Supplementary Information for Crystal Structure of Silver Pentazolates \mbox{AgN}_5 and \mbox{AgN}_6

Ashley S. Williams, Kien Nguyen Cong, Joseph M. Gonzalez, and Ivan. I. Oleynik*

Department of Physics, University of South Florida, Tampa, FL 33620

E-mail: oleynik@usf.edu

Table S1: Crystallographic information for AgN_5-P2_1/c and $AgN_6-P2_12_12$ at 0 GPa.

Crystal	Lattice parameters $(\mathring{A}, \ \circ)$	Atomic positions
AgN_5-P2_1/c	a=3.44644; b=9.15045; c=9.25141	Ag (0.943, 0.250, 0.501)
	$\alpha = \gamma = 90; \beta = 90.6714$	N1 $(0.826, 0.086, 0.323)$
		N2 $(0.696, 0.957, 0.365)$
		N3 $(0.834, 0.086, 0.179)$
		N4 $(0.620, 0.878, 0.248)$
		N5 $(0.709, 0.957, 0.133)$
$\operatorname{AgN}_{6}-P\mathcal{2}_{1}\mathcal{2}_{1}\mathcal{2}$	a=9.707103; b=12.097535; c=3.341592	Ag (0.822, 0.091, 0.007)
	$\alpha = \beta = \gamma = 90$	N1 $(0.716, 0.245, 0.120)$
		N2 $(0.763, 0.343, 0.007)$
		N3 $(0.587, 0.254, 0.250)$
		N4 $(0.661, 0.413, 0.069)$
		N5 $(0.553, 0.358, 0.220)$
		N6 (0.055, 0.488, 0.475)

From the electronic band structure calculations at 0 GPa presented in Fig. S1 it is evident that AgN_5-P2_1/c is an insulator with a band gap of 3.03 eV and from Fig. S2 that $AgN_6-P2_12_12$ is an insulator with a band gap of 3.15 eV.

Figure S2: Electronic band structure of AgN_6 - $P2_12_12$.

Figure S3: Phonon band structure of $AgN_5-P\mathcal{2}_1/c$ at 0 GPa show no negative frequencies, indicating the crystal is dynamically stable.

Figure S4: Phonon band structure of AgN_6 - $P2_12_12$ at 0 GPa show no negative frequencies, indicating the crystal is dynamically stable.