Figure S1	IR spectra of dicarbonyl ruthenium(II) complexes a) 6, b) 7, c) 8, d) 9, e) 10.	S2
Figure S2	¹ H NMR spectra of dicarbonyl ruthenium(II) complexes a) 6 , b)	S5
	7, c) 8, d) 9, e) 10.	
Figure S3	¹³ C NMR spectra of dicarbonyl ruthenium(II) complexes a) 6 , b)	S8
Figure S4	Hammett plots of the chemical shift of a) NH and b) axial	59
	proton of CH ₂ group as a function of σ and σ^+ , respectively.	
Table S1	Single-crystal X-ray diffraction data and structure refinements	S10
	of compound 7 and 10 .	
Table S2	Selected experimental bond lengths (Å) and angles (°) of 7 and	S11
	10.	
Figure S5	An infinite chain structure of 10 along the axis "c" via	S12
	conventional hydrogen bond interaction.	
Figure S6	Electronic absorption spectra of a) 7 and b) 9 in different	S13
	solvents.	
Figure S7	Local minmum structures of 6–10 obtained at B3LYP/LNAL2DZ	S14
	level of theory.	
Figure S8	TD-DFT calculated spectra of complexes 6–10 in the range of	S15
	265–415 nm.	
Table S3	Computed excitation energies (eV), electronic transition	S16
5: 60	configurations and oscillator strengths (f) of compounds 6–10 .	64.0
Figure 59	Selected FIVIU's orbitals of 6–10 calculated at CAIVI-	518
Figure 610	B3LYP/LANL2D2 level of theory.	C10
Figure 510	Electronic absorption changes upon incubation of complexes $a_1 \in (0.40 \text{ mM})$ $b_1 = (0.86 \text{ mM})$ $c_1 = (0.70 \text{ mM})$ $d_1 = (0.84 \text{ mM})$	213
	a) 6 (0.40 mm), b) 7 (0.80 mm), c) 8 (0.70 mm), d) 9 (0.84 mM) and a) 10 (1.2 mM) in DMSO in the dark for 16 h	
Eiguro S11	$\frac{11}{10}$ (1.2 mW) in DWSO in the dark for 10 m.	\$77
i igure 511	Vsis at 365 nm with increasing illumination time $(0-230 \text{ min})$	522
Figure S12	UV/V is spectral changes of a) 8 (0.70 mM in DMSO) and b) 10	S23
	(1.2 mM in DMSO) upon photolysis at 365 nm with increasing	
	illumination time (0–420 min).	
Figure S13	Time-dependent changes in the FTIR spectra of a) 7, b) 8. and	S24
	d) 10 (8 mM in DMSO) upon exposure to light source at 365	
	nm with increasing illumination time (0–330, 0–355, and 0–	
	355 min, respectively).	
Figure S14	Negative mode ESI MS spectra of a) 7 and b) 10 .	S25

b)

d)

Figure S1 IR spectra of dicarbonyl ruthenium(II) complexes a) 6, b) 7, c) 8, d) 9, e) 10.

Figure S2 ¹H NMR spectra of dicarbonyl ruthenium(II) complexes a) 6, b) 7, c) 8, d) 9, e) 10.

Figure S3 ¹³C NMR spectra of dicarbonyl ruthenium(II) complexes a) 6, b) 7.

Figure S4 Hammett plots of the chemical shift of a) NH and b) axial proton of CH_2 group as a function of σ and σ^+ , respectively.

Data	7	10
CCDC number	2085341	2085344
Empirical formula	$C_{18}H_{15}CI_2N_3O_4Ru$	$C_{17}H_{15}Cl_2N_3O_2Ru$
Formula weight (g·mol ^{−1})	509.30	465.29
Temperature (K)	100.03(17)	100.01(2)
Radiation, λ (Å)	Cu-K _α , 0.0395	Cu-K/ _α 0.71073
Crystal size (mm ³)	$0.04 \times 0.09 \times 0.18$	0.04×0.11×0.29
Crystal color, habit	Orange block	Clear yellow block
Crystal system	Monoclinic	Monoclinic
Space group	P21/n	P21/n
<i>a</i> (Å)	7.86247(9)	13.75386(13)
b (Å)	11.42684(13)	8.76188(7)
<i>c</i> (Å)	21.9614(2)	15.45738(15)
eta (°)	92.922(2)	101.9067
Volume (ų)	1970.52	1822.69
Z	4	4
$ ho_{ m calc}$ (g·cm ⁻³)	1.717	1.696
F(000)	1016	928
hetarange (°)	4.0530 - 77.0920	2.9217 – 77.3646
Reflections collected	16184	3806
Parameters / restraints	254/0	227 / 0
ⁱ GooF on <i>F</i> ²	1.11870	1.07429
^{<i>ii</i>} R ₁ [I>2σ(I)]	0.0269	0.028725
wR² (all data) ⁱⁱⁱ	0.07138	0.082546
Max./min. residual electron density (e·Å ⁻³)	0.448/-0.900	0.470 / -1.099

Table S1 Single-crystal X-ray diffraction data and structure refinements of compound 7 and 10.

ⁱ Least squares goodness_of_fit

ⁱⁱR_factor_gt. (For each reflection class, the residual factor for significantly intense reflections ⁱⁱⁱwR_factor_ref. (For each reflection class, the weighed residual factors for all reflections included in the refinement)

	7	10
Ru–Cl1	2.369(6)	2.403(7)
Ru–Cl2	2.402(6)	2.389(6)
Ru-N4_1	2.102(2)	2.099(2)
Ru-N1_1	2.190(2)	2.192(2)
Ru-C1	1.868(3)	1.891(3)
Ru–C2	1.893(3)	1.872(3)
C1-01	1.131(3)	1.130(3)
C2-02	1.340(4)	1.133(3)
C1-Ru-Cl1	91.39(8)	89.86(8)
C1–Ru–Cl2	94.49(8)	93.72(8)
C1-Ru-C2	87.30(1)	88.20(1)
C1-Ru-N4_1	98.93(9)	99.61(9)
C1-Ru-N1_1	174.71(9)	173.86(9)
Cl1-Ru-Cl2	172.42(2)	174.48(2)
Cl1-Ru-C2	91.16(9)	88.57(7)
Cl1-Ru-N4_1	86.18(5)	86.44(5)
Cl1-Ru-N1_1	89.12(5)	91.16(5)
Cl2-Ru-C2	94.05(9)	95.74(8)
Cl2-Ru-N4_1	88.03(5)	89.63(5)
Cl2-Ru-N1_1	84.56(5)	84.10(5)
C2-Ru-N4_1	173.30(1)	96.64(9)
C2-Ru-N1_1	98.00(1)	172.23(9)
N4_1-Ru-N1_1	75.85(7)	75.60(6)

 Table S2 Selected experimental bond lengths (Å) and angles (°) of 7 and 10.

Figure S5 an infinite chain structure of **10** along the axis "*c*" *via* the conventional hydrogen bond interaction.

Figure S6 Electronic absorption spectra of a) 7 and b) 9 in different solvents.

Figure S7 Local minmum structures of 6–10 obtained at B3LYP/LNAL2DZ level of theory.

Figure S8 TD-DFT calculated spectra of complexes 6–10 in the range of 265–415 nm.

Table S3 Com	nputed excitation of compounds 6–1	energies (e 1 0	V), electronic transition configurations and oscillator
Energy	Wavelength	.0.	
(cm^{-1})	(nm)	f	Major contributions
	(1111)		
• 6			
23860	419	0.0007	HOMO→LUMO (78%)
24749	404	0.0018	HOMO−1→LUMO (78%)
31713	315	0.0002	HOMO→LUMO+1 (71%)
32152	311	0.0042	HOMO−2→LUMO (69%)
32665	306	0.0484	HOMO–4→LUMO (23%), HOMO–3→LUMO (57%)
33771	296	0.0098	HOMO→L+2 (54%)
38077	263	0.0148	HOMO→L+3 (47%)
39668	252	0.0002	HOMO→L+5 (29%)
39922	250	0.0579	HOMO–4→LUMO+2 (49%), HOMO–3→LUMO+2 (25%)
• 7			
23898	418	0.0007	HOMO→LUMO (74%)
24766	404	0.0019	HOMO-2→LUMO (70%)
31101	322	0.0528	HOMO−1→LUMO (81%)
31795	315	0.0003	HOMO→LUMO+1 (67%)
32221	310	0.0042	HOMO-3→LUMO (68%)
33738	296	0.0069	HOMO→LUMO+2 (59%)
35827	279	0.0006	HOMO→LUMO+4 (54%)
38023	263	0.0126	HOMO→LUMO+3 (62%)
40321	248	0.0573	HOMO–4→LUMO+3 (25%), HOMO–2→LUMO+5 (25%)
• 8			
236623	423	0.0002	HOMO→LUMO (83%)
24528	408	0.001	HOMO–1→LUMO (85%)
301436	332	0.0015	HOMO→LUMO+2 (69%)
31331	319	0.0089	HOMO→LUMO+1 (79%)
31980	313	0.0004	HOMO–1→LUMO+1 (25%), HOMO–1→LUMO+2 (60%)
32488	308	0.0009	HOMO–1→LUMO+1 (65%), HOMO–1→LUMO+2 (26%)
33297	300	0.0025	HOMO→LUMO+3 (39%)
34493	289	0.0076	HOMO–5→LUMO (34%), HOMO–2→LUMO (43%)
39643	252	0.0147	HOMO-2→LUMO+2 (20%)
• 9			
23721	422	0.0007	HOMO ∡ LUMO (59%)
24634	406	0.0018	HOMO–1→LUMO (61%)
31186	321	0.0004	HOMO→L+2 (48%)

31692	316	0.004	HOMO−2→LUMO (57%)
33120	302	0.003	HOMO–3→LUMO (73%)
33207	301	0.001	HOMO−1→L+2 (48%)
34098	293	0.0601	HOMO–4→LUMO (44%), HOMO→LUMO+3 (29%)
38360	261	0.387	HOMO–4→LUMO+1 (72%)
• 10			
23887	419	0.0007	HOMO→LUMO (58%)
24754	404	0.0018	HOMO−1→LUMO (62%)
31299	319	0.0003	HOMO→LUMO+2 (42%)
32033	312	0.0035	HOMO−2→LUMO (57%)
33059	302	0.0002	HOMO−1→LUMO+1 (37%), HOMO−1→LUMO+2 (28%)
33139	302	0.0028	HOMO→LUMO+1 (43%), HOMO→LUMO+2 (27%)
33812	296	0.0223	HOMO→LUMO+3 (43%)
35918	278	0.0021	HOMO→LUMO+5 (60%)
38174	262	0.009	HOMO→LUMO+4 (56%)
39198	255	0.0067	HOMO–3→LUMO+2 (34%), HOMO–1→LUMO+4 (24%)

Figure S9 Selected FMO's orbitals of 6–10 calculated at CAM-B3LYP/LANL2DZ level of theory.

b)

e)

Figure S10 Electronic absorption changes upon incubation of complexes a) **6** (0.4 mM), b) **7** (0.86 mM), c) **8** (0.70 mM), d) **9** (0.84 mM), and e) **10** (1.2 mM) in DMSO in the dark for 16 h.

Figure S11 UV/Vis spectral changes of **9** (0.84 mM in DMSO) upon photolysis at 365 nm with increasing illumination time (0–230 min).

Figure S12 UV/Vis spectral changes of a) **8** (0.70 mM in DMSO) and b) **10** (0.86 mM in DMSO) upon photolysis at 365 nm with increasing illumination time (0–420 min).

b)

Figure S13 Time-dependent changes in the FTIR spectra of a) **7**, b) **8**, and d) **10** (8 mM in DMSO) upon exposure to light source at 365 nm with increasing illumination time (0–330, 0–355, and 0–355 min, respectively).

Figure S14 Negative mode ESI MS spectra of a) 7 and b) 10.