ELECTRONIC SUPPLEMENTARY INFORMATION

Luminescent halido(aryl) Pt(IV) complexes obtained via oxidative addition of iodobenzene or diaryliodonium salts to bis-cyclometalated Pt(II) precursors

Juan-Carlos López-López, Delia Bautista and Pablo González-Herrero*

Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 19, 30100 Murcia, Spain.

Contents:

1. Ad	ditional experimental procedures and data	2
1.1.	Synthesis of <i>cis</i> -[Pt(bppy) ₂] (1a)	2
1.2.	Photophysical characterization	2
1.3.	X-ray structure determinations	3
2. Ad	ditional photophysical data	6
3. NN	IR spectra of new compounds	.13
4. Co	mputational methods	.29
5. Co	mputational data	.30
5.1.	Complex 5b	.30
5.2.	Complex 6b	.34
5.3.	Complex 6b'	.38
5.4.	Supplementary computational data	.42
6. Rei	ferences	.46

1. Additional experimental procedures and data

1.1. Synthesis of *cis*-[Pt(bppy)₂] (1a)

A solution of [Pt₂Me₄(μ -SMe₂)₂] (200 mg, 0.35 mmol) and 4-(*tert*-butyl)-2-phenylpyridine¹ (2.78 mmol) in acetone (15 mL) was refluxed for 4 h. The solvent was removed under reduced pressure and the residue was subjected to three successive dissolution/evaporation cycles using acetone (10 mL). A solution of the crude mixture in Et₂O (60 mL) was irradiated under N₂ for 24 h. Then, solvent was evaporated and crude was passed through a silica gel column using a mixture of AcOEt/hexane (1:15) as the eluent. The solvent was removed under reduced pressure and the residue was vaccum-dried to give **1a** as a yellow solid (156 mg, 40%). ¹H NMR (400 MHz, (CD₃)₂CO): 8.87 (d, *J* = 5.9 Hz, 1H), 8.09 (d with satellites, *J*_{PtH} = 49.6 Hz, *J*_{HH} = 7.8 Hz, 1H), 8.06 (d, *J* = 2.0 Hz, 1H), 7.79 (dd, *J* = 7.7, 1.4 Hz, 1H), 7.48 (dd, *J* = 6.0, 2.1 Hz, 1H), 7.18 (td, *J* = 7.4, 1.4 Hz, 1H), 7.07 (td, *J* = 7.4, 1.2 Hz, 1H), 1.45 (s, 9H). ¹³C {¹H} NMR (150.8 MHz, (CD₃)₂CO): 166.7 (C), 163.4 (C), 150.4 (C), 148.7 (CH), 147.8 (C), 138.0 (*J*_{PtC} = 104.7 Hz, CH), 124.2 (*J*_{PtC} = 38.5 Hz, CH), 123.3 (CH), 120.6 (CH), 116.9 (CH), 36.0 (C), 30.6 (CH₃). Elemental analysis calcd (%) for C₃₀H₃₂N₂Pt: C 58.52, H 5.24, N 4.55; found: C 58.51, H 5.06, N 4.31.

1.2. Photophysical characterization

UV-vis absorption spectra were recorded on a Perkin-Elmer Lambda 750S spectrophotometer. Excitation and emission spectra were recorded on a Jobin Yvon Fluorolog 3-22 spectrofluorometer. Solution measurements were carried out using 10 mm quartz fluorescence cells (298 K) or 5 mm quartz NMR tubes (77 K). For the low-temperature measurements, a liquid nitrogen Dewar with quartz windows was employed. The photophysical data in PMMA thin films were measured using quartz slides as sample holders. Lifetimes were measured using an IBH FluoroHub controller in MCS mode and the Fluorolog's FL-1040 phosphorimeter pulsed xenon lamp as excitation source; the estimated uncertainty is $\pm 10\%$ or better. Emission quantum yields (Φ) were measured using a Hamamatsu C11347 Absolute PL Quantum Yield Spectrometer; the estimated uncertainty is $\pm 5\%$ or better. Emission data were obtained under rigorous exclusion of oxygen, by bubbling argon through the solutions for 30 min or placing the PMMA films under argon.

1.3. X-ray structure determinations

Single crystals of **2b**, **4b** \cdot 0.5CH₂Cl₂, **5b**, **5b**' ·CH₂Cl₂ and **6b** ·CH₂Cl₂·H₂O suitable for X-ray diffraction were obtained by slow diffusion of Et₂O into solutions of the complexes in CH₂Cl₂. The data were collected on a Bruker D8 QUEST diffractometer with monochromated Mo-*K* α radiation performing φ and ω scans. The structures were solved by direct methods and refined anisotropically on *F*² using the program SHELXL-2018, except for **5b**, which was solved using SHELXL-2016 (G. M. Sheldrick, University of Göttingen).^{2,3} Numerical details are given in Tables S1 and S2. Methyl hydrogens were included as part of rigid idealized methyl groups allowed to rotate but not tip; the water hydrogen atoms in **6b** ·CH₂Cl₂·H₂O were located in a difference Fourier map and refined freely, using DFIX 0.82 0.02 instruction; other hydrogens were included using a riding model. *Special features of refinement:* In **4b**, the structure contains one resolved CH₂Cl₂ molecule; additionally, there is a poorly-resolved region of residual electron density that could not be adequately modelled and was "removed" using the program SQUEEZE,⁴ which is part of the PLATON system; the void volume per cell was 375 Å³, with a void electron count per cell of 87; this additional solvent was not taken into account when calculating derived parameters such as the formula weight, because its nature was uncertain.

	2h	4h.0 5CH.Cl.	
formula			
iormuta	C30H25IIN2Pt	C36.50H33CIF6N3PPt	
fw	735.51	889.17	644.06
$T(\mathbf{K})$	100(2)	100(2)	100(2)
λ (Å)	0.71073	0.71073	0.71073
cryst syst	Monoclinic	Triclinic	Monoclinic
space group	$P2_1/n$	P-1	$P2_1/n$
<i>a</i> (Å)	9.442(2) Å	12.0157(8)	9.3492(3)
b (Å)	18.463(4) Å	14.6749(11)	18.3426(7)
<i>c</i> (Å)	14.194(3) Å	21.5970(15)	13.7398(5)
α (°)	90	82.664(3)	90
β (°)	96.155(8)	77.421(3)	97.0630(10)
γ (°)	90	73.664(3)	90
$V(Å^3)$	2460.1(9)	3557.7(4)	2338.34(14)
Ζ	4	4	4
$ ho_{calcd} ({ m Mg}~{ m m}^{-3})$	1.986	1.660	1.829
$\mu (\mathrm{mm}^{-1})$	6.980	4.126	6.137
$R1^a$	0.224	0.0295	0.0160
$wR2^b$	0.0451	0.0700	0.0365

1 abic 51, $Ci y stall ci up li c duta 101 ab, 40 0.5011/01/2 alla$	Table S1.	Crystallographic data	tor 2b, 4b.0.5C	H_2CI_2 and 5t
---	-----------	-----------------------	-----------------	------------------

 a R1 = $\Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|$ for reflections with $I > 2\sigma(I)$. b wR2 = $[\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2} / \Sigma [w(F_{o}^{2})^{2}]]^{0.5}$ for all reflections; $w^{-1} = \sigma^{2}(F^{2}) + (aP)^{2} + bP$, where $P = (2F_{c}^{2} + F_{o}^{2})/3$ and a and b are constants set by the program.

	5b'·CH ₂ Cl ₂	6b ·CH ₂ Cl ₂ ·H ₂ O
formula	$C_{35}H_{35}Cl_3N_2Pt$	$C_{31}H_{29}Cl_2FN_2OPt$
fw	785.09	730.55
<i>T</i> (K)	100(2)	100(2)
λ (Å)	0.71073	0.71073
cryst syst	Monoclinic	Monoclinic
space group	$P2_1/c$	P21/c
<i>a</i> (Å)	12.4548(10)	13.1925(10)
<i>b</i> (Å)	11.0478(9)	9.5664(7)
<i>c</i> (Å)	23.525(2)	22.7013(18)
α (°)	90	90
β (°)	99.262(3)	104.895(3)
γ (°)	90	90
$V(Å^3)$	3194.8(5)	2768.7(4)
Ζ	4	4
$ ho_{calcd}$ (Mg m ⁻³)	1.632	1.753
$\mu (\mathrm{mm}^{-1})$	4.670	5.295
$R1^a$	0.0293	0.0278
$wR2^b$	0.0634	0.0669

Table S2.Crystallographic data for **5b'** and **6b**.

 ${}^{a}\text{R1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}| \text{ for reflections with } I > 2\sigma(I). {}^{b}\text{wR2} = [\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2} / \Sigma [w(F_{o}^{2})^{2}]]^{0.5} \text{ for all reflections; } w^{-1} = \sigma^{2}(F^{2}) + (aP)^{2} + bP, \text{ where } P = (2F_{c}^{2} + F_{o}^{2}) / 3 \text{ and } a \text{ and } b \text{ are constants set by the program.}$

Figure S1. ¹H NMR spectrum (CD₂Cl₂, 300 MHz) of the crude product mixture resulting from the reaction of **1b** with (Ph₂I)PF₆ in MeCN.

Figure S2. ESI(+) mass spectrum of the crude product mixture resulting from the reaction of **1b** with (Ph₂I)PF₆ in MeCN. The most abundant ion at m/z 608.1648 corresponds to [Pt(Ph)(tpy)₂]⁺ and the ion at m/z 571.1449 to [Pt(CH₂CN)(tpy)₂]⁺.

2. Additional photophysical data

Figure S3. Electronic absorption spectra of complexes 5b, 5b', 6b and 6b' in a CH_2Cl_2 solution at 298 K

	*	e
Complex	$\lambda_{ m em}/{ m nm}^a$	$\tau/\mu s^b$
5a	442, 472, 500, 538 (sh)	227
5b	450, 466, 473, 483, 508, 520	317
5b'	450, 465, 472, 482, 501, 509, 521	301
5c	509, 528, 539, 550, 571, 595	353
5d	552, 598, 655	83.7
6a	443, 472, 503	175
6b	450, 475, 484, 508, 522	242
6b'	451, 484, 510, 522	255
6c	<i>512</i> , 530, 552, 573, 599	260
6d	552, 597, 656	61.8

Table S3. Emission data for the series of complexes 5 and 6 in 2-MeTHF glasses at 77 K.

^{*a*} The most intense peak is italicized. ^{*b*} Emission lifetime.

Figure S4. Excitation and emission spectra of the series of complexes 5 in CH₂Cl₂ at 298 K.

Figure S5. Excitation and emission spectra of the series of complexes 5 in PMMA films at 298 K.

Figure S6. Excitation and emission spectra of the series of complexes 6 in CH₂Cl₂ at 298 K.

Figure S7. Excitation and emission spectra of the series of complexes 6 in PMMA films at 298 K.

Figure S8. Excitation and emission spectra of the series of complexes 5 in 2-MeTHF glasses at 77 K.

Figure S9. Excitation and emission spectra of the series of complexes 6 in 2-MeTHF glasses at 77 K.

Figure S10. ¹H (top) and ¹³C{¹H} APT (bottom) NMR spectra of complex 1a (CD₂Cl₂, 600 and 151 MHz, respectively).

Figure S11. ¹H (top) and ¹³C{¹H} APT (bottom) NMR spectra of complex 2a (CD₂Cl₂, 400 and 151 MHz, respectively).

Figure S12. ¹H-NMR spectra of complex 2b (CD₂Cl₂, 400 MHz).

Figure S13. ¹H (top) and ¹³C{¹H} APT (bottom) NMR spectra of complex 2b' (CD_2Cl_2 , 400 and 151 MHz, respectively).

Figure S14. ¹H NMR spectrum of complex 2c (CD₂Cl₂, 600 MHz).

Figure S15. ¹H NMR spectrum of complex 2d (CD₂Cl₂, 400 MHz).

Figure S16. ¹H (top) and ¹³C{¹H} APT (bottom) NMR spectra of complex 3b (CD₂Cl₂, 600 and 151 MHz, respectively).

Figure S17. ¹H (top) and ¹³C{¹H} APT (bottom) NMR spectra of complex 4b (CD₂Cl₂, 400 and 151 MHz, respectively).

Figure S18. ¹H (top) and ¹³C{¹H} APT (bottom) NMR spectra of complex 5a (CD₂Cl₂, 400 and 151 MHz, respectively).

Figure S19. ¹H NMR spectrum of complex 5b (CD₂Cl₂, 600 MHz).

Figure S20. ¹H (top) and ¹³C{¹H} APT (bottom) NMR spectra of complex 5b' (CD₂Cl₂, 600 and 151 MHz, respectively).

Figure S21. ¹H NMR spectrum of complex 5c (CD₂Cl₂, 600 MHz).

Figure S22. ¹H NMR spectrum of complex 5d (CD₂Cl₂, 600 MHz).

Figure S23. ¹H (top) and ¹³C{¹H} APT (bottom) NMR spectra of complex 6a (CD₂Cl₂, 400 and 151 MHz, respectively).

Figure S24. ¹H (top) and ¹³C{¹H} APT (bottom) NMR spectra of complex **6b** (CD₂Cl₂, 600 and 151 MHz, respectively).

Figure S25. ¹H (top) and ¹³C{¹H} APT (bottom) NMR spectra of complex 6b' (CD_2Cl_2 , 400 and 150.8 MHz, respectively).

Figure S26. ¹H (top) and ¹³C{¹H} APT (bottom) NMR spectra of complex 6c (CD₂Cl₂, 400 and 151 MHz, respectively).

Figure S27. ¹H (top) and ¹³C{¹H} APT (bottom) NMR spectra of complex 6d (CD₂Cl₂, 400 and 151 MHz, respectively).

4. Computational methods

DFT calculations were carried out with Gaussian 09,⁵ using the hybrid B3LYP functional^{6,7} together with the 6-31G**^{8,9} basis set for the light atoms and the LANL2DZ¹⁰ basis set and effective core potential for the Pt atom. Optimizations were carried out without symmetry restrictions, using "tight" convergence criteria and "ultrafine" integration grid. Vertical excitation energies were obtained from TDDFT calculations at the ground-state optimized geometries. Triplet state geometries were obtained through a spin-unrestricted DFT optimization, using a previously described strategy.¹¹ The solvent effect (CH₂Cl₂) was accounted for in all cases by using the integral equation formalism variant of the polarizable continuum solvation model (IEFPCM).¹² All the optimized structures were confirmed as minima on the potential energy surface by performing frequency calculations (zero imaginary frequencies). Natural spin densities were obtained from natural population analyses using the NBO 5.9 program.¹³

5. Computational data

5.1. Complex 5b

Table S4. Fragment contributions (%; from atomic orbital contributions) to the frontier orbitals of **5b** in CH₂Cl₂ solution.

energy (a.u.)	number	L1	L2	Ph	Cl	Pt
-0.013	133 (LUMO+5)	28	22	19	0	31
-0.027	132 (LUMO+4)	33	19	8	8	32
-0.036	131 (LUMO+3)	26	70	0	0	2
-0.043	130 (LUMO+2)	70	26	1	0	2
-0.059	129 (LUMO+1)	5	90	0	1	3
-0.062	128 (LUMO)	92	5	0	0	3
-0.224	127 (HOMO)	3	86	3	2	6
-0.228	126 (HOMO-1)	69	0	21	4	5
-0.229	125 (HOMO-2)	18	8	63	1	9
-0.238	124 (HOMO-3)	1	24	66	7	2
-0.241	123 (HOMO-4)	2	61	22	9	7
-0.243	122 (HOMO-5)	63	2	6	22	8

Figure S28. Ligand numbering in complex 5b.

Figure S29. Molecular orbital isosurfaces of 5b (0.03 e bohr⁻³).

Figure S30. Calculated stick absorption spectrum of **5b** compared with the experimental spectrum in CH₂Cl₂ solution (*ca.* 1×10^{-5} M) at 298 K.

Table S5.	Selected y	vertical	singlet	excitations	of 5b	from	TDDFT	calculations	at the	ground	state
geometry in	CH ₂ Cl ₂ so	olution.									

state	monoexcitations ^a	ΔE/eV	λ/nm	Oscillator strength
S1	H–2 -> L (11%)	3.823	324.4	0.0231
	H -> L (72%)			
	H -> L+1 (12%)			
S2	H–2 -> L (24%)	3.879	319.6	0.0680
	H–1 -> L (17%)			
	H -> L+1 (49%)			
S3	$H-2 \rightarrow L (6\%)$	3.893	318.5	0.1079
	H–1 -> L (54%)			
	H -> L (11%)			
	H -> L+1 (23%)			
S4	H–2 -> L (55%)	3.935	315.1	0.0727
	H–1 -> L (21%)			
	H–1 -> L+1 (3%)			
	H -> L (12%)			
S5	H–5 -> L+1 (2%)	4.011	309.1	0.0230
	H–2 -> L+1 (10%)			
	H–1 -> L+1 (77%)			
	H -> L+1 (3%)			
S6	H–2 -> L+1 (82%)	4.063	305.2	0.0450
	H–1 -> L+1 (13%)			
S7	H–4 -> L (4%)	4.192	295.8	0.0057
	H−3 -> L (92%)			
S8	H–4 -> L (16%)	4.231	293.1	0.0615
	H–4 -> L+1 (34%)			
	H–3 -> L+1 (26%)			
	H -> L+2 (9%)			
	H -> L+3 (7%)			
S9	$H-5 \rightarrow L (60\%)$	4.250	291.8	0.0590
	$H-5 \rightarrow L+1 (4\%)$			
	$H-4 \rightarrow L (5\%)$			
	H-3 -> L+1 (5%)			

	H-2 -> L+2 (2%)			
	H–1 -> L+2 (11%)			
S10	H–5 -> L (11%)	4.305	288.0	0.0133
	H–5 -> L+1 (18%)			
	H–4 -> L (26%)			
	H–3 -> L (2%)			
	H–3 -> L+1 (23%)			
	H–1 -> L+2 (4%)			
S11	H–6 -> L (3%)	4.315	287.3	0.0081
	H–5 -> L+1 (19%)			
	H–4 -> L (42%)			
	H–4 -> L+1 (24%)			
	H–3 -> L+1 (3%)			
S12	H–6 -> L (9%)	4.393	282.2	0.0367
	H–6 -> L+1 (25%)			
	H–6 -> L+4 (3%)			
	H–5 -> L+1 (3%)			
	H–4 -> L+1 (10%)			
	H–3 -> L+1 (4%)			
	H–2 -> L+4 (2%)			
	H–1 -> L+4 (3%)			
	H -> L+1 (2%)			
	H -> L+4 (23%)			

 a H = HOMO; L = LUMO.

Table S6. Lowest-energy vertical triplet excitations of **5b** from TDDFT calculations at the ground state geometry in CH_2Cl_2 solution.

state	monoexcitations ^a	ΔE/eV	λ/nm
T1	H-4 -> L+1 (2%)	2.902	427.2
	H–2 -> L+1 (4%)		
	H -> L (3%)		
	H -> L+1 (69%)		
	H -> L+3 (5%)		
T2	H–5 -> L (6%)	2.921	424.4
	H–2 -> L (13%)		
	H−1 -> L (57%)		
	H–1 -> L+2 (3%)		
T3	H–11 -> L+2 (2%)	3.638	340.8
	H–11 -> L+3 (4%)		
	H–4 -> L+1 (10%)		
	H-4 -> L+3 (3%)		
	H–3 -> L+1 (5%)		
	H -> L (11%)		
	H -> L+1 (10%)		
	H -> L+2 (13%)		
	H -> L+3 (25%)		

 a H = HOMO; L = LUMO.

5.2. Complex 6b

Table S7.	Fragment contributions (%; from atomic orbital contributions) to the frontier orbitals of 6b
in CH ₂ Cl ₂ s	olution.

energy (a.u.)	number	L1	L2	Ph	F	Pt
-0.004	129 (LUMO+5)	36	22	13	0	28
-0.007	128 (LUMO+4)	28	20	12	6	34
-0.035	127 (LUMO+3)	36	62	0	0	1
-0.040	126 (LUMO+2)	61	37	0	0	2
-0.057	125 (LUMO+1)	4	93	0	0	2
-0.059	124 (LUMO)	92	5	0	0	3
-0.221	123 (HOMO)	15	71	0	2	10
-0.224	122 (HOMO-1)	65	13	13	2	8
-0.226	121 (HOMO-2)	9	6	74	0	10
-0.236	120 (HOMO-3)	2	47	43	3	5
-0.238	119 (HOMO-4)	5	33	53	2	7
-0.240	118 (HOMO-5)	78	4	05	5	9

Figure S31. Ligand numbering in complex 6b.

Figure S32. Molecular orbital isosurfaces of $6b (0.03 \text{ e bohr}^{-3})$.

Figure S33. Calculated stick absorption spectrum of **6b** compared with the experimental spectrum in CH₂Cl₂ solution (*ca.* 1×10^{-5} M) at 298 K.

Table S8.	Selected v	vertical	singlet	excitations	of 6b	from	TDDFT	calculations	at the	ground	state
geometry in	CH ₂ Cl ₂ so	lution.									

state	monoexcitations ^a	ΔE/eV	λ/nm	Oscillator strength
S1	H–5 -> L (2%)	3.811	325.3	0.0489
	H–1 -> L (9%)			
	H -> L (63%)			
	H -> L+1 (22%)			
S2	H–1 -> L (15%)	3.846	322.4	0.1562
	H -> L (12%)			
	H -> L+1 (63%)			
S3	H–2 -> L (32%)	3.866	320.7	0.0108
	H−1 -> L (48%)			
	H -> L (12%)			
	H -> L+1 (4%)			
S4	H–2 -> L (64%)	3.926	315.8	0.0515
	H−1 -> L (20%)			
	$H-1 \rightarrow L+1 (4\%)$			
	H -> L (8%)			
S5	H-1 -> L+1 (87%)	3.950	313.9	0.0432
S6	H–2 -> L+1 (95%)	4.023	308.2	0.0117
	H-1 -> L+1 (3%)			
S7	H–4 -> L+1 (15%)	4.216	294.1	0.0709
	H–3 -> L (18%)			
	H–3 -> L+1 (34%)			
	H -> L+2 (16%)			
	H -> L+3 (6%)			
S8	H–5 -> L (46%)	4.246	292.0	0.0634
	H–4 -> L (2%)			
	H–3 -> L (10%)			
	H–3 -> L+1 (4%)			
	H–1 -> L+2 (21%)			
	H -> L+2 (4%)			
	H -> L+3 (3%)			
S9	H–5 -> L (5%)	4.257	291.2	0.0080
	H-4 -> L (16%)			

	H-3 -> L (63%)			
	$H-3 \rightarrow L+1$ (8%)			
	H -> L+2 (3%)			
S10	H-5 -> L (6%)	4.319	287.1	0.0002
	H-4 -> L (76%)			
	H-4 -> L+1 (2%)			
	H–3 -> L (5%)			
	H-3 -> L+1 (2%)			
S11	H–5 -> L (4%)	4.348	285.2	0.0159
	H-5 -> L+1 (70%)			
	H-4 -> L+1 (13%)			
	H -> L+2 (7%)			
S12	H–5 -> L (4%)	4.398	281.9	0.1382
	H-5 -> L+1 (6%)			
	H-4 -> L+1 (3%)			
	H–3 -> L+1 (21%)			
	H-2 -> L+2 (6%)			
	H -> L+1 (3%)			
	H -> L+2 (50%)			

 a H = HOMO; L = LUMO.

Table S9. Lowest-energy vertical triplet excitations of **6b** from TDDFT calculations at the ground state geometry in CH_2Cl_2 solution.

state	monoexcitations ^a	ΔE/eV	λ/nm
T1	H–4 -> L+1 (2%)	2.902	427.2
	$H-3 \rightarrow L+1 (3\%)$		
	$H-2 \rightarrow L+1 (3\%)$		
	$H-1 \rightarrow L+1 (9\%)$		
	H -> L (4%)		
	H -> L+1 (58%)		
	H -> L+3 (3%)		
T2	H–5 -> L (7%)	2.914	425.5
	H-2 -> L (4%)		
	H–1 -> L (55%)		
	H–1 -> L+3 (2%)		
	H -> L (10%)		
	H -> L+1 (3%)		
Т3	$H-11 \rightarrow L+2 (3\%)$	3.631	341.5
	H–11 -> L+3 (2%)		
	H–5 -> L (5%)		
	H–5 -> L+3 (2%)		
	H-4 -> L+1 (7%)		
	H–3 -> L+1 (10%)		
	$H-3 \rightarrow L+2 (2\%)$		
	$H-3 \rightarrow L+3 (2\%)$		
	H–1 -> L+2 (7%)		
	$H \rightarrow L (13\%)$		
	H -> L+1 (9%)		
	H -> L+2 (8%)		
	H -> L+3 (16%)		

 a H = HOMO; L = LUMO.

5.3. Complex 6b'

Table S10.	Fragment contribution	s (%; from atomic	e orbital contribu	tions) to the from	ntier orbitals of ##
in CH ₂ Cl ₂ so	olution.				

energy (a.u.)	number	L1	L2	<i>t</i> -Bu-Ph	F	Pt
-0.003	145 (LUMO+5)	38	22	12	0	27
-0.006	144 (LUMO+4)	28	20	12	6	34
-0.034	143 (LUMO+3)	37	62	0	0	1
-0.040	142 (LUMO+2)	61	37	0	0	2
-0.057	141 (LUMO+1)	4	93	0	0	2
-0.058	140 (LUMO)	92	5	0	0	3
-0.218	139 (HOMO)	2	2	86	0	9
-0.221	138 (HOMO-1)	18	68	1	3	10
-0.224	137 (HOMO-2)	67	20	3	2	8
-0.234	136 (HOMO-3)	1	16	80	1	2
-0.237	135 (HOMO-4)	4	65	18	4	10
-0.239	134 (HOMO-5)	80	3	3	5	9

Figure S34. Ligand numbering in complex 6b'.

Figure S35. Molecular orbital isosurfaces of **6b'** (0.03 e bohr^{-3}).

Figure S36. Calculated stick absorption spectrum of **6b'** compared with the experimental spectrum in CH_2Cl_2 solution (*ca.* 1×10^{-5} M) at 298 K.

Table S11.	Selected v	vertical	singlet	excitations	of 6b'	from	TDDFT	calculations	at the	ground	state
geometry in	CH ₂ Cl ₂ so	lution.									

state	monoexcitations ^a	ΔE/eV	λ/nm	Oscillator strength
S1	H -> L (98%)	3.698	335.3	0.0036
S2	H-2 -> L (6%)	3.807	325.6	0.0453
	H–1 -> L (63%)			
	H–1 -> L+1 (21%)			
	H -> L+1 (3%)			
S3	H–2 -> L (4%)	3.832	323.5	0.0394
	H–1 -> L (9%)			
	H–1 -> L+1 (9%)			
	H -> L+1 (76%)			
S4	H–2 -> L (4%)	3.847	322.3	0.1058
	H–1 -> L (9%)			
	H–1 -> L+1 (59%)			
	H -> L+1 (20%)			
S5	H–2 -> L (77%)	3.909	317.2	0.0629
	H–1 -> L (14%)			
S6	H–4 -> L+1 (3%)	3.954	313.6	0.0595
	H-2 -> L+1 (90%)			
S7	H–4 -> L+1 (3%)	4.196	295.5	0.0106
	H–3 -> L (92%)			
	H–1 -> L+2 (2%)			
S8	H–4 -> L (9%)	4.217	294.1	0.0662
	H–4 -> L+1 (31%)			
	H–3 -> L (3%)			
	$H-3 \rightarrow L+1 (23\%)$			
	$H-1 \rightarrow L+2 (12\%)$			
	$H-1 \rightarrow L+3 (6\%)$			
	$H \to L+2 (7\%)$			
S9	$H-5 \rightarrow L (40\%)$	4.238	292.5	0.0374
	$H-4 \rightarrow L(7\%)$			
	$H-2 \rightarrow L+2 (12\%)$			
	H-1 -> L+2 (9%)			

	H -> L+2 (22%)			
	$H \rightarrow L+3(3\%)$			
S10	H–5 -> L (11%)	4.265	290.7	0.0333
	H–4 -> L+1 (2%)			
	H-3 -> L+1 (3%)			
	H–2 -> L+2 (9%)			
	H -> L+2 (59%)			
	H -> L+3 (6%)			
S11	H–5 -> L (6%)	4.307	287.9	0.0007
	H–4 -> L (77%)			
	H–4 -> L+1 (4%)			
	H–3 -> L+1 (3%)			
	H–1 -> L+2 (2%)			
S12	H–5 -> L (3%)	4.342	285.5	0.0128
	H–5 -> L+1 (69%)			
	H–4 -> L+1 (15%)			
	H–3 -> L+1 (3%)			
	H–2 -> L+1 (3%)			
	H–1 -> L+2 (5%)			

 a H = HOMO; L = LUMO.

Table S12. Lowest-energy vertical triplet excitations of **6b'** from TDDFT calculations at the ground state geometry in CH_2Cl_2 solution.

state	monoexcitations ^a	ΔE/eV	λ/nm
T1	$H-4 \rightarrow L+1 (5\%)$	2.902	427.2
	H–2 -> L+1 (14%)		
	$H-1 \rightarrow L(4\%)$		
	H–1 -> L+1 (55%)		
	H–1 -> L+3 (3%)		
T2	H–5 -> L (8%)	2.913	425.6
	H–2 -> L (53%)		
	H–2 -> L+3 (2%)		
	H–1 -> L (13%)		
	H–1 -> L+1 (3%)		
T3	H–11 -> L+2 (2%)	3.625	342.0
	H–5 -> L (13%)		
	H–5 -> L+3 (3%)		
	H–4 -> L+1 (7%)		
	$H-2 \rightarrow L(3\%)$		
	H–2 -> L+2 (9%)		
	H−1 -> L (16%)		
	H–1 -> L+1 (3%)		
	H–1 -> L+3 (10%)		
	H -> L (16%)		

 a H = HOMO; L = LUMO.

5.4. Supplementary computational data

Structure	E0 ^b	ZPE ^c	G ^d	H ^e	\mathbf{S}^{f}
5b (S ₀)	-1847.236102	-1846.767708	-1846.830977	-1846.736295	199.275
5b (T ₁)	-1847.133817	-1846.669969	-1846.734847	-1846.637901	204.040
6b (S ₀)	-1486.852548	-1486.383224	-1486.445768	-1486.352355	196.603
6b (T ₁)	-1486.750284	-1486.285324	-1486.348963	-1486.253900	200.075
6b' (S ₀)	-1644.115433	-1643.533805	-1643.603109	-1643.497304	222.685
6b' (T ₁)	-1644.013154	-1643.435903	-1643.506225	-1643.398848	225.993

Table S13. Energies, free energies, enthalpies and entropies of the optimized structures in CH_2Cl_2 solution.^{*a*}

^{*a*} Thermal corrections from vibrational calculations at 298.15 K. ^{*b*} Electronic energy (Hartrees). ^{*c*} Sum of electronic and zero-point energies (Hartrees). ^{*d*} Free Energy (Hartrees). ^{*e*} Enthalpy (Hartrees). ^{*f*} Entropy (cal mol⁻¹ K⁻¹).

Table S14. Cartesian coordinates (Å) of the optimized structures at the B3LYP($6-31G^{**}+LANL2DZ$) level in CH₂Cl₂ solution.

5b	(S_0)	Η	4.882294235	1.908211096	2.840895131
С	-0.226156789 -1.675989667 1.065740844	Н	5.012409343	0.369725052	0.937070565
С	0.513514450 -2.065930677 2.181142554	Η	5.038231573	-0.929801083	-0.702745593
С	0.289813512 -3.296771081 2.819072295	Н	4.858408434	-2.412037744	-2.674671016
С	-0.710609394 -4.139725070 2.314372225	Н	2.582201181	-2.921562482	-3.623700781
С	-1.454335214 -3.769454176 1.200017878	Н	0.587369421	-1.899706461	-2.513341362
С	-1.225499477 -2.540494188 0.558520387	Н	2.673211842	4.083818001	3.564776322
С	-1.970893163 -2.112690366 -0.634029154	Н	3.485068253	2.934543920	4.629595779
С	-3.012537434 -2.826820487 -1.243778481	Н	1.715142957	2.935673629	4.499299576
С	-3.623244069 -2.314993119 -2.383322448	Ν	1.694371136	-0.913599422	-1.078737379
С	-3.191328259 -1.095095301 -2.909204003	С	-1.449179541	0.951678392	1.121964524
С	-2.159357486 -0.427502397 -2.260740925	С	-1.622802474	0.717921640	2.494967370
С	1.125710877 -3.709895526 4.006307156	С	-2.651303941	1.338910813	3.212133244
Н	1.276552466 -1.404479182 2.578018448	С	-3.538062973	2.203660936	2.569674619
Н	-0.906138657 -5.093206003 2.797253396	С	-3.382530890	2.439740305	1.202765779
Н	-2.218767406 -4.446093783 0.830978570	С	-2.352329913	1.819579564	0.488058978
Н	-3.342285113 -3.771176987 -0.828503709	Н	-0.952629054	0.048484413	3.022579805
Н	-4.430509640 -2.863875574 -2.857937660	Н	-2.756730077	1.139457097	4.275756554
Н	-3.641230751 -0.666802884 -3.797335637	Н	-4.337899695	2.685819198	3.124992923
Н	-1.768625340 0.523822197 -2.607254575	Н	-4.061244983	3.112790434	0.684507028
Н	2.014873168 -4.266259976 3.683845061	Н	-2.241222990	2.034894558	-0.568217650
Н	0.564073303 -4.360405450 4.683111961	Pt	0.026212919	0.039461445	0.007188578
Н	1.474055629 -2.841217691 4.572326899	Cl	0.286723437	1.997980164	-1.612603123
Ν	-1.574627416 -0.925409949 -1.160787047				
С	1.608192065 0.744019714 1.068022953	5b	(T ₁)		
С	1.564607884 1.628960076 2.145560528	$< S^2$	> = 2.028923		
С	2.729724156 2.066683542 2.796072786	С	-0.233304595	-1.678577217	1.060641179
С	3.968452064 1.589321922 2.346869238	С	0.512036351	-2.069269192	2.171667292
С	4.038167812 0.715638256 1.268106553	С	0.295892071	-3.304167037	2.804439571
С	2.871656871 0.286176793 0.614009225	С	-0.702213457	-4.149064202	2.298581560
С	2.905645921 -0.616365498 -0.544814072	С	-1.450514538	-3.777681110	1.187489103
С	4.065480306 -1.159361745 -1.119628307	С	-1.229033386	-2.545066062	0.550835685
С	3.963169838 -1.991325998 -2.227745120	С	-1.974867728	-2.115088825	-0.640280865
С	2.703655605 -2.279011685 -2.759462113	С	-3.011966880	-2.831000294	-1.255269549
С	1.591280365 -1.715483805 -2.147906789	С	-3.622141565	-2.316878244	-2.394093402
С	2.646297670 3.051958191 3.937043431	С	-3.193929473	-1.093054058	-2.913711164
Н	0.608206024 1.995371145 2.499743422	С	-2.166539162	-0.423448799	-2.259993743

С	1.137342463	-3.719014853 3.987098297
Η	1.271593498	-1.404791259 2.570833533
Н	-0.891909838	-5.105594604 2.777679315
Н	-2.212021095	-4.456636344 0.816661188
Н	-3.338267346	-3.778632322 -0.844737496
Н	-4.425900327	-2.867107767 -2.873063753
Н	-3.643236375	-0.663022701 -3.801298153
Н	-1.778979672	0.531123711 -2.601035108
Н	2.032658329	-4.261762990 3.658587045
Н	0 583654994	-4 382383769 4 657859205
н	1 476014045	-2 851913988 4 561416847
N	-1 582584083	-0.923492200 -1.160498238
C	1 566465725	0.761924442 1.072791745
c	1.500405725	1 665001719 2 109318607
C	2 721856058	2 10/328/30 2 767503130
C	2.721050950	1 556551605 2 345684055
C	<i>A</i> 07 <i>A</i> 62 <i>A</i> 658	0.665671186 1.321238606
C	2 880676745	0.242148123 0.602741258
C	2.000070745	0.602748012 0.502210412
C	2.909023039	-0.005/48015 $-0.5025194151 196505259 1 002914109$
C	4.088330093	-1.180303338 -1.092814108
C	3.966230249	-1.994130040 -2.190280220
C	2.707921803	-2.234400270 -2.731914410
C	1.581934396	-1.6/6064889 -2.143413/83
C	2.6/60//982	3.115/03629 3.8/2499253
H	0.595208034	2.066083630 2.44/981653
Н	4.888385028	1.8/130/820 2.8641/6681
Н	5.042783016	0.274561773 1.029913840
Н	5.05/996290	-0.9/620838/ -0.65/345418
Н	4.876491489	-2.429385698 -2.641969460
Н	2.582427129	-2.883872029 -3.624542495
Η	0.587849401	-1.858704141 -2.539871854
Н	3.182392916	4.046694799 3.580295181
Η	3.195769152	2.752281628 4.768894366
Н	1.648778611	3.366073530 4.148307203
Ν	1.654964137	-0.892377218 -1.080896576
С	-1.469627293	0.944760151 1.137774081
С	-1.620762004	0.722148104 2.515429310
С	-2.649395632	1.332738950 3.241411367
С	-3.559489948	2.176109169 2.603111832
С	-3.426981842	2.401434349 1.231792998
С	-2.396310993	1.791659638 0.509032991
Н	-0.932051901	0.068677313 3.039658249
Η	-2.736942690	1.142073853 4.308316856
Η	-4.359650552	2.650189488 3.164945757
Η	-4.124111420	3.058214109 0.717032082
Н	-2.302649091	1.999252470 -0.550621136
Pt	0.008742961	0.043070135 0.012884401
Cl	0.242110631	2.034103745 -1.604743332
6b	(S_0)	
С	-0.213359491	-1.755530749 1.122982397
С	0.520398325	-2.144607787 2.244762244
С	0.299981733	-3.373531659 2.887573147
С	-0.694289653	-4.225053928 2.383826945
С	-1.437126518	-3.862661986 1.265571302
С	-1.210788497	-2.635459437 0.621724434
С	-1.964729597	-2.210305793 -0.568390818
С	-3.006037809	-2.911335418 -1.194282432
С	-3.613961247	-2.370675446 -2.323508539
С	-3.185721918	-1.137891225 -2.826234217
С	-2.152228601	-0.484465273 -2.165836574
С	1.132911842	-3.777281168 4.080454170

Η	1.277499322	-1.476876556 2.644574669	
Η	-0.885909423	-5.177348684 2.870910562	
Η	-2.199391031	-4.542981544 0.897393728	
Н	-3.337989649	-3.864755432 -0.801301887	
Н	-4.421323748	-2.908897561 -2.810333028	
Н	-3.640744887	-0.693684205 -3.703928904	
Н	-1.741643307	0.474886687 -2.467487566	
Н	2.037970120	-4.310976771 3.763632766	
Н	0.579680925	-4.444901907 4.747540492	
Н	1 456462094	-2.905045368 4.655975048	
N	-1 574998422	-1 017143121 -1 081063621	
C	1 575937844	0.713708373 1.059272102	
C	1 521335901	1 560866548 2 168020954	
c	2 680308325	2 058217177 2 784709118	
c	3 928375524	1 680316077 2 269675057	
c	4 011224440	0.837550322 1.167406266	
c	2 848585315	0.346071233 0.550903489	
C C	2.040303313	-0.551365032 -0.612981558	
C C	4 058078757	-1.006471791 -1.247401768	
C C	3.062671/11	-1.0004/1/91 $-1.24/401/001 852828002 2 345480502$	
C C	2 703/73/03	-2.242707634 -2.808100837	
C C	1 58/38/301	1 761185870 2 140568243	
C	2 581525600	2 000424702 2 061222404	
с u	2.381333033	1 845205000 2 572200242	
п u	1 828026852	2.047056827 2.725221210	
п	4.030920032	2.04/93082/ 2.753551519	
п	4.991988309	0.301141111 0.792073117	
п	3.03062/910	-0.09/398/81 $-0.884/13/20$	
п	4.803341974	-2.203434628 -2.63619300/	
п	2.38/308/9/	-2.900221440 -3.001810940	
H	0.5/9561/44	-2.024429379 -2.451982736	
H	2.5518114/9	4.043819160 3.625683555	
H	3.44252/3/1	2.898112919 4.628827858	
H	1.6/1/48454	2.820268479 4.541597391	
N	1.680062432	-0.945942026 -1.081325955	
C	-1.436953752	0.931684657 1.120517801	
C	-1.892229620	0.539367314 2.387876558	
C	-2.88/441435	1.268351197 3.050000013	
C	-3.448319899	2.400593201 2.45/414280	
C	-2.999967855	2.800015315 1.196242933	
C	-2.004808307	2.074337626 0.534621790	
H	-1.470833796	-0.333018218 2.874876105	
H	-3.222227602	0.944767903 4.032784650	
Н	-4.221727535	2.964921737 2.971629122	
H	-3.422152375	3.683664379 0.723004054	
H	-1.636676639	2.389530878 -0.435313067	
Pt	0.005646653	-0.055526966 0.042792815	
F	0.028385335	1.498984142 -1.365835955	
6b (T ₁) $ = 2.028594$			

<s-< th=""><th>2 = 2.028394</th><th></th><th></th></s-<>	2 = 2.028394		
С	-0.216448168	-1.750567003	1.117133427
С	0.524214307	-2.138671180	2.234447298
С	0.313842046	-3.371342982	2.873464869
С	-0.677402786	-4.226640364	2.370494245
С	-1.426464036	-3.864850727	1.256093515
С	-1.209795041	-2.634339047	0.615575585
С	-1.967145667	-2.209923055	-0.572267819
С	-3.004872555	-2.914575205	-1.199706531
С	-3.615734779	-2.373771254	-2.327302597
С	-3.193865950	-1.137382352	-2.826432225
С	-2.163802697	-0.480115629	-2.164409044
С	1.154250570	-3.774347965	4.061312220

Η	1.277452511	-1.466796708 2.634965974
Н	-0.861492671	-5.181782036 2.854841523
Н	-2.185487597	-4.548639328 0.887712695
Н	-3.331518113	-3.870915934 -0.809366289
Н	-4.420288603	-2.914777271 -2.815679174
Н	-3.651140960	-0.693153551 -3.702940554
Н	-1.757515238	0.482258336 -2.462212293
Н	2.065096598	-4.294202635 3.738205778
Н	0.610638826	-4.453919008 4.724150503
Н	1.468336064	-2.902849806 4.643230200
Ν	-1.583840185	-1.013177996 -1.081252723
С	1.536843292	0.732580918 1.061345789
С	1,499678100	1.582483661 2.144121330
Ĉ	2.670983423	2.082350184 2.767164230
Ĉ	3.950053794	1.668640548 2.248168626
Č	4.054956055	0.826328848 1.184122832
C	2 862322428	0 314155559 0 526691893
Č	2.897233399	-0 540887740 -0 572950521
C	4 084640428	-1 047527283 -1 216102352
Č	3 988157789	-1 874691623 -2 304964982
Č	2 703172836	-2.231839576 -2.794815630
C	1 570440560	-1 724754091 -2 137203369
Č	2 606198237	3 023934504 3 931736191
н	0 539549578	1 888590040 2 545372530
Н	4.851310246	2.045232697 2.725843514
н	5.035088551	0 537089677 0 822014265
н	5.057070627	-0.766058698 -0.829931207
Н	4.882285149	-2.253525832 -2.788917331
н	2 580691544	-2.880076790 -3.654012456
н	0 573057844	-1 980290245 -2 482708699
н	3 060368321	3 994082748 3 685783728
н	3 164815802	2 633639464 4 793153507
Н	1.575609034	3.205216580 4.246671596
N	1.638678231	-0.924316991 -1.087156764
C	-1 459008553	0 931763330 1 129496145
C	-1 897720184	0 540754689 2 403275172
Č	-2.897643014	1.258477385 3.070683181
Ċ	-3.480526838	2.378914095 2.476814966
Ċ	-3.049009325	2.778023788 1.209580814
Ċ	-2.049002646	2.063219167 0.543444312
Ĥ	-1.459619112	-0.323167313 2.891108104
Н	-3.219110076	0.935565913 4.058168754
Н	-4.257751107	2.934599489 2.994742886
Н	-3.488252000	3.652978015 0.735618666
Н	-1.692767618	2.379153966 -0.430833581
Pt	-0.009968477	-0.045573342 0.043060860
F	-0.012675237	1.515429013 -1.367495180
6b'	(S_0)	
С	-0.182764344	-1.766424857 1.144921747
С	0.572078691	-2.130223426 2.261235097
С	0.375014173	-3.351227685 2.926193995
С	-0.617223268	-4.221307940 2.450848201
С	-1.380875929	-3.884334377 1.338688183
С	-1.178028383	-2.664784630 0.672825848
С	-1.955172069	-2.266014018 -0.511515323
С	-2.998265925	-2.987713454 -1.110496550
С	-3.629539161	-2.470658523 -2.237996231
С	-3.223037312	-1.240885639 -2.765565284
С	-2.186836417	-0.566335488 -2.131129642
С	1.230120713	-3.727166755 4.112483327
Н	1.327635623	-1.448168283 2.639178124

Н	-0.790842661	-5.167957920 2.955415755
Н	-2.141049879	-4.578442426 0.992602267
Н	-3.313608792	-3.938699169 -0.698272637
Н	-4 438257393	-3 024885134 -2 704190492
н	-3 696632164	-0.814894984 -3.642473894
н	-1 791691626	0.393031751 -2.452792494
н	2 134025708	-4 259927724 3 790809463
и Ц	0.602808538	A 386608731 A 800423450
п u	0.092000330	-4.380008731 4.800423430
11 NI	1.550150111	1.076401821 1.047005214
IN C	-1.380907720	-1.0/0491831 -1.04/903210
C	1.577445084	0./21441065 1.015211248
C	1.530300206	1.5843/0/44 2.112164168
C	2.692/39583	2.106245511 2.701372459
С	3.936909549	1.737232144 2.170637561
С	4.012418930	0.879038480 1.079816017
С	2.846193539	0.363083867 0.490580074
С	2.881782868	-0.551260715 -0.660396702
С	4.043749584	-1.001677995 -1.306629810
С	3.941454161	-1.866240170 -2.389821555
С	2.680044679	-2.279029720 -2.825786078
С	1.565853837	-1.800985868 -2.147580122
С	2.601298680	3.064118986 3.864990096
Н	0.568213067	1.861832309 2.529027705
Н	4.850184802	2.124014764 2.614984299
Н	4.990359447	0.610084677 0.692456101
Н	5.018048980	-0.675024547 -0.964630857
Н	4 838513195	-2.215300507 -2.891581786
н	2 558736573	-2.951326993 -3.667161955
н	0 559524305	-2 081643447 -2 438401370
н	2 551676803	4 102723007 3 514133684
и П	2.331070803	2 094651697 4 510127155
и П	1 70/018630	2.984051087 4.519127155
N N	1.704018030	0.068083850 1.102845170
IN C	1.006060299	-0.908083830 -1.102843170
C	-1.434/0410/	0.903244333 1.124030033
C	-1.8/0399802	0.332138300 2.4002/8134
C	-2.864204357	1.260/18985 3.068506188
C	-3.46/395331	2.385825245 2.492980595
C	-3.0202/4116	2.751013470 1.210972725
С	-2.030414115	2.032452871 0.540141870
Н	-1.437577049	-0.327510872 2.900075753
Н	-3.160882142	0.926826879 4.057376485
Η	-3.448296271	3.620137460 0.716967385
Η	-1.688550657	2.345584649 -0.440133639
Pt	0.000256943	-0.080818743 0.036374878
F	-0.020084137	1.454785459 -1.392876627
С	-4.563560020	3.207721933 3.195974409
С	-4.082724727	4.668070500 3.371522447
Н	-3.854860458	5.138621535 2.410425658
Н	-4.856516757	5.269240657 3.862956013
Н	-3.178170881	4.710031128 3.987751068
С	-5.849493877	3.196013896 2.335215707
H	-6.221829022	2.174417019 2.202890014
H	-6.638261354	3.784972066 2.817511000
Н	-5 676372482	3 620596299 1 341801619
C	-4 913370651	2 647671107 4 587912598
н	-5 280622550	1 620833310 4 530050567
н Ц	-1 0/2626114	2657030/27 = 5250702024
п п	-1.010000114	2.05/05045/ 5.259/85004
п	-3.093411044	5.201/05420 5.04082/205
6h'	(T ₁)	
່ປປ່	(11)	
$\leq S^2$	/=2.028613	

C -0.185493607 -1.758093052 1.139204992

С	0.573904707	-2.121187439 2.252398504
С	0.382000578	-3.343818135 2.915896237
С	-0.609747517	-4.215206135 2.442281584
С	-1.377398547	-3.878521624 1.332684858
С	-1.179387865	-2.657789664 0.667848581
С	-1.957602315	-2.259472863 -0.515561131
С	-2.999377531	-2.982181049 -1.115267760
С	-3.630876493	-2.465014424 -2.242618605
С	-3.225809909	-1.234251179 -2.768877801
С	-2.190980076	-0.558359369 -2.133554470
С	1.242057364	-3.719505379 4.098651612
Н	1.327553775	-1.436758692 2.630199087
Η	-0.779584653	-5.163018792 2.945895597
Η	-2.136409667	-4.574169971 0.987203918
Η	-3.313272658	-3.934017680 -0.703896215
Н	-4.438541789	-3.020002109 -2.709722426
Η	-3.699492425	-0.808328435 -3.645768456
Η	-1.796299972	0.401934145 -2.452996518
Н	2.149699578	-4.243001127 3.772401217
Н	0.711146462	-4.387038920 4.783684119
Η	1.561825930	-2.835137460 4.657588192
Ν	-1.590962133	-1.068886485 -1.050521563
С	1.547034595	0.737210378 1.014830849
С	1.518743954	1.599955326 2.087828518
С	2.694562540	2.122811833 2.682599515
С	3.969176471	1.719976007 2.144428004
С	4.065605329	0.865431671 1.089352040
С	2.868002098	0.328129472 0.461709061
С	2.894223392	-0.543836856 -0.624900317
С	4.076451912	-1.045789221 -1.281256497
С	3.971289544	-1.893510838 -2.353388733
С	2.682529939	-2.276583047 -2.812835259
С	1.555303254	-1.772253639 -2.143615130
С	2.638939841	3.078509242 3.836146110
Н	0.561881197	1.898372966 2.502449799
Н	4.874039530	2.114969151 2.599937525

Н	5.042685753	0.584653620	0.712613812
Н	5.051946662	-0.744455603	-0.918508313
Н	4.861500951	-2.268893568	-2.847174227
Η	2.553138560	-2.941796283	-3.657936125
Н	0.555250320	-2.046603001	-2.466370341
Н	3.074968808	4.051456416	3.569270032
Н	3.218994530	2.707065856	4.691719246
Н	1.612068617	3.249941249	4.168292529
Ν	1.631804102	-0.952250856	-1.109439968
С	-1.447358224	0.911131381	1.126351557
С	-1.871687843	0.544236072	2.407861160
С	-2.867762756	1.266898865	3.078941373
С	-3.485591551	2.382772956	2.500903252
С	-3.050380354	2.744794717	1.213816524
С	-2.058065277	2.031634598	0.540857265
Н	-1.427435203	-0.308796863	2.909642818
Н	-3.154812262	0.935992361	4.071688412
Н	-3.489917930	3.607116339	0.717922121
Н	-1.724721912	2.342806447	-0.443101922
Pt	-0.008216682	-0.070388857	0.033565097
F	-0.047611019	1.468051525	-1.400958015
С	-4.584946549	3.198302138	3.206384125
С	-4.117305692	4.664339753	3.369767098
Н	-3.900584685	5.131156638	2.404287737
Н	-4.893580289	5.260982523	3.862808880
Η	-3.209048797	4.718954337	3.979555737
С	-5.876556161	3.168868712	2.354592130
Η	-6.239786970	2.142913509	2.231011657
Η	-6.667760605	3.753084920	2.838682636
Η	-5.714346241	3.588970031	1.357437917
С	-4.919857395	2.643558987	4.604100813
Н	-5.286463514	1.612791795	4.556045444
Н	-4.050734385	2.665429375	5.269938160
Н	-5.704684682	3.252829324	5.064621177

6. References

- 1 I. B. Seiple, S. Su, R. A. Rodriguez, R. Gianatassio, Y. Fujiwara, A. L. Sobel and P. S. Baran, J Am Chem Soc, 2010, **132**, 13194–13196.
- 2 G. M. Sheldrick, Acta Crystallogr., Sect. A Found. Crystallogr., 2008, 64, 112–122.
- 3 G. M. Sheldrick, Acta Crystallogr. Sect. A Found. Adv., 2015, 71, 3–8.
- 4 A. L. Spek, Acta Crystallogr. Sect. C Struct. Chem., 2015, 71, 9–18.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V Ortiz, J. Cioslowski and D. J. Fox, *Gaussian 09, Revision A02*, Gaussian Inc, Wallingford, CT, 2009.
- 6 A. Becke, J. Chem. Phys., 1993, **98**, 5648–5652.
- 7 C. T. Lee, W. T. Yang and R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785–789.
- 8 P. C. Hariharan and J. A. Pople, *Theor. Chim. Acta*, 1973, **28**, 213–222.
- 9 M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. Defrees and J. A. Pople, *J. Chem. Phys.*, 1982, 77, 3654–3665.
- 10 P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299–310.
- 11 D. Escudero and W. Thiel, *Inorg Chem*, 2014, **53**, 11015–11019.
- 12 J. Tomasi, B. Mennucci and R. Cammi, *Chem. Rev.*, 2005, **105**, 2999–3093.
- 13 E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales and F. Weinhold, *NBO 5.9*, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2009.