A Nd₆ Molecular Butterfly: An Unique All-in-One Material for SMM, MCE and Maiden Photosensitized Optoelectronic Device Fabrication.

Krishna Sundar Das, Sayan Saha, Baisakhi Paul, Amit Adhikary, Shruti Moorthy, Sukhen Bala, Sohel Akhtar, Pradipta Ghosh, Saurabh Kumar Singh,^{*} Partha Pratim Roy,^{*} Raju Mondal^{*}

Supporting Information

1.	Crystallographic Data and Refinement Parameters3
2.	Selected Bond Lengths and Angles
3.	Image of Single Crystal and PXRD Data7
4.	Characterization data
5.	Ligation of Nd Centers10
6.	Various Structural Aspects of the Compound 11
7.	EDX Data
8.	Continuous Shape Measurements (CShM) data13
9.	Geometry Analysis by Continuous Shape Measurements14
10.	AC Plots14
11.	Monomeric models of the Nd ₆ cluster15
12.	CASSCF+RASSI-SO computed orientation of ground state g-tensor 15
13.	SINGLE_ANISO computed wave function decomposition analysis16
14.	SINGLE_ANISO computed g-tensors, and the angle of deviation from
	ground state gzz orientation 17
15.	CASSCF computed Loprop charges on the first coordinating atoms of all
	unique centres18
16.	SINGLE_ANISO computed crystal field parameters for Nd centers19
17.	RASSI-SO computed parameters20-28

Empirical formula	$C_{83}H_{81}N_{41}Nd_6O_{39}$
Formula weight	3142.32
Temperature/K	120(2)
Crystal system	monoclinic
Space group	C 2/c
a/Å	25.0768(12)
b/Å	17.7222(8)
c/Å	30.3551(15)
α/°	90
β/°	106.586(2)
$\gamma/^{\circ}$	90
Volume/Å ³	12929.0(11)
Z	4
no. of rflns collected	77497
no. of unique rflns	14915
no. of obsd rflns $(I \ge 2\sigma(I))$	9525
R1 (I > $2\sigma(I)$)	0.0836
wR2 ($> 2\sigma(I)$)	0.2226
CCDC no.	2085378

Table S1. Crystallographic data and refinement parameters of Nd₆.

 Table S2. Selected bond lengths and bond angles

Nd ₆ complex				
Bond lengths	Bond angles			
Nd1 O1S 2.424(4)	O1S Nd1 O2 117.6(2)	N6 Nd3 O1SD 88.1(3)		
Nd1 O2 2.482(6)	O1S Nd1 O1SC 76.9(2)	O1 Nd3 C1SD 99.7(3)		
Nd1 O1SC 2.489(6)	O2 Nd1 O1SC 63.85(19)	O2 Nd3 C1SD 96.2(3)		
Nd1 O1A 2.490(7)	O1S Nd1 O1A 117.4(2)	O2S Nd3 C1SD 150.1(3)		
Nd1 O2SA 2.511(6)	O2 Nd1 O1A 125.0(2)	O2SD Nd3 C1SD 24.9(3)		
Nd1 O2SB 2.544(6)	O1SC Nd1 O1A 130.8(2)	N9 Nd3 C1SD 101.4(3)		
Nd1 O1SA 2.548(6)	O1S Nd1 O2SA 74.9(2)	O1SC Nd3 C1SD 69.8(3)		
Nd1 N11 2.585(8)	O2 Nd1 O2SA 132.0(2)	N5 Nd3 C1SD 78.9(4)		
Nd1 N3A 2.594(7)	O1SC Nd1 O2SA 151.8(2)	O1SB Nd3 C1SD 139.1(3)		

Nd2 O1S 2.453(9)	O1A Nd1 O2SA 64.3(2)	N6 Nd3 C1SD 82.1(3)
Nd2 O1 2.457(6)	O1S Nd1 O2SB 72.51(14)	O1SD Nd3 C1SD 24.0(3)
Nd2 O1 2.457(6)	O2 Nd1 O2SB 69.31(19)	O1A Nd4 O1A 122.0(3)
Nd2 O1SB 2.503(6)	O1SC Nd1 O2SB 100.1(2)	O1A Nd4 O1SS 118.3(4)
Nd2 O1SB 2.503(6)	O1A Nd1 O2SB 128.9(2)	O1A Nd4 O1SS 76.3(3)
Nd2 N3 2.557(8)	O2SA Nd1 O2SB 72.03(19)	O1A Nd4 O1SS 76.3(3)
Nd2 N3 2.557(8)	O1S Nd1 O1SA 72.88(14)	O1A Nd4 O1SS 118.3(4)
Nd2 O2SC 2.573(6)	O2 Nd1 O1SA 128.56(19)	O1SS Nd4 O1SS 151.7(5)
Nd2 O2SC 2.573(6)	O1SC Nd1 O1SA 71.4(2)	O1A Nd4 O3SS 74.3(4)
Nd3 O1 2.429(6)	O1A Nd1 O1SA 69.6(2)	O1A Nd4 O3SS 117.3(4)
Nd3 O2 2.499(6)	O2SA Nd1 O1SA 99.4(2)	O1SS Nd4 O3SS 48.8(4)
Nd3 O2S 2.514(8)	O2SB Nd1 O1SA 145.39(18)	O1SS Nd4 O3SS 124.4(5)
Nd3 O2SD 2.518(7)	O1S Nd1 N11 139.74(18)	O1A Nd4 O3SS 117.3(4)
Nd3 N9 2.558(7)	O2 Nd1 N11 64.2(2)	O1A Nd4 O3SS 74.3(4)
Nd3 O1SC 2.586(6)	O1SC Nd1 N11 126.8(2)	O1SS Nd4 O3SS 124.4(5)
Nd3 N5 2.597(8)	O1A Nd1 N11 74.2(2)	O1SS Nd4 O3SS 48.8(4)
Nd3 O1SB 2.599(5)	O2SA Nd1 N11 77.4(2)	O3SS Nd4 O3SS 157.7(7)
Nd3 N6 2.709(8)	O2SB Nd1 N11 71.5(2)	O1A Nd4 N5A 60.0(3)
Nd3 O1SD 2.724(9)	O1SA Nd1 N11 140.9(2)	O1A Nd4 N5A 172.7(4)
Nd3 C1SD 2.961(13)	O1S Nd1 N3A 143.01(18)	O1SS Nd4 N5A 96.6(5)
Nd4 O1A 2.486(6)	O2 Nd1 N3A 73.3(2)	O1SS Nd4 N5A 68.8(5)
Nd4 O1A 2.486(6)	O1SC Nd1 N3A 77.9(2)	O3SS Nd4 N5A 55.7(5)
Nd4 O1SS 2.493(10)	O1A Nd1 N3A 63.4(2)	O3SS Nd4 N5A 111.6(5)
Nd4 O1SS 2.494(10)	O2SA Nd1 N3A 126.2(2)	O1A Nd4 N5A 172.7(4)
Nd4 O3SS 2.560(13)	O2SB Nd1 N3A 138.8(2)	O1A Nd4 N5A 60.0(3)
Nd4 O3SS 2.560(13)	O1SA Nd1 N3A 73.7(2)	O1SS Nd4 N5A 68.8(5)
Nd4 N5A 2.605(11)	N11 Nd1 N3A 77.3(3)	O1SS Nd4 N5A 96.6(5)
Nd4 N5A 2.605(11)	O1S Nd2 O1 118.65(16)	O3SS Nd4 N5A 111.6(5)
Nd4 N6A 2.607(12)	O1S Nd2 O1 118.65(16)	O3SS Nd4 N5A 55.7(5)
Nd4 O2SA 2.614(6)	O1 Nd2 O1 122.7(3)	N5A Nd4 N5A 119.1(5)
Nd4 O2SA 2.614(6)	O1S Nd2 O1SB 77.17(14)	O1A Nd4 N6A 119.02(15)
Nd4 N1SS 2.89(2)	O1 Nd2 O1SB 130.4(2)	O1SS Nd4 N6A 75.8(2)
	O1 Nd2 O1SB 64.2(2)	O3SS Nd4 N6A 78.9(3)
	O1S Nd2 O1SB 77.17(14)	N5A Nd4 N6A 59.6(2)
	O1 Nd2 O1SB 64.2(2)	O1A Nd4 O2SA 69.5(2)
	O1 Nd2 O1SB 130.4(2)	O1A Nd4 O2SA 62.9(2)

O1SB Nd2 O1SB 154.3(3)	O1SS Nd4 O2SA 72.1(3)
O1S Nd2 N3 137.80(19)	O1SS Nd4 O2SA 135.6(3)
O1 Nd2 N3 63.5(2)	O3SS Nd4 O2SA 72.2(4)
O1 Nd2 N3 74.7(3)	O3SS Nd4 O2SA 128.8(4)
O1SB Nd2 N3 74.2(2)	N5A Nd4 O2SA 113.8(3)
O1SB Nd2 N3 126.9(2)	N5A Nd4 O2SA 116.0(3)
O1S Nd2 N3 137.80(19)	N6A Nd4 O2SA 146.19(14)
O1 Nd2 N3 74.7(2)	O1A Nd4 O2SA 62.9(2)
O1 Nd2 N3 63.5(2)	O1A Nd4 O2SA 69.5(2)
O1SB Nd2 N3 126.9(2)	O1SS Nd4 O2SA 135.6(3)
O1SB Nd2 N3 74.2(2)	O1SS Nd4 O2SA 72.1(3)
N3 Nd2 N3 84.4(4)	O3SS Nd4 O2SA 128.8(4)
O1S Nd2 O2SC 72.44(15)	O3SS Nd4 O2SA 72.2(4)
O1 Nd2 O2SC 129.1(2)	N5A Nd4 O2SA 116.0(3)
O1 Nd2 O2SC 70.0(2)	N5A Nd4 O2SA 113.8(3)
O1SB Nd2 O2SC 100.14(19)	N6A Nd4 O2SA 146.18(14)
O1SB Nd2 O2SC 71.93(18)	O2SA Nd4 O2SA 67.6(3)
N3 Nd2 O2SC 142.8(2)	O1A Nd4 N1SS 93.3(3)
N3 Nd2 O2SC 69.6(2)	O1A Nd4 N1SS 97.9(3)
O1S Nd2 O2SC 72.44(15)	O1SS Nd4 N1SS 146.1(4)
O1 Nd2 O2SC 70.0(2)	O1SS Nd4 N1SS 21.8(3)
O1 Nd2 O2SC 129.1(2)	O3SS Nd4 N1SS 144.3(4)
O1SB Nd2 O2SC 71.93(18)	O3SS Nd4 N1SS 27.2(4)
O1SB Nd2 O2SC 100.14(19)	N5A Nd4 N1SS 88.9(5)
N3 Nd2 O2SC 69.6(2)	N5A Nd4 N1SS 79.4(5)
N3 Nd2 O2SC 142.8(2)	N6A Nd4 N1SS 78.4(3)
O2SC Nd2 O2SC 144.9(3)	O2SA Nd4 N1SS 135.3(4)
O1 Nd3 O2 121.4(2)	O2SA Nd4 N1SS 67.8(4)
O1 Nd3 O2S 83.5(2)	Nd1 O1S Nd1 121.7(4)
O2 Nd3 O2S 107.5(2)	Nd1 O1S Nd2 119.14(18)
O1 Nd3 O2SD 123.4(2)	Nd1 O1S Nd2 119.14(18)
O2 Nd3 O2SD 77.1(2)	Nd3 O2S H2SA 109.5
O2S Nd3 O2SD 146.4(2)	O1SS N1SS Nd4 58.1(11)
O1 Nd3 N9 158.4(3)	O3SS N1SS Nd4 62.2(10)
O2 Nd3 N9 60.6(2)	O2SS N1SS Nd4 166.4(12)
O2S Nd3 N9 76.0(2)	N1SS O1SS Nd4 100.2(12)

O2SD Nd3 N9 78.1(2)	N1SS O3SS Nd4 90.5(11)
O1 Nd3 O1SC 71.4(2)	C1SA O1SA Nd1 115.5(6)
O2 Nd3 O1SC 62.24(18)	C1SA O2SA Nd1 125.4(5)
O2S Nd3 O1SC 137.5(2)	C1SA O2SA Nd4 122.7(5)
O2SD Nd3 O1SC 74.8(2)	Nd1 O2SA Nd4 109.7(2)
N9 Nd3 O1SC 120.5(2)	C1SB O1SB Nd2 122.3(5)
O1 Nd3 N5 61.2(2)	C1SB O1SB Nd3 126.9(5)
O2 Nd3 N5 174.9(3)	Nd2 O1SB Nd3 108.1(2)
O2S Nd3 N5 76.8(3)	C1SB O2SB Nd1 115.9(5)
O2SD Nd3 N5 97.8(3)	C1SC O1SC Nd1 121.7(5)
N9 Nd3 N5 119.0(2)	C1SC O1SC Nd3 124.2(5)
O1SC Nd3 N5 116.5(2)	Nd1 O1SC Nd3 111.3(2)
O1 Nd3 O1SB 63.1(2)	C1SC O2SC Nd2 116.5(6)
O2 Nd3 O1SB 68.22(19)	C1SD O1SD Nd3 89.1(8)
O2S Nd3 O1SB 68.7(2)	C1SD O2SD Nd3 97.7(7)
O2SD Nd3 O1SB 138.6(2)	O1SD C1SD Nd3 66.9(7)
N9 Nd3 O1SB 102.5(2)	O2SD C1SD Nd3 57.4(6)
O1SC Nd3 O1SB 69.49(19)	Nd3 C1SD H1SB 174.8
N5 Nd3 O1SB 116.3(2)	C9 O1 Nd3 119.2(6)
O1 Nd3 N6 118.4(2)	C9 O1 Nd2 124.4(6)
O2 Nd3 N6 119.5(2)	Nd3 O1 Nd2 115.5(3)
O2S Nd3 N6 70.6(3)	C19 O2 Nd1 122.6(5)
O2SD Nd3 N6 78.3(2)	C19 O2 Nd3 120.4(5)
N9 Nd3 N6 60.7(2)	Nd1 O2 Nd3 114.6(2)
O1SC Nd3 N6 151.8(2)	C8 N3 Nd2 120.1(6)
N5 Nd3 N6 59.0(3)	N2 N3 Nd2 134.1(6)
O1SB Nd3 N6 138.7(2)	C10 N5 Nd3 125.3(7)
O1 Nd3 O1SD 76.5(2)	N4 N5 Nd3 118.4(6)
O2 Nd3 O1SD 113.4(2)	C12 N6 Nd3 120.9(7)
O2S Nd3 O1SD 139.0(3)	C16 N6 Nd3 120.3(6)
O2SD Nd3 O1SD 48.9(2)	C17 N9 Nd3 126.6(6)
N9 Nd3 O1SD 123.9(2)	N10 N9 Nd3 121.2(5)
O1SC Nd3 O1SD 67.7(2)	N12 N11 Nd1 138.5(6)
N5 Nd3 O1SD 62.3(3)	C20 N11 Nd1 117.3(6)

Figure S1. Image of the single crystals.

PXRD Data:

Figure S2. PXRD data of the 'big' single crystal showing its phase purity.

Characterization Data:

Figure S5. IR data of BMPC ligand.

Figure S6. IR data of Nd6 compound.

Ligation of Nd centers:

Figure S7. Ligation to different metal centers such as (a)Nd1, (b)Nd2, (c)Nd3 and (d)Nd4.

Scheme S1. Generation of formic acid.

Figure S8. Formate binding to the Nd₆ core.

Figure S9. Extensive supramolecular interactions (π - π and C-H- π) with the adjacent Nd₆ molecules.

Figure S10. EDX data from FESEM study.

Figure S11. EDX data from FEGTEM study.

Fable S3	. Percentage	of elements	from	FEGTEM	study.
----------	--------------	-------------	------	--------	--------

Element	Weight%	Atomic%
С	37.18	65.93
Ν	8.43	12.82
0	11.17	14.86
Nd	43.22	6.38

	EP-9	OPY-9	HBPY-9	JTC-9	JCCU	-9 CCU-	9 JCSAPR-9
	(D _{9h})	(C_{8v})	(D_{7h})	(C _{3v})	(C_{4v})	(C_{4v})	(C _{4v})
Nd1	36.981	22.357	18.648	16.470	10.93	2 9.542	2.359
	JTCTPR-	9 TCTP	R-9 JTDI	С-9 Н	H-9	MFF-9	
	(D _{3h})	(D ₃₁	h) (C ₃	v) ((C_{2v})	(C_s)	
	3.317	0.99	9 11.30	01 10	.096	1.431	
	EP-9	OPY-9	HBPY-9	JTC-9	JCCU	-9 CCU-	9 JCSAPR-9
NT 10	(D _{9h})	(C_{8v})	(D_{7h})	(C _{3v})	(C_{4v})	(C_{4v})	(C _{4v})
Nd2	36.161	21.241	19.251	16.736	11.29	9 9.839	2.561
	CSAPR-9) JTCTPI	R-9 TCTP	R-9 JT	DIC-9	HH-9	MFF-9
	(C _{4v})	(D _{3h})	(D ₃	h) (C _{3v})	(C _{2v})	(C _s)
	1.370	3.500	0.74	49 10).273	10.754	1.890
	DP-10	EPY-10	OBPY-10	PPR-10	PAPR	-10 JBCCU	J-10 JBCSAPR-
NT 12	(\mathbf{D}_{10h})	(C_{9v})	(D _{8h})	(D _{5h})	(D _{5d}	(D_{4h})) (D _{4d})
	(2 1011)						
Nd3	36.135	24.813	16.149	11.462	9.889	11.981	5.051
INd3	36.135 JMBIC-1	24.813 0 JATDI	16.149 -10 JSPC	11.462 -10 SD	9.889 D-10	11.981 TD-10	5.051 HD-10
Nd3	36.135 JMBIC-1 (C _{2v})	24.813 0 JATDI (C _{3v})	16.149 -10 JSPC) (C ₂	11.462 -10 SD	9.889 D-10 D ₂)	11.981 TD-10 (C _{2v})	5.051 HD-10 (D _{4h})
Nd3	36.135 JMBIC-1 (C _{2v}) 5.414	24.813 0 JATDI (C _{3v}) 17.63	16.149 -10 JSPC) (C ₂ 9 4.00	11.462 -10 SD (I 5 3.2	9.889 D-10 D ₂) 343	11.981 TD-10 (C _{2v}) 3.049	5.051 HD-10 (D _{4h}) 9.091
Nd3	36.135 JMBIC-1 (C _{2v}) 5.414 HP-11	24.813 0 JATDI (C _{3v}) 17.63 DPY-11	16.149 -10 JSPC-) (C ₂ 9 4.00 EBPY-1	11.462 -10 SD () (I 5 3.2 1 JCPP	9.889 D-10 D ₂) 343 R-11	11.981 TD-10 (C _{2v}) 3.049 JCPAPR-1	5.051 HD-10 (D _{4h}) 9.091 JAPPR-11
Nd3	$(C = 101)^{36.135}$ $JMBIC-1$ (C_{2v}) 5.414 $HP-11$ (D_{11h})	24.813 0 JATDI (C _{3v}) 17.63 DPY-11 (C _{10v})	16.149 -10 JSPC-) (C ₂ 9 4.00 EBPY-1 (D _{9h})	11.462 10 SD (I 5 3.2 1 JCPP (C ₅	9.889 D-10 D ₂) 343 R-11	11.981 TD-10 (C _{2v}) 3.049 JCPAPR-11 (C _{5v})	5.051 HD-10 (D _{4h}) 9.091 JAPPR-11 (C _{2v})
Nd3	36.135 JMBIC-1 (C _{2v}) 5.414 HP-11 (D _{11h}) 36.963	24.813 0 JATDI (C _{3v}) 17.63 DPY-11 (C _{10v}) 25.182	16.149 -10 JSPC-) (C ₂ 9 4.00 EBPY-1 (D _{9h}) 17.147	11.462 -10 SD (I) (I 5 3.2 1 JCPP (C ₅ 8.8	9.889 D-10 D ₂) 343 R-11 w) 51	11.981 TD-10 (C _{2v}) 3.049 JCPAPR-11 (C _{5v}) 3.835	5.051 HD-10 (D _{4h}) 9.091 I JAPPR-11 (C _{2v}) 12.668
Nd3	36.135 JMBIC-1 (C _{2v}) 5.414 HP-11 (D _{11h}) 36.963 JASPC-1	24.813 0 JATDI (C _{3v}) 17.63 DPY-11 (C _{10v}) 25.182 1	16.149 -10 JSPC-) (C ₂ 9 4.00 EBPY-1 (D _{9h}) 17.147	11.462 -10 SD (I) (I 5 3.3 1 JCPP (C ₅ 8.8	9.889 D-10 D ₂) 343 R-11 _{iv}) 51	11.981 TD-10 (C _{2v}) 3.049 JCPAPR-11 (C _{5v}) 3.835	5.051 HD-10 (D _{4h}) 9.091 1 JAPPR-11 (C _{2v}) 12.668
Nd3	36.135 JMBIC-1 (C _{2v}) 5.414 HP-11 (D _{11h}) 36.963 JASPC-1 (C _s)	24.813 0 JATDI (C _{3v}) 17.63 DPY-11 (C _{10v}) 25.182 1	16.149 -10 JSPC) (C ₂ 9 4.00 EBPY-1 (D _{9h}) 17.147	11.462 -10 SD () (I 5 3.1 1 JCPP (C ₅ 8.8	9.889 D-10 D ₂) 343 R-11 ₅₁	11.981 TD-10 (C _{2v}) 3.049 JCPAPR-11 (C _{5v}) 3.835	5.051 HD-10 (D _{4h}) 9.091 I JAPPR-11 (C _{2v}) 12.668

Table S4. Nd(III) geometry analysis by using Continuous Shape Measurements (CShM).^{1,2}

Where, EP-9: Enneagon, OPY-9: Octagonal pyramid, HBPY-9: Heptagonal bipyramid JTC-9: Johnson triangular cupola J3, JCCU-9: Capped cube J8, CCU-9: Spherical-relaxed capped cube, JCSAPR-9: Capped square antiprism J10, JTCTPR-9: Tricapped trigonal prism J51, TCTPR-9: Spherical tricapped trigonal prism, JTDIC-9: Tridiminished icosahedron J63, HH-9: Hula-hoop, MFF-9: Muffin, DP-10: Decagon, EPY-10: Enneagonal pyramid, OBPY-10: Octagonal bipyramid, PPR-10: Pentagonal prism, JBCCU-10: Bicapped cube J15, JBCSAPR-10: Bicapped square antiprism J17, JMBIC-10: Metabidiminished icosahedron J62, JATDI-10: Augmented tridiminished icosahedron J64, JSPC-10: Sphenocorona J87, SDD-10: Staggered Dodecahedron (2:6:2), TD-10: Tetradecahedron (2:6:2), HD-10: Hexadecahedron (2:6:2) or (1:4:4:1), HP-11: Hendecagon, DPY-11: Decagonal pyramid, EBPY-11: Enneagonal bipyramid, JCPPR-11: Capped pentagonal prism J9, JCPAPR-11: Capped pentagonal antiprism J11, JAPPR-11: Augmented pentagonal prism J52, JASPC-11: Augmented sphenocorona J87.

Nd1		Nd	2	
C. N 9 Symm D _{3h} Geom Spherical tricapped trigonal prism		C. N 9 Symm D _{3h} Geom Spherical tricapped trigonal prism		
Nd3		Nd4		
C. N 10 Symm C _{2v} Geom Tetradecahedron		C. N 11 Symm C _{2v} Geom Capped pentagonal antiprism		

Table S5. Plausible Nd(III) geometries on the basis of CShM.

Figure S12. AC data sowing (a) out of phase magnetic succeptibility plot at different DC fields and (b) cole-cole plot.

Figure S13. Monomeric models of the Nd₆ cluster. (Colour code: Orange (Nd), blue (N), red (O), grey (C) and H (white)).

Figure S14. CASSCF+RASSI-SO computed orientation of ground state g-tensor of Nd(III) on each monomeric model. (Colour code: Orange (Nd), blue (N), red (O), grey (C) and H (white)).

Table S6. SINGLE_ANISO computed wave function decomposition analysis for all the Nd(III) centres. The major dominating values are kept in bold.

$\pm m_J$	wave function decomposition analysis Nd1
KD1	65.8 % ±9/2⟩ + 19.6% ±5/2⟩ + 7.2% ±3/2⟩ + 5.3% ±1/2⟩
KD2	36.2 % ±3/2 ⟩ + 29.8% ±5/2⟩ + 15.6% ±1/2⟩ + 9.7% ±9/2⟩
KD3	42.8 % ±7/2> + 21.6% ±3/2> + 18.9% ±5/2> + 9.3% ±1/2>
KD4	65.6 % ±1/2⟩ + 19.1% ±3/2⟩ + 12.9% ±9/2⟩
KD5	45.3 % ±7/2 ⟩ + 30.6% ±5/2⟩ + 15.7% ±3/2⟩

$\pm m_J$	wave function decomposition analysis Nd2
KD1	64.7 % ±9/2> + 16.7% ±5/2> + 10.2% ±1/2> +7.2% ±3/2>
KD2	36.4 % $ \pm 5/2\rangle + 30.5\% \pm 3/2\rangle + 13.3\% \pm 9/2\rangle + 12.0\% \pm 1/2\rangle$
KD3	49.0 % $ \pm 7/2\rangle + 25.7\% \pm 3/2\rangle + 17.7\% \pm 5/2\rangle$
KD4	30.4 % ±7/2⟩ + 29.0% ±3/2⟩ + 18.6% ±1/2⟩+ 14.5% ±3/2⟩
KD5	54.1 % $ \pm 1/2\rangle + 14.5\% \pm 5/2\rangle + 11.9\% \pm 9/2\rangle + 11.8\% \pm 7/2\rangle$

$\pm m_J$	wave function decomposition analysis Nd3
KD1	45.4% ±9/2 ⟩+ 21.1% ±5/2⟩ + 14.9% ±1/2⟩ + 14.0% ±7/2⟩
KD2	33.6% $ \pm 3/2\rangle + 29.50\% \pm 5/2\rangle + 17.8\% \pm 9/2\rangle + 10.0\% \pm 1/2\rangle$
KD3	40.8% $ \pm 7/2\rangle + 21.3\% \pm 1/2\rangle + 18.8\% \pm 3/2\rangle + 10.6\% \pm 9/2\rangle$
KD4	27.9% $ \pm 5/2\rangle + 25.2\% \pm 3/2\rangle + 24.7\% \pm 7/2\rangle + 11.6\% \pm 1/2\rangle$
KD5	41.9% $ \pm 1/2\rangle$ + 17.9% $ \pm 3/2\rangle$ + 15.4% $ \pm 9/2\rangle$ + 13.1% $ \pm 5/2\rangle$

$\pm m_J$	wave function decomposition analysis Nd4
KD1	62.0% ± 9/2⟩+ 14.7% ±3/2⟩ + 14.6% ±5/2⟩
KD2	45.1% ± 5/2⟩ + 28.9% ±7/2⟩ + 12.9% ±9/2⟩
KD3	46.4 % $ \pm 3/2\rangle + 18.0\% \pm 1/2\rangle + 13.3\% \pm 9/2\rangle$
KD4	57.3% ±1/2 ⟩ + 16.5% ±7/2⟩
KD5	39.8% $ \pm 7/2\rangle$ + 22.4% $ \pm 3/2\rangle$ + 21.1% $ \pm 5/2\rangle$

Nd1						
Energy (cm ⁻¹)	g_{xx}	g_{vv}	g_{zz}	heta		
0.0	0.702	1.541	4.869	0.0		
114.1	0.112	0.942	4.330	21.5		
194.4	0.414	1.776	3.644	67.6		
342.6	0.078	0.853	5.327	50.3		
364.4	0.792	2.053	3.940	72.2		

Table S7. SINGLE_ANISO computed g-tensors, and the angle of deviation from ground state g_{zz} orientation.

Nd2

Energy (cm ⁻¹)	g_{xx}	g_{vv}	\boldsymbol{g}_{zz}	heta
0.0	0.6425	1.7337	4.6660	0.0
107.5	1.1395	1.6824	3.0701	115.7
165.8	3.1396	2.5348	0.2080	111.4
335.6	3.1645	1.9866	0.4226	28.0
354.7	3.5485	2.2186	0.2271	144.0

Nd3

		1 (40		
Energy (cm ⁻¹)	g_{xx}	g_{vv}	g_{zz}	θ
0.0	1.205	2.486	3.810	0.0
85.2	0.435	0.967	4.158	85.6
154.6	0.388	1.406	3.979	123.1
355.5	1.257	1.616	3.381	71.0
447.0	0.070	0.550	4.961	99.7

Nd4

		1144		
Energy (cm ⁻¹)	g_{xx}	g_{vv}	g_{zz}	heta
0.0	0.902	1.794	3.959	0.0
42.0	0.793	0.844	3.738	90.3
167.6	0.006	0.854	4.397	90.2
459.6	0.123	0.315	4.856	90.2
507.0	1.511	1.548	4.459	89.8

Figure S15. CASSCF computed Loprop charges on the first coordinating atoms of all unique centres.

Table S8. SINGLE_ANISO computed crystal field parameters for Nd1 to Nd4 centres. The

$$\hat{H}_{CF} = \sum_{k=-q} \sum_{k=-q}^{q} B_k^q O_k^q \quad \text{an}$$

CF parameters were computed using the following equation,

and here

_		-	-		
ъa	00				
B ¹ 1	U_{1}^{n} 1 1	C 11	1.0	•	. 1
- kand	^w Kare the crystal	field param	eters and Ste	ven's operator.	respectively.
una	are the orystar	neia param		vens operator,	respectively.

k	q	B_k^q	B_k^q	B_k^q	B_k^q
		Nd1	Nd2	Nd3	Nd4
2	-2	-8.36E-01	2.60E-01	-1.82E+00	7.04E-01
	-1	-1.25E+00	-4.52E-01	-6.38E-02	7.88E-03
	0	-2.20E+00	-1.59E+00	-1.80E+00	-3.20E+00
	1	4.04E+00	-5.34E-01	-1.63E+00	-2.69E-01
	2	8.67E-01	2.41E-01	3.53E+00	5.43E+00
4	-4	-8.14E-02	-3.36E-02	-3.25E-02	-7.26E-02
	-3	-3.49E-02	-1.85E-02	2.91E-02	-4.83E-03
	-2	-4.78E-03	9.75E-03	4.48E-02	8.85E-04
	-1	-1.33E-02	2.65E-03	-4.15E-03	1.69E-03
	0	-1.52E-02	-3.07E-03	8.28E-04	-7.59E-03
	1	1.63E-02	7.74E-03	6.71E-02	-4.04E-03
	2	4.58E-02	9.99E-03	2.10E-03	-1.36E-02
	3	1.33E-01	-3.89E-03	-1.80E-01	-8.51E-03
	4	-1.68E-02	7.90E-03	3.78E-02	-1.91E-02
6	-6	1.05E-02	-1.24E-03	5.02E-03	2.41E-02
	-5	-4.16E-03	-2.88E-03	-4.21E-02	-6.37E-05
	-4	1.13E-02	2.99E-03	-1.60E-02	-7.07E-03
	-3	-5.66E-03	7.39E-04	-9.63E-03	5.27E-04
	-2	-8.60E-03	1.75E-03	-2.34E-04	-8.26E-03
	-1	-1.88E-04	2.46E-04	2.88E-03	5.75E-04
	0	-1.05E-03	-2.97E-04	-4.39E-04	-1.72E-03
	1	1.51E-03	3.56E-04	1.08E-02	-2.01E-04
	2	7.05E-03	-2.14E-03	8.92E-03	-1.87E-02
	3	2.62E-03	2.88E-03	6.18E-03	-6.19E-04
	4	-7.81E-03	3.97E-03	-8.74E-03	-1.34E-02
	5	-2.22E-02	-7.26E-03	-1.75E-02	-6.83E-04
	6	8.31E-03	-4.09E-03	-1.80E-02	8.41E-03

Table S9. RASSI-SO computed low-lying 35 quartets (in red) and 112 doublet states (in black) along with spin-orbit coupled states (in blue, Kramer doublets) for **Nd1**. All the values are reported here in cm⁻¹.

Nd1					
0.0	14670.9	34878.1	48191.4		
101.7	14684.9	34907.4	48205.5		
178.4	14696.1	34928.2	48263.3		
200.9	14702.3	34951.5	48288.9		
265.3	14703.0	34966.5	48294.7		
344.6	14737.5	35038.9	48369.4		
376.3	14754.6	35063.1	60933.9		
499.4	14758.9	35133.6	60948.8		
520.9	14762.8	35137.3	61043.9		
537.4	14780.0	35193.5	61108.3		
568.7	14784.0	35201.1	61205.0		
798.1	19270.9	35283.4	61222.0		
820.6	19279.9	35288.3	61281.0		
14621.7	19326.6	35472.5	61362.8		
14655.9	19343.6	35478.0	61368.3		
14723.9	19368.1	35627.8	86899.3		
14822.1	19412.1	35638.4	87049.9		
14827.7	19421.0	35770.5	87251.1		
14915.0	19503.4	35791.2	87431.1		
14942.4	19517.1	35882.7	87572.3		
15043.3	21512.1	35899.4	87733.4		
22823.6	21512.4	35956.8	87833.2		
22874.4	21713.8	35989.3			
22969.2	21716.6	36013.5			
23005.6	21823.9	36070.1			
23038.9	21824.6	36075.6			
23119.2	21896.9	36264.5			
23150.8	21904.7	36265.1			
23268.4	21933.0	39741.1			
23365.5	21947.2	39760.0			
37167.9	21952.8	39843.9			
37306.2	22002.3	39883.3			
37514.2	22003.2	39903.2			
37640.3	22144.2	39997.8			
37818.5	22144.4	40014.0			
	26375.2	40061.1			
	26387.7	40070.7			
	26433.5	40131.5			
	26492.7	40143.4			
	26732.0	40752.4			
	26744.3	40862.8			
	26756.9	41029.4			
	26764.1	41105.4			
	34720.6	41153.0			

	34733.7	48116.8	
0.0	19315 7	30421.9	44297.6
114 1	19327.0	32897 7	44257.0
194 A	19352 8	331567	44428 0
342.6	21989.6	37376.0	44509 1
364.4	21909.0	37513.8	44543.6
2042 5	22034.5	37572.8	44604 1
2135 4	22080.0	37655.8	45822.0
2155.4	22143.7	37781.2	45953 1
2106.1	23777.7	37851.6	45993.1
2170.8	23063.8	37096.6	51157 5
2257.4	23905.8	38213 5	51296.1
4135.1	23907.3	38374 5	51250.1
4135.1 4234 7	23777.4	38516.5	53004.9
4265 1	24069.1	38614 5	53085.0
4205.1	24105.5	38629 5	53110.3
4237.5 //338.8	24170.0	38680 2	531767
4338.8	24242.5	38748 1	6/028 5
-372.) AA27.7	24382.0	38766 2	6/135.0
6254.0	24743.1	388107	64254 4
6375.0	24804.2	38860.0	6/335.0
6/33 0	24044.2	38000.0	64427.0
65107	24923.4	38963 3	65008 5
6564 7	24972.7	30023 1	65173.6
6624.7	25405.5	30064 /	65318.8
67/6.8	25455.5	30084 7	65/137.6
6837 /	25588 0	30151 2	90000 A
15789.8	25900.0	39378 4	90284.2
15882 1	26114.9	39533 2	905204.2
1502.1	26218 1	39617.8	90755.4
15061 7	26202.5	30670 0	01/187 /
16037.9	26272.5	39844 9	91872 0
16071 7	26373.4	39868 1	92172.0
16107.9	264363	40019 2)21/2.2
16869.8	26548 5	40160 5	
16923 5	26982.2	40266.9	
16996 7	20002.2	40342 7	
17820.9	27012.3	40398.8	
17857 5	27001.0	40470.6	
17866 7	27166.5	40650 3	
17890.9	27686.9	41504.1	
17970 4	27000.9	41697.2	
18064 7	28361 5	41850.9	
18962 9	28420 1	41970 7	
19014 2	28450 5	42990.5	
19078.0	28489 9	43092.2	
19121.0	28564.3	43189.0	

19188.6	28639.7	43264.1	
19251.2	29873.4	43331.8	
19257.1	30097.4	44175.9	
19290.1	30226.2	44207.5	

Table S10. RASSI-SO computed low-lying 35 quartets (in red) and 112 doublet states (in black) along with spin-orbit coupled states (in blue, Kramer doublets) for Nd2. All the values are reported here in cm⁻¹.

Nd2					
0.0	14684.8	34888.7	48182.7		
103.9	14694.2	34899.8	48217.9		
175.5	14705.1	34957.0	48263.8		
243.7	14714.7	34974.4	48290.7		
263.7	14716.4	35017.1	48309.0		
342.2	14744.7	35050.9	48360.2		
396.9	14753.5	35059.4	60941.0		
474.0	14758.8	35133.3	60965.7		
505.1	14760.4	35141.8	61075.8		
567.4	14781.5	35160.2	61137.8		
571.8	14783.3	35167.7	61176.6		
807.9	19299.9	35327.0	61238.3		
829.5	19309.4	35329.4	61272.8		
14633.9	19331.4	35463.9	61325.5		
14715.9	19354.8	35469.9	61341.5		
14732.5	19368.7	35628.5	86967.9		
14793.3	19419.1	35637.6	87078.4		
14828.3	19420.9	35777.8	87260.5		
14896.2	19497.1	35807.3	87457.8		
14954.7	19517.2	35911.4	87588.5		
15043.1	21564.1	35919.2	87681.5		
22793.9	21564.9	35973.1	87722.7		
22930.4	21713.3	35994.5			
22961.3	21716.4	36008.1			
23036.4	21822.5	36054.5			
23086.6	21823.6	36061.8			
23118.2	21896.2	36137.1			
23139.3	21909.9	36138.9			
23238.8	21955.4	39777.3			
23337.3	21960.0	39789.2			
37193.8	21984.8	39830.3			
37328.0	22035.7	39861.7			
37541.2	22043.0	39922.2			
37641.1	22048.1	39998.0			
37752.5	22051.3	40023.8			
	26401.0	40047.1			
	26433.4	40076.9			
	26440.8	40111.5			
	26513.7	40119.3			
	26723.3	40770.0			
	26733.3	40891.9			
	26740.5	41054.1			

	26742.9	41076.0	
	34818.9	41124.7	
	34825.9	48114.3	
0.0	19299.7	30391.7	44265.9
107.5	19312.4	32903.8	44366.2
165.8	19333.1	33129.5	44410.5
335.6	21996.8	37428.8	44488.2
354.7	22026.1	37516.5	44522.9
2047.0	22067.7	37596.7	44574.1
2127.8	22128.9	37655.7	45815.9
2157.9	23811.7	37757.8	45940.4
2175.7	23889.1	37791.7	45966.5
2226.1	23948.7	38035.3	51150.0
2240.2	23961.4	38182.8	51282.0
4140.9	23978.1	38360.3	51332.6
4234.6	24076.4	38517.7	52994.6
4248.2	24155.9	38621.9	53064.1
4285.7	24204.9	38676.7	53108.5
4307.2	24263.9	38689.2	53129.8
4363.3	24285.9	38736.7	64023.8
4419.5	24740.4	38749.9	64147.7
6252.6	24786.9	38817.4	64235.3
6370.6	24839.5	38824.1	64319.5
6421.7	24926.0	38888.1	64379.1
6505.3	24949.3	38931.0	65007.4
6543.6	25398.2	39001.3	65186.1
6610.8	25419.6	39020.3	65293.6
6740.4	25488.4	39069.9	65389.0
6829.1	25568.5	39145.2	90034.8
15792.3	25958.1	39378.1	90282.7
15879.3	26109.9	39533.1	90526.6
15910.4	26205.5	39573.2	90659.5
15947.4	26280.6	39715.7	91509.9
16028.4	26341.5	39822.0	91876.2
16049.2	26384.9	39851.1	92079.5
16110.0	26436.1	40010.6	
16875.2	26446.3	40158.1	
16905.6	26973.9	40274.5	
16979.2	26995.3	40343.9	
17828.4	27061.8	40381.4	
17848.6	27098.2	40433.5	
17856.7	27139.5	40508.8	
17868.8	27686.0	41506.6	
17964.9	27779.0	41701.0	
18045.4	28369.5	41834.0	
18978.2	28400.5	41917.7	
19005.3	28450.8	43003.7	

19054.7	28487.6	43066.1	
19116.1	28538.9	43187.3	
19161.1	28598.6	43255.9	
19243.0	29866.0	43289.6	
19254.1	30114.1	44178.3	
19286.6	30201.2	44207.1	

Table S11. RASSI-SO computed low-lying 35 quartets (in red) and 112 doublet states (in black) along with spin-orbit coupled states (in blue, Kramer doublets) for **Nd3**. All the values are reported here in cm⁻¹.

		Nd3	
0.0	14672.8	34721.5	48250.2
58.4	14675.1	34785.4	48323.9
92.6	14691.7	34845.1	48338.8
127.8	14699.0	34954.9	48383.7
193.2	14735.0	34970.2	48415.5
286.0	14741.3	35097.1	48442.1
392.1	14763.0	35102.5	60984.2
512.7	14776.1	35236.6	61038.1
556.3	14781.8	35242.2	61119.1
622.4	14824.2	35381.3	61162.0
676.6	14837.9	35383.2	61214.9
897.7	19253.8	35487.7	61344.1
919.9	19267.1	35489.3	61403.4
14551.6	19347.0	35612.1	61551.4
14665.1	19353.4	35615.3	61568.6
14730.1	19431.0	35651.2	86923.7
14853.0	19456.1	35678.0	87129.7
14874.7	19500.6	35729.3	87237.0
14969.1	19550.8	35759.0	87559.3
15026.9	19572.6	35803.2	87684.1
15108.7	21623.2	35895.9	88063.9
22718.2	21625.8	35911.2	88159.4
22895.5	21703.0	36056.6	
23034.6	21711.9	36064.0	
23093.8	21743.3	36240.9	
23148.6	21774.7	36243.2	
23167.4	21792.2	36523.7	
23239.8	21849.1	36523.7	
23284.1	21857.3	39768.8	
23429.5	21956.6	39800.8	
37163.1	21960.3	39868.8	
37342.5	22115.9	39898.3	
37526.4	22117.8	39989.8	
37841.8	22365.2	40080.0	
37902.8	22366.1	40091.4	
	26356.7	40154.1	
	26359.5	40171.1	
	26471.7	40245.1	
	26480.7	40258.7	
	26823.1	40839.1	

	26830.1	10006 7	
	26841 2	40993 9	
	26854.8	41246.0	
	34603.4	41311.4	
	34619.9	48159.3	
	•••••		
0.0	19343.9	30500.1	44322.5
85.2	19385.3	32905.8	44468.1
154.6	19407.2	33245.3	44502.2
355.5	21995.3	37283.4	44588.9
447.0	22062.3	37426.6	44645.5
2079.1	22141.2	37561.2	44745.5
2111.3	22207.8	37724.2	45922.5
2154.5	23888.5	37890.6	46012.2
2192.7	23926.7	38028.3	46105.5
2251.5	23960.5	38181.3	51255.2
2338.4	23995.5	38296.8	51325.0
4169.6	24021.3	38356.8	51490.5
4205.2	24063.4	38452.3	53104.7
4256.3	24097.1	38567.7	53154.3
4281.9	24197.7	38582.9	53212.8
4364.1	24349.5	38685.3	53261.1
4424.2	24588.9	38740.5	64106.9
4500.6	24784.6	38787.5	64218.4
6259.9	24825.2	38900.7	64307.6
6330.1	24855.5	38927.6	64468.3
6416.7	24980.1	39013.2	64622.2
6465.1	25065.6	39116.9	65084.5
6636.2	25428.9	39144.9	65233.1
6709.9	25489.5	39183.9	65426.9
6813.0	25563.0	39243.3	65641.4
6931.8	25656.1	39278.9	90060.0
15782.4	26032.4	39436.0	90326.0
15902.5	26125.4	39640.9	90650.8
15941.6	26172.3	39688.8	91082.7
16007.4	26219.7	39854.6	91546.6
16032.9	26293.0	39945.6	91972.0
16103.2	26407.5	39967.8	92499.4
16184.4	26567.4	40029.4	
16854.8	26779.2	40114.5	
16992.3	26980.2	40217.3	
17035.0	27069.3	40342.0	
17792.7	27141.2	40490.8	
17894.8	27174.5	40676.8	
17906.6	27217.3	40943.6	
17940.7	27717.8	41563.9	
18036.5	27859.7	41727.3	
18118.4	28393.7	41910.9	

18944.2	28454.9	42138.0	
19030.8	28541.2	43042.8	
19129.3	28569.1	43121.3	
19182.3	28642.6	43272.0	
19235.8	28679.8	43358.5	
19260.4	29926.6	43465.1	
19289.6	30057.8	44225.2	
19307.6	30351.6	44269.0	

Table S12. RASSI-SO computed low-lying 35 quartets (in red) and 112 doublet states (in black) along with spin-orbit coupled states (in blue, Kramer doublets) for **Nd4**. All the values are reported here in cm⁻¹.

		Nd4	
0.0	14766.1	34703.8	48270.7
38.0	14769.6	34789.3	48413.9
53.6	14787.7	34792.3	48437.2
144.4	14789.9	34919.0	48481.3
352.8	14804.9	34919.1	48513.6
397.9	14806.5	34981.4	48543.7
453.1	14819.6	34987.0	60967.3
595.6	14821.8	35261.2	61016.7
644.9	14839.2	35265.0	61110.9
741.2	14875.2	35313.3	61264.3
872.8	14910.8	35326.6	61306.2
1084.3	19263.4	35400.8	61353.6
1173.3	19275.8	35422.9	61504.7
14463.7	19453.2	35583.2	61739.5
14809.8	19459.8	35619.7	61752.7
14865.0	19552.7	35761.3	86772.0
14940.4	19574.4	35808.7	87076.1
15000.5	19594.5	35929.3	87285.4
15011.0	19682.0	35948.1	87596.7
15031.2	19696.4	36028.9	87617.7
15329.6	21482.0	36044.5	88222.8
22750.6	21489.1	36182.6	88587.5
23003.9	21664.0	36249.7	
23091.4	21676.5	36261.2	
23137.6	21841.8	36521.5	
23181.0	21889.6	36553.4	
23339.9	21896.2	36780.8	
23340.9	21965.8	36789.2	
23451.8	22014.7	39823.1	
23527.3	22139.2	39846.6	
37203.7	22153.1	39859.3	
37298.0	22300.3	39906.7	
37522.9	22324.3	40086.9	
38080.1	22463.6	40114.1	
38111.3	22465.6	40150.2	
	26343.7	40317.6	
	26355.4	40323.7	
	26474.4	40378.5	

	26492 4	40424 7	
	26971.8	40779.9	
	26981.9	40991.0	
	26997.6	41213.2	
	27030.1	41378.8	
	34610.8	41387.5	
	34644.4	48232.5	
0.0	10272 0	20200.2	44014.0
0.0	193/3.9	30390.3	44214.8
42.0	19411.8	30627.8	44512.0
10/.0	19450.9	32839.8	44510.5
439.0	21909.0	33319.8	44551.5
307.0 2054_1	22129.1	37232.0	44021.0
2034.1	22192.9	3/3//.1	44/95.1
2102.0	22230.1	3/4//.8	44814.8
2191.1	23/02.7	3/383.9	43904.3
2292.7	23893.3	3/808.0	40100.0
2330.0	23977.2	3/931.0	40140.1
2301.7	24009.1	20092.9	51227.0
4141.9	24079.1	38210.3	51410.5
4185.1	24088.9	38447.8	51495.5
4208.0	24130.8	38320.3 28587 2	52104.1
4380.4	24304.0	38387.3	52250.9
4423.7	24495.8	38041./	53239.8
4302.7	24049.1	38083./	55289.5
4303.3	24774.3	38/30.3	04038.0
0212.0 6260.5	24820.0	38/93.1	04185.7
0209.3	24928.4	388/9.0	64402.0
0438.1	25009.7	38930.9 20075 1	04495.9
0349.0	25085.2	39073.1	04/43.4
0040.4	25424.4	39113.7	65002.2
0/82.9	25529.7	39100.7	03203.1
090/./	25008.0	39190.7	03400.4
15755 1	25720.5	39340.0	03781.0
15/55.1	23041.3	39404.0 20440.9	09094.4
15911.5	20027.0	20629 C	90209.7
15929.9	20101.0	39020.0	90010.5
16092.6	20203.2	39060.2	91265.5
16152.2	20394.0	39730.3	91420.1
10133.3	20394.0	59629.0 40047 1	91917.3
16212.7	20331.0	40047.1	92747.9
10034.3 17021 0	20001.4 26821 1	40074.0	
17021.0 17007 4	20024.1	40230.3 10208 8	
1/07/.4 1777/ 7	20333.3 27017 5	40300.0	
1///+.2	2/04/.J 2719/ 2	40420.0	
1/924.9	∠/10 4 .∠ 27220 1	40031.0	
1/240.3	27260 0	+0710./ /1127 7	
1/7/3.3	21209.9	+113/./	

18048.5	27726.7	41486.9	
18202.1	27902.2	41756.7	
18898.2	28431.0	41974.6	
19069.9	28500.5	42293.8	
19142.9	28560.6	43029.6	
19226.2	28627.9	43103.7	
19268.3	28674.7	43264.1	
19296.7	28727.4	43434.1	
19323.1	29911.3	43566.7	
19334.8	30037.1	44192.0	

References:

1. Alvarez, S.; Alemany, P.; Casanova, D.; Cirera, J.; Llunell, M.; Avnir, D. Shape maps and polyhedral interconversion paths in transition metal chemistry, *Coord. Chem. Rev.* **2005**, *249*, 1693-1708, 112.

2. Casanova, D.; Llunell, M.; Alemany, P.; Alvarez, S. The Rich Stereochemistry of Eight-Vertex Polyhedra: A Continuous Shape Measures Study, *Chem. Eur. J.* **2005**, *11*, 1479-1494.