0}$ superimposed.

Figure S37. ${ }^{31} \mathrm{P}-{ }^{1} \mathrm{H}$ HSQC of ligand 10.

Figure S38. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY of ligand $\mathbf{1 0}$.

6. Synthesis and characterization of complexes (11)

Synthesis of $\left[\mathbf{M n B r}(\mathbf{C O})_{\mathbf{2}} \mathbf{(1 0)}\right]\left(\mathbf{1 1) :}\right.$ A suspension of $\left[\mathrm{MnBr}(\mathrm{CO})_{5}\right](0.434 \mathrm{~g}$, $1.58 \mathrm{mmol}, 1.0$ equiv) and $\mathbf{1 1}(0.926 \mathrm{~g}, 1.66 \mathrm{mmol}, 1.05$ equiv) in anhydrous toluene was stirred at $80^{\circ} \mathrm{C}$ for 3 h . Then the amount of solvent was reduced in vacuo to $\sim 2 \mathrm{~mL}$ and was precipitated with anhydrous hexane. The solids were then filtered with a cannula. The process of precipitation and filtration was carried out several times and then the solid was dried under high vacuo (10^{-3} mbar) to give the desired bis(carbonyl) $\mathrm{Mn}(\mathrm{I})$ complex $\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathbf{8})\right] \mathrm{Br}(\mathbf{9})$ as a yellow powder (Yield: $0.898 \mathrm{~g}, 76 \%) .{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 8.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{Ar}-$ H), 7.93-7.90 (m, 2H, Ar-H), 7.52-7.27 (m, 17H, Ar-H), 7.15-7.12 (m, 2H, Ar-H), 6.99-6.95 (m, 1H, Ar-H), 4.48-4.44 (m, 1H, BzCHH), 4.16-4.10 (m, 1H, BzCHH), 3.11-3.08 (m, 1H, $\mathrm{NCyCHH}), 2.98-2.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PCyCHH}), 2.73-2.61(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CyCH}), 2.49-2.40(\mathrm{~m}, 1 \mathrm{H}$, CyCH), 2.10-2.07 (m, 1H, CyCH), 1.92-1.90 (m, 1H, CyCH), 1.38-1.07 (m, 4H, CyCH). ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ APT $\left(126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 141.9(\mathrm{~d}, J=17.6 \mathrm{~Hz}$, arom.) , $138.8,138.6(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, arom.), 138.4, 136.9, 136.5, 135.4, (d, $J=9.2 \mathrm{~Hz}$, arom.), 134.2 (d, $J=9.1 \mathrm{~Hz}$, arom.), 133.9, $133.6,133.4,133.1$ (d, $J=9.1 \mathrm{~Hz}$, arom.), 132.2 (d, $J=8.5 \mathrm{~Hz}$, arom.), 131.4, 131.1 (d, $J=$ 7.7 Hz , arom.), $130.9,130.2,130.0,129.7,128.9$ (d, $J=8.6 \mathrm{~Hz}$, arom.), 128.7, 128.5 (d, $J=$ 2.5 Hz, arom.), 128.5, 66.5 (d, $J=10.5 \mathrm{~Hz}, \mathrm{NCH}$), 55.8 (d, $J=8.4 \mathrm{~Hz}, \mathrm{BzCH}), 44.4$ (d, $J=$ $15.4 \mathrm{~Hz}, \mathrm{PCH}$), 35.3 (d, $J=12.3 \mathrm{~Hz}, \mathrm{CyCH}), 29.7$ (d, $J=6.6 \mathrm{~Hz}, \mathrm{CyCH}), 27.1(\mathrm{~d}, J=2.2 \mathrm{~Hz}$, $\mathrm{CyCH}), 26.2(\mathrm{CyCH}) .{ }^{31} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(203 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 77.3(\mathrm{~d}, J=117.9 \mathrm{~Hz}), 51.0(\mathrm{~d}, J$ $=117.9 \mathrm{~Hz}$). IR ATR v: 1921, 1842. HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{39} \mathrm{H}_{37} \mathrm{MnNO}_{2} \mathrm{P}_{2}\right]^{+}$: 668.1674 [M]+; found: 668.1672. EA Calcd. for $\mathrm{C}_{43} \mathrm{H}_{45} \mathrm{BrMnNO}_{3} \mathrm{P}_{2}$: C, 62.58; H, 4.98; N, 1.87; Found: C, 63.01; H, 5.10; N, 2.21.

Figure S39. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 1}\left(500 \mathrm{MHz}, d_{8}\right.$-THF).

Figure S40. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT NMR spectrum of $\mathbf{1 1}\left(126 \mathrm{MHz}, d_{8}\right.$-THF).

Figure S41. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 1}\left(203 \mathrm{MHz}, d_{8}-\mathrm{THF}\right)$.

Figure S42. ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{HHSQC}$ (red) and ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ HMBC (green) of $\mathbf{9}$ superimposed.

Figure S43. ${ }^{31} \mathrm{P}-{ }^{1} \mathrm{H} \operatorname{HSQC}$ of $\left[\mathrm{MnBr}(\mathrm{CO})_{2}(\mathbf{1 0})\right]$ (11).

Figure S44. ${ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}$ HSQC of $\left[\operatorname{MnBr}(\mathrm{CO})_{2}(\mathbf{1 0})\right](11)$.

Figure S45. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY of $\left[\operatorname{MnBr}(\mathrm{CO})_{2}(\mathbf{1 0})\right](\mathbf{1 1})$.

7. Comparison of IR between $\mathbf{M n}(\mathrm{I})$ phosphenes and phosphinite pincer complexes

The bond length of $\mathbf{M n 1}$ with the phosphorous atom $\mathbf{P 2}\left(2.237 \mathrm{~A}^{\circ}\right)$ is shorter in comparison with P1 (2.324 A°) which indicates that phosphinite ($\mathbf{P 2}$) is a weaker electron donor and possess better $\mathrm{d} \pi$ - $\mathrm{p} \pi$ back bonding compared to the phosphene ($\mathbf{(P 1) . ~ M o r e o v e r , ~ a ~ c o m p a r i s o n ~}$ was drawn between the bis-phosphene (11) and phosphene-phosphinite (3a) pincer $\operatorname{Mn}(\mathrm{I})$ complex using IR spectroscopy which also revealed the similar observation since complex 3a (1931 cm $\left.{ }^{-1}, 1851 \mathrm{~cm}^{-1}\right)$ possess higher CO stretching frequency than that $11\left(1921 \mathrm{~cm}^{-1}, 1842\right.$ cm^{-1}). An analogous trend could also be observed in previously reported bis-phophine and bisphosphinite $\mathrm{Mn}(\mathrm{I})$ complex, were $13\left(1921 \mathrm{~cm}^{-1}, 1842 \mathrm{~cm}^{-1}\right)^{\mathrm{S} 12}$ is possessing lower CO stretching frequency than $\mathbf{1 2}\left(1921 \mathrm{~cm}^{-1}, 1842 \mathrm{~cm}^{-1}\right)$. ${ }^{\text {S } 12}$ Hence it is certain that the phosphinite ligands are the better/stronger π-accepting, than their corresponding phosphine ligands.

Figure 46. Comparison of IR values between bis-phophene (11, 13) and mono/bis-phosphinite (3a, 12).

8. Asymmetric Transfer Hydrogenation

Optimization of the transfer hydrogenations with complex 3 and 2-acetonaphthone as benchmark substrate were performed for observing the effect of various parameters on the catalytic system as shown in table 1(The 2-acetonapthone was chosen as the prototypical substrate over acetophenone since the preliminary DFT studies, the $\pi-\pi$ interaction between the aryl rings on the ligands phosphene atom and the incoming ketones plays the key role in the enantioselectivity of our reaction). The catalysis was done under inert conditions. In a glove box, a 5 mL micro-vial with a magnetic stirrer was charged with catalyst 3 and 2acetonaphthone and was sealed with a steel cap (with rubber septum) by a crimper. Freshly

Figure S47. Metallic heating plates with 5 mL micro-vial according to the general procedure. distilled 2-propanol and suitable base were added consecutively, and the vials was immersed in metallic heating plate after sealing it with teflon as shown in the figure S18 and let it to stir (4000 RPM) for the desired temperature and time.

From the optimized parameters, the base and the temperature had the largest effect on the catalytic system. The catalyst requires a strong base in order to abstract the proton due to the higher basicity of the nitrogen atom attached to the manganese. Though KH was marginally

S.No	Concentration (M)	Base	Temp $\left({ }^{\circ} \mathrm{C}\right)$	catalyst	Catalytic loading (mol\%)	$\begin{gathered} \hline \text { ee } \\ \text { (\%) } \end{gathered}$	Conv (\%)
1	0.1	$\mathrm{Na}^{\text {t }}$ OPent	40	3a	$2 \mathrm{~mol} \%$	74	70
2	0.2	$\mathrm{Na}^{\text {t OPent }}$	40	3a	$2 \mathrm{~mol} \%$	74	70
3	0.4	NatOPent	40	3a	$2 \mathrm{~mol} \%$	74	56
4	0.2	$\mathrm{NaO}^{\prime} \mathrm{Bu}$	40	3a	$2 \mathrm{~mol} \%$	77	25
5	0.2	$\mathrm{LiO}^{\prime} \mathrm{Bu}$	40	3a	$2 \mathrm{~mol} \%$	70	05
6	0.2	KH	40	3a	$2 \mathrm{~mol} \%$	78	91
7	0.2	$\mathrm{KO}^{t} \mathrm{Bu}$	40	3a	$2 \mathrm{~mol} \%$	79	88
8	0.2	NaOEt	40	3a	$2 \mathrm{~mol} \%$	76	15
9	0.2	$\mathrm{KO}^{\prime} \mathrm{Bu}$	60	3a	$2 \mathrm{~mol} \%$	74	56
10	0.2	$\mathrm{KO}^{t} \mathrm{Bu}$	80	3a	$2 \mathrm{~mol} \%$	62	23
11	0.2	$\mathrm{KO}^{\prime} \mathrm{Bu}$	RT	3a	$2 \mathrm{~mol} \%$	82	61
12	0.2	$\mathrm{KO}^{\prime} \mathrm{Bu}$	40	3b	$2 \mathrm{~mol} \%$	82	91
$13{ }^{[b]}$	0.2	$\mathrm{KO}^{\prime} \mathrm{Bu}$	40	3b	$2 \mathrm{~mol} \%$	82	91
14	0.2	$\mathrm{KO}^{\prime} \mathrm{Bu}$	40	3b	$4 \mathrm{~mol} \%$	82	92
15	0.2	$\mathrm{KO}^{t} \mathrm{Bu}$	40	3b	$1 \mathrm{~mol} \%$	82	69

[a] Yields and enantiomeric excess were determined by GC. [b] $\mathrm{PMe}_{3}(30 \mathrm{~mol} \%$ vs catalyst).
Table T2: optimization of Transfer hydrogenation with catalyst 3.
the better base for the conversion with one of the best enantioselectivity, ${ }^{\text {t }} \mathrm{BuOK}$ was chosen over KH due to the practical convenience. The reactivity of $\mathbf{3 a}$ surprisingly decreased with both decreasing and increasing the temperature from $40^{\circ} \mathrm{C}$. The tendency of $\mathrm{Mn}(\mathrm{I})$ complexes to form metal-aziridine intermediate at high temperature and amido species at lower temperature has been previously reported. ${ }^{1}$ the combined effect of the higher acidity of the benzylic proton and greater Therefore metal-aziridine intermediate (does not leads to the formation of 5a) formed at the higher temperature should be the possible reason for the decreased reactivity of 3a at $80^{\circ} \mathrm{C}$. Therefore, this is a potential reason for the better activity of $\mathbf{3 a}$ at $40^{\circ} \mathrm{C}$ over 80 ${ }^{\circ} \mathrm{C}$. (Scheme 2). However, the activity becomes lower at RT and hence $40^{\circ} \mathrm{C}$ has been chosen as the optimum temperature. Addition of $\mathrm{PMe}_{3}(30 \mathrm{~mol} \% \text { vs catalyst })^{513}$ as poisoning agent for $\mathrm{Mn}(0)$ nanoparticles did not affect either the activity or enantioselectivity of the reaction (Table T2, entry 13), which is a proof of a homogeneous mechanism.

Scheme 2. Plausible mechanism of formation of manganese hydride 5a from 3a.

9. General procedures for catalysis (C1 and C2) and racemic alcohols (C3)

9.1 General ATH Procedure (C1) with $\left[\operatorname{MnBr}(\mathbf{C O})_{\mathbf{2}}(\mathbf{2 a})\right]$ (3a)

In a glove box, a 5 mL micro-vial with a magnetic stirrer was charged with catalyst $\mathbf{3 b}$ (9.85 $\mathrm{mg}, 12.0 \mathrm{mmol}, 2 \mathrm{~mol} \%)$ and the ketone $6(0.6 \mathrm{~mol})$. Then the micro-vial was sealed with a steel cap (with rubber septum) by a crimper. Freshly distilled 2-propanol (3 mL) and ${ }^{\mathrm{t}} \mathrm{BuOK}$ ($24 \mu \mathrm{~L}, 24.0 \mathrm{mmol}, 4 \mathrm{~mol} \%$) were added respectively and was sealed with Teflon. Then the reaction vial was immersed in a preheated metallic heating plate and stirred at 1400 RPM. After 18 h the solvent was removed and purified with column chromatography to obtain the isolated yield and enantioselectivities by chiral GC and HPLC.

9.2 General ATH Procedure (C2) with $\left[\operatorname{MnBr}(\mathrm{CO})_{2}(2 a)\right]$ (3a)

Reason for the second condition (C2): In contrary to the other acetophenones, the para substituted acetophenones ($\mathbf{6 n} \mathbf{- 6 r}$) were reduced by 3b with quantitative yield, albeit with significantly lower enantioselectivities ($78-82 \%$). Thus, an attempt was made by lower temperature to see if this could lead to a substantial increase in the enantioselectivities of the para substituted acetophenones ($\mathbf{6 n - 6 r}$) as mentioned in the procedure ($\mathbf{C} \mathbf{2}$) given below. The same condition was extended as well to the electron deficient meta substituted acetophenones as they also had displayed quantitative conversion under $\mathbf{C} 1$ condition.

C2: In a glove box, a 5 mL micro-vial with a magnetic stirrer was charged with catalyst 3b ($4.95 \mathrm{mg}, 6.0 \mathrm{mmol}, 1 \mathrm{~mol} \%$) and the ketone $6(0.6 \mathrm{~mol})$. Then the micro-vial was sealed with
a steel cap (with rubber septum) by a crimper. Freshly distilled 2-propanol (3 mL) and ${ }^{t} \mathrm{BuOK}$ ($12 \mu \mathrm{~L}, 12.0 \mathrm{mmol}, 2 \mathrm{~mol} \%$) were added respectively and was sealed with Teflon. Then the reaction vial was immersed in a preheated metallic heating plate and stirred at 1400 RPM. After 24 h the solvent was removed and purified with column chromatography to obtain the isolated yield and enantioselectivities by chiral GC and HPLC.

9.3 General Procedure (C3) for the Reduction of Ketones 6 to Racemic Alcohols 7.

All the racemic alcohols of their corresponding ketones (6/8) were prepared by via C3 in order to compare them with the enantiopure alcohols (7) to determine the enantiomeric excess.

C3: Ketone $\mathbf{6 / 8}(10 \mathrm{mmol})$ was added to sodium borohydride ($493 \mathrm{mg}, 12.5 \mathrm{mmol}, 1.25$ equiv) in EtOH $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the solution was warmed to room temperature overnight. Aqueous 1 M HCl solution $(50 \mathrm{~mL})$ was added and the aqueous phase was extracted three times with Et2O $(3 \times 50 \mathrm{~mL})$. The combined organic phases were washed with saturated aqueous NaCl solution (75 mL), dried over MgSO , and the solvent was removed under reduced pressure. If required, product 7 was purified by flash column chromatography on silica gel.

Chart 1: Substrate Scope for the Asymmetric Transfer Hydrogenation of 6 with 3b.

Reactions were performed with 0.6 mol of the substrate in 2 -propanol (0.2 M). All the melecules are reported with the isolated yields and the ee values were determined by GC (β DEX).(a) Optimized condition C1 (catalytic loading $2 \mathrm{~mol} \%, 4 \mathrm{~mol} \% \mathrm{tBuOK}, 40^{\circ} \mathrm{C}, 18 \mathrm{~h}$, 0.2 M). (b) Re-optimized condition C2 (catalytic loading $1 \mathrm{~mol} \%, 2 \mathrm{~mol} \% \mathrm{tBuOK}, \mathrm{RT}, 24 \mathrm{~h}$). (c) The ee values were determined by HPLC (Chiralpak IB-3).

10. Characterization of Catalysis Products

10.1. GC and HPLC trace:

${ }^{7 a}$ Synthesis of (R)-1-Phenylethan-1-ol, (R)-7a. The synthesis of racemic 7a and its spectroscopic data has previously been reported. ${ }^{22,3}$ This compound was obtained in 84% isolated yield (61.5 mg , colorless oil) and with 87.1% ee following general procedure $\mathbf{C 1}$ using catalyst 3b (reaction time: 18 h). ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) $\delta 7.45-7.34$ (m, 5H), $4.91(\mathrm{q}, J=6.5,1 \mathrm{H}), 2.99(\mathrm{~s}, 1 \mathrm{H}), 1.55(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroform- d) 145.97, 128.5, 127.5, 125.5, 70.4, 25.2. GC: β-DEX column, $110^{\circ} \mathrm{C}$ isotherm, retention times $\mathrm{t}_{\mathrm{R}}(\mathrm{SM})=4.57 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=9.95 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=11.56 \mathrm{~min}$. Analytical data are in agreement with literature data. ${ }^{\mathrm{S} 1,2,3}$

Figure S48: GC trace of 6a and racemic 7a (obtained by general procedure C3).

Figure S49: GC trace of enantioenriched 7a (obtained by general procedure C1).

Synthesis of (R)-1-phenylpropan-1-ol, (R)-7b. The synthesis of racemic 7b and its spectroscopic data has previously been reported. ${ }^{\mathrm{S} 2,3}$ This compound was obtained in 49% isolated yield (40.0 mg , colorless oil) and with 90.2% ee following general procedure C1 using catalyst 3b (reaction time: 18 h). ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) $\delta 7.34-7.05$ (m, $5 \mathrm{H}), 4.43(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 1 \mathrm{H}), 1.83-1.49(\mathrm{~m}, 2 \mathrm{H}), 0.77(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, Chloroform- d) 144.6, 128.4, 127.4, 126.1, 75.9, 31.8, 10.2. GC: β-DEX column, $110^{\circ} \mathrm{C}$ isotherm, retention times $\mathrm{t}_{\mathrm{R}}(\mathrm{SM})=6.97 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=17.46 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)$ $=19.60 \mathrm{~min}$. Analytical data are in agreement with literature data. ${ }^{\text {S1,2,3 }}$ The absolute configuration was determined to be (R) by comparison with (R)-7a.

Figure S50: GC trace of 6 b and racemic 7b (obtained by general procedure C3).

Figure S51: HPLC trace of enantioenriched 7b (obtained by general procedure C1).

Synthesis of (R)-1-phenyldodecan-1-ol, (R)-7c. The synthesis of racemic 7c and its spectroscopic data has previously been reported. ${ }^{54}$ This compound was obtained in 73% isolated yield (114.9 mg , white solid) and with 96.8% ee following general procedure $\mathbf{C 1}$ using catalyst 3b (reaction time: 18 h). ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) $\delta 7.28-7.17$ (m, 5H), $4.66-4.49(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.56(\mathrm{~m}, 4 \mathrm{H}), 1.30-1.10(\mathrm{~m}, 19 \mathrm{H}), 0.85-0.77(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, Chloroform-d) 144.9, 128.4, 127.5, 125.9, 74.7, 39.1, 31.9, 29.6, 29.3, 25.8, 22.7, 14.1. GC: β-DEX column, $180^{\circ} \mathrm{C}$ isotherm, retention times $\mathrm{t}_{\mathrm{R}}(\mathrm{SM})=15.5 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=$ $20.7 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=21.1 \mathrm{~min}$. Analytical data are in agreement with literature data. ${ }^{\mathrm{S} 4} \mathrm{The}$ absolute configuration was determined to be (R) by comparison with literature data. ${ }^{S 4}$

Figure S52: GC trace of 6 c and racemic 7 c (obtained by general procedure C3).

Figure S53: GC trace of enantioenriched 7c (obtained by general procedure C1).

Synthesis of (R)-cyclopropyl(phenyl)methanol, (R)-7d. The synthesis of racemic 7d and its spectroscopic data has previously been reported. ${ }^{S 4}$ This compound was obtained in 10% isolated yield (8.9 mg , yellowish oil) and with 91% ee following general procedure $\mathbf{C 1}$ using catalyst 3b (reaction time: 18 h). ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) δ $7.46-7.09(\mathrm{~m}, 5 \mathrm{H}), 3.87(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 1 \mathrm{H}), 1.27-0.93(\mathrm{~m}, 1 \mathrm{H}), 0.67-0.06$ (m, 4H). ${ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroform- d) 143.9, 128.3, 127.5, 126.1, 78.5, 19.2, 3.6, 2.8. GC: β-DEX column, $120^{\circ} \mathrm{C}$ isotherm, retention times $\mathrm{t}_{\mathrm{R}}(\mathrm{SM})=9.0 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=21.9 \mathrm{~min}$, $\mathrm{t}_{\mathrm{R}}($ minor $)=23.5 \mathrm{~min}$. Analytical data are in agreement with literature data. ${ }^{54}$ The absolute configuration was determined to be (R) by comparison with $(R)-7 \mathbf{a}$.

Figure S54: GC trace of 6d and racemic 7d (obtained by general procedure C3).

Figure S55: GC trace of enantioenriched 7d (obtained by general procedure C1).

Synthesis of (R)-1-(3-chlorophenyl)ethan-1-ol, (R)-7e. The synthesis of racemic 7 e and its spectroscopic data has previously been reported. ${ }^{\mathrm{S} 2,3}$ This compound was obtained in 98% isolated yield (92.1 mg , yellowish oil) and with 87.2% ee following general procedure C1 using catalyst 3b (reaction time: 18 h). ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) δ $7.47-7.21(\mathrm{~m}, 4 \mathrm{H}), 4.91(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{~s}, 1 \mathrm{H}), 1.51(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroform- d) $\delta 147.8,134.3,129.7,127.5,125.6,123.5,69.8,25.26$ GC: β-DEX
column, $130{ }^{\circ} \mathrm{C}$ isotherm, retention times $\mathrm{t}_{\mathrm{R}}(\mathrm{SM})=4.5 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=11.5 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=$ 13.5 min . Analytical data are in agreement with literature data. ${ }^{\mathrm{S} 1,2,3}$ The absolute configuration was determined to be (R) by comparison $(R)-7$ a. This compound was obtained in 92% isolated yield (86.4 mg) and with 90.1% ee following general procedure $\mathbf{C} 2$ using catalyst $\mathbf{3 b}$ (reaction time: 18 h). GC: β-DEX column, $130^{\circ} \mathrm{C}$ isotherm, retention times $\mathrm{t}_{\mathrm{R}}(\mathrm{SM})=12.0 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)$ $=13.7 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}(\operatorname{minor})=13.7 \mathrm{~min}$. Analytical data are in agreement with literature data. ${ }^{\mathrm{Sl}, 2,3}$ The absolute configuration was determined to be (R) by comparison $(R)-7 \mathbf{a}$

Figure S56: GC trace of 6e and racemic 7e (obtained by general procedure C3).

Figure S57: GC trace of enantioenriched 7e (obtained by general procedure C1).

Figure S58: GC trace of enantioenriched 7e (obtained by general procedure C2).

Synthesis of (\boldsymbol{R})-1-(\boldsymbol{m}-tolyl)ethan-1-ol, (R)-7f. The synthesis of racemic $\mathbf{7 f}$ and its spectroscopic data has previously been reported. ${ }^{\text {S2,3 }}$ This compound was obtained in 80% isolated yield (65.4 mg , colorless oil) and with 92.0% ee following general procedure C1 using catalyst 3b (reaction time: 18 h). ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) $\delta 7.40-7.12$ (m, $4 \mathrm{H}), 4.91(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.2 .29(\mathrm{~s}, 1 \mathrm{H}), 1.56(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroform- d) $\delta 145.9,138.1,128.4,128.2,126.2,122.5,70.4,25.2,21.5 . \mathrm{GC}: ~ \beta-$ DEX column, $110{ }^{\circ} \mathrm{C}$ isotherm, retention times $\mathrm{t}_{\mathrm{R}}(\mathrm{SM})=6.8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=16.0 \mathrm{~min}$, $\mathrm{t}_{\mathrm{R}}($ minor $)=19.0 \mathrm{~min}$. Analytical data are in agreement with literature data. ${ }^{51,2,3}$ The absolute configuration was determined to be (R) by comparison with literature data. ${ }^{\text {S1 }}$

Figure S59: GC trace of $6 f$ and racemic 7 f (obtained by general procedure C3).

Figure S60: GC trace of enantioenriched 7f (obtained by general procedure C1).

Synthesis of (R)-1-(3-methoxyphenyl)ethan-1-ol, (R)-7g. The synthesis of racemic $7 \mathbf{g}$ and its spectroscopic data has previously been reported. ${ }^{\text {S2,3 }}$ This compound was obtained in 84% isolated yield (76.7 mg , yellowish oil) and with 89.4% ee following general procedure $\mathbf{C 1}$ using catalyst 3b (reaction time: 18 h). ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) δ $7.33-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.03-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.84(\mathrm{~m}, 1 \mathrm{H}), 4.87 \mathrm{z}(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.85$ $(\mathrm{s}, 4 \mathrm{H}), 2.73(\mathrm{~s}, 1 \mathrm{H}), 1.52(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroform- d) δ 159.7,

14738, 129.5, 117.80, 112.8, 111.0, 70.2, 55.2, 25.2.GC: β-DEX column, $120^{\circ} \mathrm{C}$ isotherm, retention times $\mathrm{t}_{\mathrm{R}}(\mathrm{SM})=9.1 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=22.0 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=25.7 \mathrm{~min}$. Analytical data are in agreement with literature data. ${ }^{\mathrm{S} 1,2,3}$ The absolute configuration was determined to be (R) (R)-7a.

Figure S61: GC trace of racemic $\mathbf{6 g}$ and 7 g (obtained by general procedure C3).

Figure S62: GC trace of enantioenriched 7 g (obtained by general procedure $\mathbf{C 1}$).

7h Synthesis of (R)-1-(3-(trifluoromethyl)phenyl)ethan-1-ol, (R)-7h. The synthesis of racemic $7 \mathbf{h}$ and its spectroscopic data has previously been reported. ${ }^{52,3}$ This
compound was obtained in 99% isolated yield (113.0 mg , yellowish oil) and with 85.14% ee following general procedure $\mathbf{C} \mathbf{1}$ using catalyst $\mathbf{3 b}$ (reaction time: 18 h). GC: β-DEX column, $110^{\circ} \mathrm{C}$ isotherm, retention times $\mathrm{t}_{\mathrm{R}}(\mathrm{SM})=3.5 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=11.9 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=15.1 \mathrm{~min}$. Analytical data are in agreement with literature data. ${ }^{\mathrm{S} 1,2,3}$ The absolute configuration was determined to be (R) by comparison with $(R)-7$ a. This compound was obtained in 95% isolated yield (108.4 mg , yellowish oil) and with 89.5% ee following general procedure $\mathbf{C 1}$ using catalyst 3b (reaction time: 18 h). GC: β-DEX column, $110^{\circ} \mathrm{C}$ isotherm, retention times $\mathrm{t}_{\mathrm{R}}(\mathrm{SM})$ $=3.5 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=12.6 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=15.3 \mathrm{~min} .{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, Chloroform $-d) \delta$ $7.62-7.11(\mathrm{~m}, 4 \mathrm{H}), 4.79(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroform- d) $\delta 146.7$, $130.8(\mathrm{q}, J=32.1 \mathrm{~Hz}$), $128.9,128.8,124.2$, 122.2, 69.74. Analytical data are in agreement with literature data. ${ }^{51,2,3}$ The absolute configuration was determined to be (R) by comparison with (R)-7a.

Figure S63: GC trace of 6 h and racemic 7 h (obtained by general procedure C3).

Figure S64: GC trace of enantioenriched 7h (obtained by general procedure C1).

Figure S65: GC trace of enantioenriched 7h (obtained by general procedure C2).

7i Synthesis of (R)-1-(2-(trifluoromethyl)phenyl)ethan-1-ol, (R)-7i. The synthesis of racemic $7 \mathbf{i}$ and its spectroscopic data has previously been reported. ${ }^{\text {S4 }}$ This compound was obtained in 21% isolated yield (23.9 mg , colorless oil) and with 97.7% ee following general procedure $\mathbf{C} 1$ using catalyst 3b (reaction time: 18 h). ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) δ $7.96-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.77-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.36(\mathrm{~m}, 1 \mathrm{H}), 5.40(\mathrm{q}, J=6.4,1 \mathrm{H}), 2.20(\mathrm{~s}$, $1 \mathrm{H}), 1.54(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroform- d) 145.11, 132.3, 127.3, 127.1,
$125.3(\mathrm{q}, J=5.9 \mathrm{~Hz}), 122.6,66.7,25.4$. GC: β-DEX column, $110^{\circ} \mathrm{C}$ isotherm, retention times $\mathrm{t}_{\mathrm{R}}(\mathrm{SM})=3.5 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=11.7 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=14.0 \mathrm{~min}$. Analytical data are in agreement with literature data. ${ }^{54}$ The absolute configuration was determined to be (R) by comparison with (R)-7a.

Figure S66: GC trace of 6 i and racemic 7 i (obtained by general procedure C3).

Figure S67: GC trace of enantioenriched 7i (obtained by general procedure C1).
 spectroscopic data has previously been reported. ${ }^{\mathrm{S} 2,3}$ This compound was obtained in 35.0%
isolated yield (28.6 mg , yellowish oil) and with 93.0% ee following general procedure $\mathbf{C 1}$ using catalyst 3b (reaction time: 18 h). ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) $\delta 7.60-7.57(\mathrm{~m}, 1 \mathrm{H})$, $7.33-7.20(\mathrm{~m}, 3 \mathrm{H}), 5.15(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~s}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, 3 H). ${ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroform- d) 144.0, 134.2, 130.4, 127.1, 126.4, 124.6, 66.7, 23.9, 18.9. GC: β-DEX column, $130^{\circ} \mathrm{C}$ isotherm, retention times $\mathrm{t}_{\mathrm{R}}(\mathrm{SM})=2.8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=7.0$ $\mathrm{min}, \mathrm{t}_{\mathrm{R}}($ minor $)=8.8 \mathrm{~min}$. Analytical data are in agreement with literature data. ${ }^{\mathrm{S} 1,2,3}$ The absolute configuration was determined to be (R) by comparison with $(R)-7 \mathbf{a}$.

Figure S68: GC trace of $\mathbf{6 j}$ and racemic $7 \mathbf{j}$ (obtained by general procedure C3).

Figure S69: GC trace of enantioenriched 7j (obtained by general procedure C1).

${ }^{7 k}$ Synthesis of (R)-1-(2-methoxyphenyl)ethan-1-ol, (R)-7k. The synthesis of racemic $7 \mathbf{k}$ and its spectroscopic data has previously been reported. ${ }^{\text {S2,3 }}$ This compound was obtained in 55% isolated yield (50.2 mg , yellowish oil) and with 90.8% ee following general procedure $\mathbf{C 1}$ using catalyst 3b (reaction time: 18 h). ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) δ $7.45-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.07-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.98-6.92(\mathrm{~m}, 1 \mathrm{H}), 5.17(\mathrm{q}, J$ $=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{~s}, 1 \mathrm{H}), 1.57(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroform- d) $\delta 156.5,133.6,128.3,126.1,120.8,110.5,66.4,53.3,23.0$. GC: β-DEX column, $130{ }^{\circ} \mathrm{C}$ isotherm, retention times $\mathrm{t}_{\mathrm{R}}(\mathrm{SM})=5.5 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=10.4 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=$ 10.9 min. Analytical data are in agreement with literature data. ${ }^{51,2,3}$ The absolute configuration was determined to be (R) by comparison with literature data. ${ }^{\mathrm{S} 1}$

Figure S70: GC trace of 6 k and racemic 7 k (obtained by general procedure C3).

Figure S71: GC trace of enantioenriched 7 k (obtained by general procedure C1).

Synthesis of (R)-1-(3,5-bis(trifluoromethyl)phenyl)ethan-1-ol, (R)-71. The synthesis of racemic $\mathbf{7 1}$ and its spectroscopic data has previously been reported. ${ }^{\mathrm{S} 2,3}$ This compound was obtained in 99% isolated yield (153.3 mg , white solid) and with 92.2% ee following general procedure $\mathbf{C} \mathbf{1}$ using catalyst $\mathbf{3 b}$ (reaction time: 18 h). GC: β-DEX column, $100{ }^{\circ} \mathrm{C}$ isotherm, retention times $\mathrm{t}_{\mathrm{R}}(\mathrm{SM})=10.5 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=13.6 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=15.7$ min . Analytical data are in agreement with literature data. ${ }^{51,2,3}$ The absolute configuration was determined to be (R) by comparison with literature data. ${ }^{\text {S1 }}$ This compound was obtained in 99% isolated yield (153.3 mg , white solid) and with 93.9% ee following general procedure $\mathbf{C 2}$ using catalyst 3b (reaction time: 18 h). ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform-d) $\delta 7.99-7.82(\mathrm{~m}, 3 \mathrm{H})$, $5.11(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 1 \mathrm{H}), 1.62(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroformd) $\delta 148.26,131.8(\mathrm{q}, J=32.1 \mathrm{~Hz}), 125.7,121.3,69.3,25.6$. GC: β-DEX column, $100{ }^{\circ} \mathrm{C}$ isotherm, retention times $\mathrm{t}_{\mathrm{R}}(\mathrm{SM})=10.5 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=13.8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=16.4 \mathrm{~min}$. Analytical data are in agreement with literature data. ${ }^{\mathrm{S} 1,2,3}$ The absolute configuration was determined to be (R) by comparison with literature data. ${ }^{\text {S1 }}$

Figure S72: GC trace of 61 and racemic 71 (obtained by general procedure C3).

Figure S73: GC trace of enantioenriched 71 (obtained by general procedure C1).

Figure S74: GC trace of enantioenriched 71 (obtained by general procedure C2).

Synthesis of (R)-1-(3,5-dimethylphenyl)ethan-1-ol, (R)-7m. The synthesis of racemic $\mathbf{7 m}$ and its spectroscopic data has previously been reported. ${ }^{57}$ This compound was obtained in 60% isolated yield (54.1 mg , colorless oil) and with 94.9% ee following general procedure C1 using catalyst 3b (reaction time: 18 h). ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) δ $7.10-6.97(\mathrm{~m}, 3 \mathrm{H}), 4.89(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 6 \mathrm{H}), 2.12(\mathrm{~s}, 1 \mathrm{H}), 1.65-1.56(\mathrm{~d}, J=6.5$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroform- d) 145.9, 138.1, 129.1, 123.2, 70.5, 25.1, 21.4. GC: β-DEX column, $100{ }^{\circ} \mathrm{C}$ isotherm, retention times $\mathrm{t}_{\mathrm{R}}(\mathrm{SM})=17.9 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=54.5 \mathrm{~min}$, $t_{R}($ minor $)=55.4 \mathrm{~min}$. Analytical data are in agreement with literature data. ${ }^{57}$ The absolute configuration was determined to be (R) by comparison with literature data. ${ }^{57}$

Figure S75: GC trace of $\mathbf{6 m}$ and racemic 7 m (obtained by general procedure C3).

Figure S76: GC trace of enantioenriched 7m (obtained by general procedure C1).

Synthesis of (R)-1-(4-chlorophenyl)ethan-1-ol, (R)-7n. The synthesis of racemic $7 \mathbf{n}$ and its spectroscopic data has previously been reported. ${ }^{\text {S2,3 }}$ This compound was obtained in 97% isolated yield (91.1 mg , yellowish oil) and with 78.0% ee following general procedure $\mathbf{C 1}$ using catalyst 3b (reaction time: 18 h). GC: β-DEX column, $130^{\circ} \mathrm{C}$ isotherm, retention times $\mathrm{t}_{\mathrm{R}}(\mathrm{SM})=5.3 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=11.7 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=14.1 \mathrm{~min}$. Analytical data are in agreement with literature data. ${ }^{S 1,2,3}$ The absolute configuration was determined to be (R) by comparison with $(R)-7 \mathbf{a}$. This compound was obtained in 82% isolated yield (77.0 mg ,
yellowish oil) and with 81.2% ee following general procedure $\mathbf{C 2}$ using catalyst 3b (reaction time: 24 h). ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) $\delta 7.50-7.16(\mathrm{~m}, 4 \mathrm{H}), 4.86(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.83(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.47(\mathrm{~d}, J=6.5,1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroform- d) 144.2, 132.9, 128.5, 126.8, 69.6, 25.2. GC: β-DEX column, $130{ }^{\circ} \mathrm{C}$ isotherm, retention times $\mathrm{t}_{\mathrm{R}}(\mathrm{SM})=5.2 \mathrm{~min}$, $\mathrm{t}_{\mathrm{R}}($ major $)=11.8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=14.1 \mathrm{~min}$. Analytical data are in agreement with literature data. ${ }^{11,2,5}$ The absolute configuration was determined to be (R) by comparison with $(R)-7 \mathbf{a}$.

Figure S77: GC trace of $\mathbf{6 n}$ and racemic 7 n (obtained by general procedure $\mathbf{C} 3$).

Figure S78: GC trace of enantioenriched 7n (obtained by general procedure C1).

Figure S79: GC trace of enantioenriched 7n (obtained by general procedure C2).

Synthesis of (R)-1-(4-(trifluoromethyl)phenyl)ethan-1-ol, (R)-7o. The synthesis of racemic 70 and its spectroscopic data has previously been reported. ${ }^{54}$ This compound was obtained in 99% isolated yield (112.8 mg , colorless oil) and with 81.2% ee following general procedure $\mathbf{C} \mathbf{1}$ using catalyst 3b (reaction time: 18 h). GC: β-DEX column, $115^{\circ} \mathrm{C}$ isotherm, retention times $\mathrm{t}_{\mathrm{R}}(\mathrm{SM})=4.0 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=12.0 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=15.4 \mathrm{~min}$. Analytical data are in agreement with literature data. ${ }^{54}$ The absolute configuration was determined to be (R) by comparison $(R)-7$ a. This compound was obtained in 97% isolated yield (110.7 mg , colorless oil) and with 83.0% ee following general procedure $\mathbf{C} 2$ using catalyst 3b (reaction time: 24 h). ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) $\delta 7.65$ (d, $J=8.2 \mathrm{~Hz}$, 2 H), 7.53 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 4.99 (q, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.55(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, 1H). ${ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroform- d) 149.7, 126.0, 125.6, 125.4 (q, $J=3.8 \mathrm{~Hz}$), 122.4, 69.7, 25.3. GC: β-DEX column, $130^{\circ} \mathrm{C}$ isotherm, retention times $\mathrm{t}_{\mathrm{R}}(\mathrm{SM})=4.0 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=12.2$ $\min , \mathrm{t}_{\mathrm{R}}($ minor $)=15.6 \mathrm{~min}$. Analytical data are in agreement with literature data. ${ }^{\mathrm{S} 1,2,5}$ The absolute configuration was determined to be (R) by $(R)-7 \mathbf{7}$.

Figure S80: GC trace of 60 and racemic 70 (obtained by general procedure C3).

Figure S81: GC trace of enantioenriched 70 (obtained by general procedure C1).

Figure S82: GC trace of enantioenriched 70 (obtained by general procedure C2).

Synthesis of (R)-1-(4-(trifluoromethoxy)phenyl)ethan-1-ol, (R)-7p. The synthesis of racemic $\mathbf{7 p}$ and its spectroscopic data has previously been reported. ${ }^{55}$ This compound was obtained in 96% isolated yield (118.7 mg , colorless oil) and with 83.1% ee following general procedure $\mathbf{C} \mathbf{1}$ using catalyst $\mathbf{3 b}$ (reaction time: 18 h). GC: β-DEX column, $110^{\circ} \mathrm{C}$ isotherm, retention times $\mathrm{t}_{\mathrm{R}}(\mathrm{SM})=5.0 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=13.5 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=17.7 \mathrm{~min}$. Analytical data are in agreement with literature data. ${ }^{S 5}$ The absolute configuration was determined to be (R) by comparison $(R)-7$ a. This compound was obtained in 84% isolated yield (103.9 mg , colorless oil) and with 85.1 \% ee following general procedure $\mathbf{C} 2$ using catalyst $\mathbf{3 b}$ (reaction time: 24 h). ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) $\delta 7.52$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.40 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.87(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.42(\mathrm{~d}, J=6.5,1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, Chloroform- d) 149.7, 125.6, 125.5 ($\mathrm{q}, ~ J=3.8 \mathrm{~Hz}$), 122.4, 69.8, 25.4. GC: β-DEX column, $110{ }^{\circ} \mathrm{C}$ isotherm, retention times $\mathrm{t}_{\mathrm{R}}(\mathrm{SM})=4.9 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=13.4 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=$ 17.7 min . Analytical data are in agreement with literature data. ${ }^{51,2,5}$ The absolute configuration was determined to be (R) by comparison $(R)-7 \mathbf{a}$.

Figure S83: GC trace of $6 p$ and racemic $7 p$ (obtained by general procedure C3).

Figure S84: GC trace of enantioenriched 7p (obtained by general procedure C1).

Figure S85: GC trace of enantioenriched 7p (obtained by general procedure C2).

Synthesis of (R)-1-([1,1'-biphenyl]-4-yl)ethan-1-ol (R)-7q. The synthesis of racemic $7 \mathbf{q}$ and its spectroscopic data has previously been reported. ${ }^{S 4}$ This compound was obtained in 86% isolated yield (102.3 mg , white solid) and with 83.6% ee following general procedure $\mathbf{C 1}$ using catalyst 3b (reaction time: 18 h). GC: β-DEX column, $160{ }^{\circ} \mathrm{C}$ isotherm, retention times $\mathrm{t}_{\mathrm{R}}(\mathrm{SM})=20.3 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=28.8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=31.7 \mathrm{~min}$. Analytical data are in agreement with literature data. ${ }^{51,2,5}$ The absolute configuration was determined to be (R) by $(R)-7$ a This compound was obtained in 68% isolated yield $(80.9 \mathrm{mg}$, white solid) and with 87.1% ee following general procedure $\mathbf{C} 2$ using catalyst $\mathbf{3 b}$ (reaction time: 24 h). ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform-d) $\delta 7.63-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.30(\mathrm{~m}, 1 \mathrm{H})$, $4.94(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{~s}, 1 \mathrm{H}), 1.53(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroformd) $144.3,140.87,140.47,128.7,127.2,127.1,125.8,70.2,25.1 . \mathrm{GC}: \beta$-DEX column, $160{ }^{\circ} \mathrm{C}$ isotherm, retention times $t_{R}(S M)=20.1 \mathrm{~min}, t_{R}($ major $)=29.2 \mathrm{~min}, t_{R}($ minor $)=31.9 \mathrm{~min}$. Analytical data are in agreement with literature data. ${ }^{\text {S4 }}$ The absolute configuration was determined to be (R) by comparison with $(R)-7 \mathbf{a}$.

Figure S86: GC trace of $\mathbf{6 q}$ and racemic $7 \mathbf{q}$ (obtained by general procedure C3).

Figure S87: GC trace of enantioenriched 7q (obtained by general procedure C1).

Figure S88: GC trace of enantioenriched $7 q$ (obtained by general procedure C2).

Synthesis of (\boldsymbol{R})-1-(2,5-dimethylthiophen-3-yl)ethan-1-ol (R)-7r. The synthesis of racemic $7 \mathbf{r}$ and its spectroscopic data has previously been reported. ${ }^{\text {S4 }}$ This compound was obtained in 41% isolated yield (38.4 mg , colorless oil) and with 97.2% ee following general procedure $\mathbf{C 1}$ using catalyst 3b (reaction time: 18 h). ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) δ $6.66(\mathrm{~s}, 1 \mathrm{H}), 4.10(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 1 \mathrm{H}), 1.24(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroform-d) 141.2, 136.1, 131.6, 123.4, 64.4, 60.4, 23.8, 21.1. GC: β-DEX column, $115^{\circ} \mathrm{C}$ isotherm, retention times $\mathrm{t}_{\mathrm{R}}(\mathrm{SM})=7.6 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=19.2 \mathrm{~min}$, $t_{R}($ minor $)=24.4 \mathrm{~min}$. Analytical data are in agreement with literature data. ${ }^{S 4}$ The absolute configuration was determined to be (R) by comparison with (R)-7a.

Figure S89: GC trace of $6 \mathbf{r}$ and racemic 7 r (obtained by general procedure $\mathbf{C 3}$).

Figure S90: GC trace of enantioenriched 7r (obtained by general procedure C1).

Synthesis of (R)-1-(naphthalen-2-yl)ethan-1-ol (R)-9a. The synthesis of racemic $\mathbf{9 a}$ and its spectroscopic data has previously been reported. ${ }^{\mathrm{S} 2,3}$ This compound was obtained in 90% isolated yield (93.0 mg , white solid) and with 82.3% ee following general procedure $\mathbf{C 1}$ using catalyst 3b (reaction time: 18 h). ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) δ $7.78-7.71(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.36(\mathrm{~m}, 3 \mathrm{H}), 4.99(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{~s}, 1 \mathrm{H}), 1.51(\mathrm{~d}, J=$
$6.5 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroform- d) 143.2, 133.3, 132.9, 128.3, 127.9, 127.7, 126.2, 125.8, 123.8, 70.6, 25.2. GC: β-DEX column, $160^{\circ} \mathrm{C}$ isotherm, retention times $\mathrm{t}_{\mathrm{R}}(\mathrm{SM})$ $=7.6 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=11.5 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=12.2 \mathrm{~min}$. Analytical data are in agreement with literature data. ${ }^{\mathrm{S} 1,2,3}$ The absolute configuration was determined to be (R) by comparison with (R)-7a.

Figure S91: GC trace of 8a and racemic 9a (obtained by general procedure C3).

Figure S92: GC trace of enantioenriched 9a (obtained by general procedure C3).

Synthesis of (R)-1-(6-methylnaphthalen-2-yl)ethan-1-ol (R)-9b. The synthesis of racemic $\mathbf{9 b}$ and its spectroscopic data has previously been reported. ${ }^{\text {S9 }}$ This compound was obtained in 80% isolated yield (89.4 mg , dirty white solid) and with 81.0% ee following general procedure $\mathbf{C 1}$ using catalyst 3b (reaction time: 18 h). ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform-d) $\delta 7.63-7.19(\mathrm{~m}, 6 \mathrm{H}), 4.93-4.87(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.45(\mathrm{~d}$, $J=6.4 \mathrm{~Hz}, 3 \mathrm{kH}$). ${ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroform- d) 142.2, 135.4, 133.1, 131.5, 128.4, 127.7, 127.6, 126.6, 123.8, 123.6, 70.5, 25.1, 21.7. GC: β-DEX column, $160^{\circ} \mathrm{C}$ isotherm, retention times $\mathrm{t}_{\mathrm{R}}(\mathrm{SM})=11.4 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=16.3 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=17.5 \mathrm{~min}$. Analytical data are in agreement with literature data. ${ }^{\text {S }}$ The absolute configuration was determined to be (R) by comparison with $(R)-7 \mathbf{a}$. HPLC: Chiralpak IB-3 (hexane : 2-propanol $=99: 1$, flow rate 1.0 $\mathrm{mL} / \mathrm{min}, \lambda=210 \mathrm{~nm})$, retention times $\mathrm{t}_{\mathrm{R}}(($ major $)-9 \mathbf{b})=19.9 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}(($ minor $)-9 \mathbf{b})=27.7 \mathrm{~min}$.

Figure S93: GC trace of 8 b and racemic 9 b (obtained by general procedure C3).

Figure S94: GC trace of enantioenriched 9b (obtained by general procedure C1).

Synthesis of (R)-1-(5,6,7,8-tetrahydronaphthalen-2-yl)ethan-1-ol (R)-9c.
The synthesis of racemic 9c and its spectroscopic data has previously been reported. ${ }^{55}$ This compound was obtained in 37% isolated yield (39.1 mg , yellowish oil), following general procedure $\mathbf{C 1}$ using catalyst 3b (reaction time: 18 h). ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) δ $7.24-7.02(\mathrm{~m}, 3 \mathrm{H}), 4.90(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.93-2.78(\mathrm{~m}, 4 \mathrm{H}), 2.13(\mathrm{~s}, 1 \mathrm{H}), 1.96-1.82$ $(\mathrm{m}, 4 \mathrm{H}), 1.57(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroform- d) 143.0, 137.2, 136.4, 129.3, 126.1, 122.6, 70.3, 29.5, 29.2, 25.1, 23.3. GC: β-DEX column, $150{ }^{\circ} \mathrm{C}$ isotherm, retention times $\mathrm{t}_{\mathrm{R}}(\mathrm{SM})=11.6 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=15.2 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=15.6 \mathrm{~min}$. Analytical data are in agreement with literature data. ${ }^{\mathrm{S5}}$ The absolute configuration was determined to be (R) by comparison with (R)-7a. HPLC: Chiralpak IB-3 (hexane : 2-propanol $=99: 1$, flow rate 1.0 $\mathrm{mL} / \mathrm{min}, \lambda=210 \mathrm{~nm})$, retention times $\mathrm{t}_{\mathrm{R}}(($ major $)-9 \mathbf{c})=9.1 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}(($ minor $)-9 \mathbf{c})=9.9 \mathrm{~min}$. (ee: 91.8\%)

Figure S95: GC trace of 8c and racemic 9c (obtained by general procedure C3).

Figure S96: GC trace of enantioenriched 9c (obtained by general procedure C1).

Figure S97: HPLC trace of racemic 9c (obtained by general procedure C3).

Figure S98: HPLC trace of enantioenriched 9c (obtained by general procedure C1).

Synthesis of (R)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)ethan-1-ol (R)9d. The synthesis of racemic $9 \mathbf{d}$ and its spectroscopic data has previously been reported. ${ }^{\text {S4 }}$ This compound was obtained in 61% isolated yield (65.9 mg , colorless oil), following general procedure C1 using catalyst 3b (reaction time: 18 h). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) δ $6.96-6.71(\mathrm{~m}, 3 \mathrm{H}), 4.75(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~s}, 2 \mathrm{H}), 1.90(\mathrm{~s}, 1 \mathrm{H}), 1.42(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroform-d) 143.4, 142.8, 139.3, 118.5, 117.2, 114.4, 69.9, 64.3, 24.9. GC: β-DEX column, $150^{\circ} \mathrm{C}$ isotherm, retention times $\mathrm{t}_{\mathrm{R}}(\mathrm{SM})=15.6 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ product $)=$ 20.1 min , Analytical data are in agreement with literature data. ${ }^{\mathrm{S} 4}$ HPLC: Chiralpak IB-3 (hexane : 2-propanol $=99: 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm})$, retention times $\mathrm{t}_{\mathrm{R}}(($ major $)$ $\mathbf{9 d})=30.3 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}(($ minor $)-9 \mathbf{d})=38.4 \mathrm{~min}$. (ee: $\left.80.2 \%\right)$

Figure S99: GC trace of 8d and 9d.

Figure S100: GC trace of 9d (obtained by general procedure C1).

Figure S101: HPLC trace of racemic 9d (obtained by general procedure C3).

Figure S102: HPLC trace of enantioenriched 9d (obtained by general procedure C1).

Synthesis of (R)-1-(9H-fluoren-2-yl)ethan-1-ol (R)-9e. The synthesis of racemic $\mathbf{9 e}$ and its spectroscopic data has previously been reported. ${ }^{\text {S5 }}$ This compound was obtained in 60% isolated yield (75.7 mg , white solid) following general procedure $\mathbf{C 1}$ using catalyst 3b (reaction time: 18 h). ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform-d) $\delta 7.73-7.63(\mathrm{~m}, 2 \mathrm{H})$, $7.51-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.18(\mathrm{~m}, 3 \mathrm{H}), 4.89(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 1 \mathrm{H}), 1.81(\mathrm{~s}, 1 \mathrm{H})$, $1.47(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroform- d) 144.5, 143.6, 143.3, 141.4, 141.1, 126.7, 125.0, 124.2, 122.1, 119.8, 70.7, 36.9, 25.3. GC: β-DEX column, $180^{\circ} \mathrm{C}$ isotherm, retention times $\mathrm{t}_{\mathrm{R}}(\mathrm{SM})=18.3 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=23.0 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=24.0 \mathrm{~min}$. Analytical data are in agreement with literature data. ${ }^{55}$ The absolute configuration was determined to be (R) by comparison with $(R)-7 \mathbf{a}$. HPLC: Chiralpak IB-3 (hexane : 2-propanol $=99: 1$, flow rate 1.0
$\mathrm{mL} / \mathrm{min}, \lambda=210 \mathrm{~nm})$, retention times $\mathrm{t}_{\mathrm{R}}(($ major $)-\mathbf{9 d})=30.3 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}(($ minor $)-\mathbf{9 d})=38.4 \mathrm{~min}$. (ee: 91.8%)

Figure S103: GC trace of racemic 8e and 9e (obtained by general procedure C3).

Figure S104: GC trace of enantioenriched 9e (obtained by general procedure C1).

Figure S105: HPLC trace of racemic 9e (obtained by general procedure C3).

Figure S106: HPLC trace of enantioenriched 9e (obtained by general procedure C1).

Synthesis of ($\boldsymbol{R}, \boldsymbol{E}$)-4-phenylbut-3-en-2-ol (\mathbf{R})-9f. The synthesis of racemic 9f and its spectroscopic data has previously been reported. ${ }^{\mathrm{S2}}$ This compound was obtained in 97.0% isolated yield (86.2 mg , yellowish oil) following general procedure $\mathbf{C 1}$ using catalyst 3b (reaction time: 18 h). ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) $\delta 7.41$ - $7.00(\mathrm{~m}, 4 \mathrm{zH}$), 6.43 (d, $J=15.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~d}, J=15.9,1 \mathrm{H}), 4.32(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{~s}, 1 \mathrm{H}), 1.24(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroform-d) 143.3, 136.8, 133.6, 129.3, 128.6, 127.6, 126.5, 68.8 , 23.4. GC: β-DEX column, $120^{\circ} \mathrm{C}$ isotherm, retention times $\mathrm{t}_{\mathrm{R}}(\mathrm{SM})=15.2 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=$ $20.3 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=20.7 \mathrm{~min}$. Analytical data are in agreement with literature data. ${ }^{\mathrm{S} 2}$ The absolute configuration was determined to be (R) by comparison with literature data. ${ }^{52}$ HPLC: Chiralpak IB-3 (hexane : 2-propanol $=99$: 1 , flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}$), retention times $\mathrm{t}_{\mathrm{R}}(($ major $)-\mathbf{9 f})=20.3 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}(($ minor $)-\mathbf{9 f})=34.9 \mathrm{~min}$. (ee: 37.6%)

Figure S107: GC trace of 8f and racemic 9f (obtained by general procedure C3).

Figure S108: GC trace of enantioenriched 9 f (obtained by general procedure C1).

Figure S109: HPLC trace of racemic 9f (obtained by general procedure C3).

Figure S110: HPLC trace of enantioenriched 9f (obtained by general procedure C1).
10.2. NMR spectra of the alcohols (7/9):

Figure S111. ${ }^{1} \mathrm{H}$ NMR spectrum of $7 \mathrm{a}(300 \mathrm{MHz}$, Chloroform- d).

Figure S112. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $7 \mathrm{a}(75 \mathrm{MHz}$, Chloroform- d).

Figure S113. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{7 b}(300 \mathrm{MHz}$, Chloroform- d).

Figure S114. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $7 \mathrm{~b}(75 \mathrm{MHz}$, Chloroform- d).

Figure S115. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{7 c}(300 \mathrm{MHz}$, Chloroform- d).

Figure S116. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $7 \mathbf{c}(75 \mathrm{MHz}$, Chloroform- d).

Figure S117. ${ }^{1} \mathrm{H}$ NMR spectrum of $7 \mathbf{d}(300 \mathrm{MHz}$, Chloroform- d).

Figure S118. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $7 \mathbf{d}(75 \mathrm{MHz}$, Chloroform- d).

Figure S119. ${ }^{1} \mathrm{H}$ NMR spectrum of $7 \mathrm{e}(300 \mathrm{MHz}$, Chloroform- d).

$\stackrel{\infty}{\text { Non }}$
-25.47

Figure S120. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $7 \mathrm{e}(75 \mathrm{MHz}$, Chloroform- d).

Figure S121. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{7 f}(300 \mathrm{MHz}$, Chloroform- d).

Figure S122. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{7 f}(75 \mathrm{MHz}$, Chloroform- d).

Figure S123. ${ }^{1} \mathrm{H}$ NMR spectrum of $7 \mathbf{g}(300 \mathrm{MHz}$, Chloroform- d).

Figure S124. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $7 \mathbf{g}(75 \mathrm{MHz}$, Chloroform- d).

Figure S125. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{7 h}(300 \mathrm{MHz}$, Chloroform- d).

Figure S126. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $7 \mathrm{~h}(75 \mathrm{MHz}$, Chloroform- d).

Figure S127. ${ }^{1} \mathrm{H}$ NMR spectrum of $7 \mathbf{7}(300 \mathrm{MHz}$, Chloroform- d).

Figure S128. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{7 i}(75 \mathrm{MHz}$, Chloroform- d).

Figure S129. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{7 j}$ (300 MHz , Chloroform- d).

Figure S130. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{7 j}(75 \mathrm{MHz}$, Chloroform- d).

Figure S131. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{7 k}(300 \mathrm{MHz}$, Chloroform- d).

Figure S132. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $7 \mathbf{k}(75 \mathrm{MHz}$, Chloroform- d).

Figure S133. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{7 1}(300 \mathrm{MHz}$, Chloroform- d).

| 10 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80
 $\mathrm{f} 1(\mathrm{ppm})$ | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

Figure S134. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{7 1}(75 \mathrm{MHz}$, Chloroform- d).

Figure S135. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{7 m}(300 \mathrm{MHz}$, Chloroform- d).

Figure S136. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{7 m}(75 \mathrm{MHz}$, Chloroform- d).

Figure S137. ${ }^{1} \mathrm{H}$ NMR spectrum of $7 \mathrm{n}(300 \mathrm{MHz}$, Chloroform- d).

Figure S138. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $7 \mathbf{n}(75 \mathrm{MHz}$, Chloroform- d).

Figure S139. ${ }^{1} \mathrm{H}$ NMR spectrum of $7 \mathrm{o}(300 \mathrm{MHz}$, Chloroform- d).

Figure S140. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $7 \mathrm{o}(75 \mathrm{MHz}$, Chloroform- d).

Figure S141. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{7 p}(300 \mathrm{MHz}$, Chloroform- d).

Figure S142. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $7 \mathbf{p}(75 \mathrm{MHz}$, Chloroform- d).

Figure S143. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{7 q}(300 \mathrm{MHz}$, Chloroform- d).

Figure S144. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $7 \mathbf{q}(75 \mathrm{MHz}$, Chloroform- d).

Figure S145．${ }^{1} \mathrm{H}$ NMR spectrum of $7 \mathbf{~}(300 \mathrm{MHz}$ ，Chloroform－d ）．

足莒管
$\stackrel{\sim}{\sim}$

Figure S146．${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{7 r}(75 \mathrm{MHz}$ ，Chloroform－d ）．

Figure S147. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{9 a}(300 \mathrm{MHz}$, Chloroform- d).

Figure S148. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $9 \mathrm{a}(75 \mathrm{MHz}$, Chloroform- d).

Figure S149. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{9 b}(300 \mathrm{MHz}$, Chloroform- d).

$\stackrel{\otimes}{\stackrel{\infty}{\sim}} \stackrel{\infty}{\stackrel{\infty}{\sim}}$

Figure S150. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $9 \mathrm{~b}(75 \mathrm{MHz}$, Chloroform- d).

Figure S151. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{9 c}(300 \mathrm{MHz}$, Chloroform- d).
$\stackrel{\sim}{\sim}$

9c

Figure S152. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{9 c}(75 \mathrm{MHz}$, Chloroform- d).

Figure S153. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{9 d}(300 \mathrm{MHz}$, Chloroform- d).

Figure S154. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $9 \mathrm{~d}(75 \mathrm{MHz}$, Chloroform- d).

Figure S155. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{9 e}(300 \mathrm{MHz}$, Chloroform- d).

| 30 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 |
| :--- |
| $\mathrm{f} 1(\mathrm{ppm})$ | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |

Figure S156. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{9 e}(75 \mathrm{MHz}$, Chloroform- d).

Figure S157. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{9 f}(300 \mathrm{MHz}$, Chloroform- d).

Figure S158. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{9 f}(75 \mathrm{MHz}$, Chloroform- d).

11.Reference

1. S. Chakraborty, U. Gellrich, Y. Diskin-Posner, G. Leitus, L. Avram and D. Milstein, Angew. Chem - Int. Ed., 2017, 56, 4229-4233.
2. R. Bigler, A. Mezzetti., Org. Process Res. Dev. 2016, 20, 253-261.
3. R. Bigler, R. Huber, A. Mezzetti., Angew. Chem - Int. Ed.,2015, 54, 5171-5174.
4. R. Bigler, A. Mezzetti., Org. Lett. 2014, 16, 6460-6463.
5. Y. Li, S. Yu, X. Wu, J. Xiao, W. Shen, W.; Dong, Z.; Gao., J. Am. Chem. Soc. 2014, 136, 4031-4039.
6. X. Liu, Q.Wang, C. Han, X. Feng, H. Du., Chinese J. Chem. 2019, 37, 663-666.
7. F. Ling, S. Nian, J. Chen, W. Luo, Z. Wang, Y. Lv, W. Zhong., J. Org. Chem. 2018, 83, 10749-10761.
8. C. Tian, L. Gong, E. Meggers., Chem. Commun. 2016, 52, 4207-4210.
9. B. K. Langlotz, H. Wadepohl, L. H. Gade., Angew. Chem - Int. Ed., 2008, 47, 46704674.
10. A. V. Malkov, A. J. P. Stewart Liddon, P. Ramírez-López, L. Bendová, D. Haigh, P. Kočovský., Angew. Chem - Int. Ed.,2006, 45, 1432-1435.
11. T. Ohkuma, S. Hashiguchi, T. Ikariya., 1995, 11, 2675-2676.
12. (a) S. Fu, Z. Shao, Y. Wang, Q. Liu., J. Am. Chem. Soc. 2017, 34, 11941-11948. (b) H. Li, D. Wei, A. Bruneau-Voisine, M. Ducamp, M. Henrion, T. Roisnel, V. Dorcet, C. Darcel, J. F. Carpentier, J. F. Soulé, J. B. Sortais., Organometallics 2018, 37, 12711279.
13. R. H. Crabtree., Chem. Rev. 2012, 112, 1536-1554.
14. (a) L. J. Farrugia, J. Appl. Crystallogr., 2012, 45, 849-854. (b) G. M. Sheldrick, Acta Crystallogr. Sect. C Struct. Chem., 2015, 71, 3-8. (c) G. M. Sheldrick, Acta Crystallogr. Sect. A Found. Crystallogr., 2008, 64, 112-122. (d) G. M. Sheldrick, Acta Crystallogr. Sect. A Found. Crystallogr., 2015, 71, 3-8. (e) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339-341.
