Electronic Supplementary Materials for

Structural isolation of NIR Absorbing Ferrocenyl Bridged N-Confused Fused expanded Phlorin, N-Confused Porphodimethene and π -extended Corrorin isomer: Synthesis and characterization

Buddhadeb Chakraborty,
a Sumit Sahoo, a Raja Naryanasamy, b Dandamudi Usharani
* $^{\rm b,c}$ and Harapriya Rath $^{\rm *a}$

^a School of Chemical Sciences, Indian Association for The Cultivation of Science, 2A/2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India, E-mail: <u>ichr@iacs.res.in</u>

^b Department of Food Safety and Analytical Quality Control Laboratory, *Central Food Technological Research Institute,* Mysore, Karnataka 700020, India, E-mail: <u>ushad@cftri.res.in</u>

^c Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDG, Ghaziabad, Uttar Pradesh, India

Table of Contents

Materials and Methods	S2-S3
Schemes	S4-S5
Spectroscopic Data	S6-S34
Electrochemistry	S35
X-ray Crystal Data	S36
Theoretical Calculations	S37-S56
X,Y,Z Coordinates	S57-S65

Materials and Methods:

1.1 Electronic absorption spectra were measured with a Perkin Elmer Lambda 950 UV-visible-NIR spectrophotometer. ¹H NMR spectra were recorded on a Bruker AVIII 500 MHz spectrometer, Bruker AVIII 400 MHz, Bruker DPX-300 MHz spectrometer and chemical shifts were reported as the delta scale in ppm relative to CHCl₃ (δ = 7.26 ppm) and CH₂Cl₂ (δ = 5.32 ppm) as internal reference for ¹H and ¹³C NMR CHCl₃ (δ = 77.00 ppm) and CH₂Cl₂ (δ = 55.00 ppm). ESI HR-MS data were recorded using Waters QTOF Micro YA263 spectrometer. All solvents and chemicals were of reagent grade quality, obtained commercially and used without further purification except as noted. For spectral measurements, anhydrous dichloromethane was obtained by refluxing and distillation over CaH₂. Dry THF was obtained by refluxing and distillation over pressed Sodium metal. Thin layer chromatography (TLC) was carried out on alumina sheets coated with silica gel 60 F₂₅₄ (Merck 5554) and gravity column chromatography were performed using Merck Silica Gel 230-400 mesh. Aluminum Oxide (Basic) grade II was purchased from Sigma Aldrich.

1.2 Theoretical Calculation

Macrocycle structures of 5 were modelled based on the observed ¹H NMR spectra and several isomers of 7 (7a-7g) were bulit based on the mechanistic possiblity for the formation of 7. Along with the modelled structures (5 and 7a-7g), X-ray crystal structure coordinates of 6, were optimized using unrestricted hybrid density functional B3LYP^{1a-c} and LanL2DZ^{2a-c} (for metal atom) and 6-31G** basis set for rest of the atoms.³ Hessian calculations were performed at same level of theory to ascertain the optimised structures are local minima. As deprotonation is the prevailing mechanism in anionic binding, the deprotonated state of 6 ([6]-1) was also optimised at same level of theory and identified as a stationay point. Time dependent density functional (TD-DFT)⁴ calculations were performed for 5, 6, deprotonated 6 and isomers of 7a-7g in the presence of dichloromethane solvent with implicit polarizable continuum model (PCM) and the integral equation formalism variant (IEFPCM)⁵ at same level of theory using Gaussian 16 A. 03.⁶ The electronic structure and electonic excitation analysis of these macrocycles were analyzed through kohn sham molecular orbitals and natural transition orbitals which were obtained from Multiwfn program^{7a} and Gauss Sum.^{7b} The nature of aromaticity of 7 were assessed from the nuclear chemical independent shift ^{8a} NICS (0) value and Anisotropy of the currentinduced density (ACID)^{8b} that employs gauge independent atomic orbital (GIAO) method^{8c-d} and the continuous set of gauge transformations (CSGT)^{8e} methods respectively. AICD plot was plotted using POVRAY 3.7 for Windows. In addition, NICSzz (0) value was obtained from Multiwfn program.^{7a}

References:

- (a) A. D. Becke, J. Chem. Phys., 1993, 98, 1372-1377; (b) A. D. Becke, J. Chem. Phys., 1992, 96, 2155-2160; (c) C. Lee, W. Yang and R. G. Parr, Physical review B, 1988, 37, 785-789.
- (a) P. J. Hay and W. R. Wadt, *J. Chem. Phys.*, 1985, **82**, 270-283; (b) W. R. Wadt and P. J. Hay, *J. Chem. Phys.*, 1985, **82**, 284-298; (c) T. H. Dunning and P. J. Hay, In *Methods of electronic structure theory*, Springer: 1977; pp 1-27.
- 3. G. A. Petersson, A. Bennett, T. G. Al-Laham Tensfeldt, M. A. Shirley, W. A. and J. Mantzaris, *J. Chem. Phys.*,1988, **89**, 2193-2218.

- 4. a) C. Adamo and D. Jacquemin, *Chem. Soc. Rev.,* 2013, **42**, 845-856; (b) G. Scalmani, M. J. Frisch, B. Mennucci, J. Tomasi, R. Cammi and V. A. Barone, *J. Chem. Phys.,* 2006,**124**, 1-15.
- 5. (a) S. Miertus, J. Tomasi, *Chem. Phys.*, 1982, **65**, 239-245; (b) M. Cossi and V. Barone, *Chem. Phys.*, 2000,**112**, 2427-2435.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, Jr. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, *Gaussian 16 Rev. C.01*, Wallingford, CT, 2016.
- 7. (a) L. Tian and C. Feiwu, J. Comput. Chem., 2012, 33, 580-592; (b) N. M. O'Boyle, A. L. Tenderholt and K. M. Langner, J. Comp. Chem., 2008, 29, 839-845.
- (a) P. v. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao and N. J.R. van Eikema Hommes, *J. Am. Chem. Soc.*, 1996, **118**, 6317-6318; (b) D. Geuenich, K. Hess, F. Köhler and R. Herges, *Chem. Rev.*, 2005, **105**, 3758-3772; (c) K. Wolinski, J. F. Hinton and P. Pulay, *J. Am. Chem. Soc.*,1990, **112**, 8251-8260; (d) J. R. Cheeseman, G. W. Trucks, T. A. Keith and M. J. Frisch, *J. Chem. Phys.*, 1996, **104**, 5497-5509; (e) T. A. Keith and R. F.W Bader, *Chem. Phys. Lett.*, 1993, **210**, 223-231.

Scheme S1. Literature known Ferrocene bridged macrocycles

Scheme S2. Swapping N-Methyl N-Confused pyrrole with N-Confused pyrrole leading to the expected product of condensation between 2 and 4

Scheme S4. Syntheses of precursors for macrocycles 5, 6 and 7

Supplementary Data:

2.1 Mass Spectra

Fig. S1 HRMS Spectra of 1

Fig. S2 HRMS Spectra of 2

Fig. S3 HRMS Spectra of 3

Fig. S4 HRMS Spectra of 4

Fig. S5 HRMS Spectra of 5

Fig. S6 HRMS Spectra of 6

Chemical Formula: C₅₄H₃₄F₄FeN₄ Exact Mass: 870.2070 Molecular Weight: 870.7326

Fig. S7 HRMS Spectra of 7

Fig. S9 Absorption spectra of $\bf{6}$ (2 x 10⁻⁵ M) upon addition of TBAPF₆ (0.7 M) in CHCl₃

Fig. S10 Absorption spectra of 6 (2 x 10⁻⁵ M) upon addition of TBACI (0.7 M) in CHCl₃

Fig. S11 Absorption spectra of 6 (2 x 10⁻⁵ M) upon addition of TBABr (0.7 M) in CHCl₃

Fig. S12 Absorption spectra of 6 (2 x 10⁻⁵ M) upon addition of TBAI (0.7 M) in CHCl₃

Fig. S13 Color Change induced upon addition of anions (excess equiv as the $Bu_4N^{\scriptscriptstyle +}$ salt) to receptor ${\bf 6}$ in $CHCl_3$ at 298 K

Fig. S14 Absorption spectra of 6 (2.6 x 10⁻⁵ M) upon addition of TBAF (0.007 M) in CHCl₃

2.3 IR spectra:

Fig. S15 IR Spectrum of 5

2.4 NMR spectra:

Fig. S17 13 C NMR spectra of **1** in CDCl₃ at 298 K

Fig. S19 $^{\rm 13}\text{C}$ NMR spectra of $\boldsymbol{2}$ in CDCl3 at 298 K

Fig. S21 $^{13}\text{CNMR}$ spectra of $\boldsymbol{3}$ in CDCl3 at 298 K

Fig. S22 ¹H NMR spectra of ${f 4}$ in CDCl₃ at 298 K

Fig. S23 $^{\rm 13}\text{C}$ NMR spectra of 4 in CDCl3 at 298 K

Fig. S25 ¹H -¹H 2D COSY NMR spectra of **5** in CD₂Cl₂ at 298 K

Fig. S26 ¹H -¹H 2D ROESY NMR spectra of **5** in CD₂Cl₂ at 298 K

Fig. S27 ¹³C NMR spectra of **5** in CD₂Cl₂ at 298 K

Fig. S28 HSQC NMR spectra of $\mathbf{5}$ in CD_2Cl_2 at 298 K

Fig. S29 HMBC NMR spectra of 5 in CD₂Cl₂ at 298 K

Fig. S30 Complete ¹H NMR spectral assignment of **5** in CD₂Cl₂ at 298 K

Fig. S31 Low VT ¹H NMR spectra of **6** in CD₂Cl₂

Fig. S32 ¹H -¹H 2D COSY NMR spectra of **6** in CD₂Cl₂ at 298 K

Fig. S34 $^{\rm 13}C$ NMR spectrum of $\boldsymbol{6}$ in CD_2Cl_2 at 298 K

Fig. S35 HSQC NMR spectra of $\mathbf{6}$ in CD_2Cl_2 at 298 K

Fig. S36 HMBC NMR spectra of 6 in CD₂Cl₂ at 298 K

Fig. S37 Complete ¹H NMR spectral assignment of **6** in CD₂Cl₂ at 298 K

Fig. S38 ¹H NMR spectral pattern of **6** upon TBAF titration in CDCl₃

Fig. S39 Low VT ¹H NMR spectral pattern of 6 upon TBAF titration in CDCl₃

Fig. S40 ¹⁹F NMR spectral pattern of (c) TBAF, (b) **6** and (a) **6**-TBAF in CDCl₃ at 298 K (* from -80 to -60 ppm correspond to unknown impurities of TBAF)

Fig. S41 Variable Low VT ¹H NMR spectra of **7** in CD₂Cl₂

Fig. S42 ¹H-¹H 2D COSY spectra of $\mathbf{7}$ in CD₂Cl₂ at 298 K

Fig. S43 ¹H-¹H 2D ROESY spectra of **7** in CD₂Cl₂ at 298 K

Fig. S44 ^{13}C NMR spectra of 7 in CD_2Cl_2 at 298 K

Fig. S45 HSQC NMR spectra of 7 in CD₂Cl₂ at 298 K

Fig. S46 HMBC NMR spectra of $\mathbf{7}$ in CD_2Cl_2 at 298 K

Fig. S47 Complete ¹H NMR spectral assignment of ${f 7}$ in CD₂Cl₂ at 298 K

2.5. Electrochemistry

Fig. S48 Cyclic voltammogram of ferrocene in CH_2CI_2 at 298 K

Fig. S49 Cyclic voltammogram of ${\bf 5}$ in CH_2CI_2 at 298 K

3. X-ray Crystal Data

Parameters	6
Chemical formula	$C_{68}H_{40}F_8FeN_4$
Formula weight	1120.89
Temperature	100 K
Crystal system	Triclinic
Space group	P-1
a (Å); α (°)	10.8521(18); 118.145(5)
b (Å); β(°)	17.560(3); 93.156(5)
c (Å); γ (°)	17.760(3); 99.868(5)
V (Å3); Z	2903.9(8); 2
ρ (calc.) g m-3	1.282
μ(Mo Kα) mm-1	0.701
2θmax (°)	54.542
R(int)	0.0821
Completeness to θ	0.984
Data / param.	10092/730
GOF	1.042
R1 [F>4σ(F)]	0.0756
wR2 (all data)	0.1880
max. peak/hole (e.Å-3)	0.46/-0.62
CCDC	2053405

4. Theoretical Calculation

Fig. S50 DFT optimised geometries and key bond length parameters (Å) of **5**, **6**, **6**-deprotonated and **7a**, at uB3LYP/LanL2DZ (Fe) and 6-31+G^{**} (for rest of the atoms) level of theory. Note that **6** is the optimised structure of X-ray crystal structure.

Fig. S51 DFT optimised geometries and key bond length parameters (Å) of isomers of **7a-7g**, at uB3LYP/LanL2DZ (Fe) and 6-31+G^{**} (for rest of the atoms) level of theory.

Fig. S52 Top and side view of DFT optimised geometries of **5**, **6-deprotonated** and **7a-7g**, at uB3LYP/LanL2DZ (Fe) and 6-31+G^{**} (for rest of the atoms) level of theory.

<u> </u>	5	6	Deprotonated [6]-1	
S. No	5	0	Deprotonated [0]	
1	py1—py2 -79.7	py1—py2 – 10.15	py1—py2 – 26.8	
2	ру2—ру3-25.8	py2—py3 – 33.08	ру2—ру3-45.5	
3	py3—cp1 – 7.2	py3—py4 – 4.59	ру3—ру4 – 9.73	
4	py1—cp2 -84.7	py4—cp1 – 37.47	ру4—ср1 – 46.4	
5		py1—cp2 – 56.03	py1-cp2-89.1	
	7a	7b	7c	
1	py1—py2 – 12.1	py1—py2 – 10.8	py1—py2-39.9	
2	py2—py3 – 21.9	py2—py3 – 7.4	ру2—ру3-31.9	
3	ру3—ру4 – 33.5	py3—py4 – 30.9	ру3—ру4 – 64.3	
4	ру4—ср1 – 12.8	py4—cp1 – 16.5	ру4—ср1 – 0.0	
5	py1—cp2 – 29.7	py1—cp2 – 27.77	py1-cp2 - 18.2	
	7d	7e	7f	7g
1	py1—py2 - 54.6	py1—py2 – 52.9	py1—py2 – 52.9	py1—py2 – 54.26
2	ру2—ру3 – 55.5	py2—py3 – 66.5	ру2—ру3 – 71.2	ру2—ру3-65.63
3	py3—py4 – 37.8	ру3—ру4 – 27.6	py3—py4 – 23.8	ру3—ру4 – 27.46
	ру4—ср1 – 10.1	py4—cp1 – 14.1	ру4—ср1 – 14.9	ру4—ср1 – 15.34
5	py1-cp2-54.0	py1—cp2 – 54.0	py1-cp2-53.3	py1—cp2 – 53.03

Table S1: Dihedral angle planes of pyrrole rings for DFT optimised geometries of **5**, **6**, **deprotonated 6** and **7a-7g** at uB3LYP/LanL2DZ (Fe) and 6-31+G^{**} (for rest of the atoms) level of theory.

Fig. S53 Steady state absorption spectrum (total) and individual transitions that are predicted from TD-DFT calculation done with solvent (dichloromethane using a polarizable continuum model) and at uB3LYP/LanL2DZ (Fe) and 6-31G^{**} (for rest of the atoms) level of theory. (a) **5**, (b) **7a** (c) **6** (d) deprotonated **6**.

Fig. S54 Steady state absorption spectrum (total) and individual transitions of isomers of **7** (**7b-7g**) that are predicted from TD-DFT calculation done with solvent (dichloromethane using a polarizable continuum model) and at uB3LYP/LanL2DZ (Fe) and 6-31G^{**} (for rest of the atoms) level of theory.

Table S2: Summary of UV-vis spectral data of ${\bf 5}$

	Energy	Wavelength	Oscillator		
No.	(cm ⁻¹)	(nm)	Strength	Symmetry	Major contributions
2	14342.95	697.20	0.0003	Singlet-A	H-2->LUMO (54%), H-2->L+4 (18%)
3	14884.96	671.81	0.0515	Singlet-A	H-3->LUMO (25%), H-3->L+4 (14%), HOMO->LUMO (17%)
4	17345.75	576.50	0.2023	Singlet-A	H-1->LUMO (23%), HOMO->LUMO (68%)
5	18885.47	529.50	0.1035	Singlet-A	H-2->L+3 (12%), H-1->LUMO (63%)
6	19179.86	521.38	0.0296	Singlet-A	H-3->LUMO (19%), H-2->L+3 (26%)
7	19419.41	514.94	0.0039	Singlet-A	H-3->L+3 (32%), H-2->LUMO (16%), H-1->L+3 (11%)
8	21186.57	471.99	0.0065	Singlet-A	H-3->LUMO (28%)
9	22210.08	450.24	0.0038	Singlet-A	H-10->L+3 (11%), H-2->LUMO (15%), H-2->L+4 (19%)
10	23908.69	418.25	0.2175	Singlet-A	H-4->LUMO (75%), HOMO->L+1 (11%)
11	25274.18	395.66	0.0594	Singlet-A	H-7->LUMO (17%), H-6->LUMO (32%), H-5->LUMO (22%)
12	25791.19	387.72	0.0092	Singlet-A	H-7->LUMO (11%), H-6->LUMO (20%), H-5->LUMO (10%)
13	25979.11	384.92	0.0026	Singlet-A	H-9->LUMO (17%), H-8->LUMO (49%)
14	26759.86	373.69	0.1044	Singlet-A	H-7->LUMO (15%), H-5->LUMO (17%), HOMO->L+1
				_	(41%)
15	27040.54	369.81	0.1067	Singlet-A	H-6->LUMO (20%), H-5->LUMO (13%), HOMO->L+1 (27%)
16	27444.62	364.37	0.0046	Singlet-A	H-16->LUMO (46%), H-9->LUMO (27%), H-8->LUMO (13%)
17	27575.28	362.64	0.0294	Singlet-A	H-16->LUMO (29%), H-9->LUMO (37%), H-8->LUMO (10%).
18	27978.56	357.41	0.0394	Singlet-A	H-12->LUMO (11%), H-10->LUMO (13%), H-7->LUMO (27%)
19	28281.83	353.58	0.0009	Singlet-A	H-10->L+3 (14%), H-5->L+3 (10%), H-2->L+1 (20%)
20	28672.20	348.76	0.0547	Singlet-A	H-1->L+1 (75%)
21	29000.47	344.82	0.0648	Singlet-A	H-14->LUMO (73%)
22	29646.52	337.30	0.0064	Singlet-A	H-14->LUMO (73%)
23	29815.89	335.39	0.005	Singlet-A	H-13->LUMO (13%), H-12->LUMO (47%), H-10->LUMO (12%)
24	30220.78	330.89	0.0071	Singlet-A	H-15->LUMO (10%), H-10->LUMO (19%), H-3->L+1 (27%)
25	30398.22	328.96	0.0012	Singlet-A	H-15->LUMO (69%)
26	30449.84	328.40	0.0036	Singlet-A	H-12->LUMO (10%), H-11->LUMO (27%), H-10->LUMO (11%)
27	30486.95	328.00	0.0032	Singlet-A	H-13->LUMO (63%), H-12->LUMO (13%)
28	30908.77	323.53	0.0176	Singlet-A	H-11->LUMO (22%), H-3->L+1 (19%), H-2->L+1 (22%)
29	31194.29	320.57	0.0289	Singlet-A	H-11->LUMO (11%), H-3->L+1 (25%)
30	32112.15	311.40	0.0151	Singlet-A	H-19->LUMO (69%)

Table S3: Summary of UV-vis spectral data of ${\bf 6}$

	Energy	Wavelength	Oscillator	~	
<u>No.</u>	(cm^{-1})	(nm)	Strength	Symmetry	Major contributions
1	10/1/.49	933.05	0.0357	Singlet-A	HOMO->LUMO (98%)
2	14///.69	6/6.69	0.0133	Singlet-A	H-3->L+8 (10%), H-2->LUMO (20%), H-2->L+1 (11%), H-
3	15109.18	661.84	0.0039	Singlet-A	H-3->LUMO(19%), H-3->L+1(11%), H-3->L+3(10%), H-
4	16350.47	611.60	0.1317	Singlet-A	H-1->LUMO (68%), HOMO->L+1 (12%)
5	18248.29	547.99	0.1285	Singlet-A	H-2->LUMO (61%), HOMO->L+1 (14%)
6	18653.99	536.07	0.0555	Singlet-A	H-3->LUMO (60%), H-2->L+8 (16%)
7	18816.10	531.45	0.3572	Singlet-A	H-1->LUMO (11%), HOMO->L+1 (41%), HOMO->L+2 (12%)
8	19635.56	509.27	0.0106	Singlet-A	(1270) H-3->L+8 (21%)
9	20269.51	493.35	0.0022	Singlet-A	H-3->L+1 (14%), H-2->L+8 (20%)
10	21120.43	473.47	0.6196	Singlet-A	HOMO->L+1 (11%), HOMO->L+2 (67%)
11	21277.71	469.97	0.0469	Singlet-A	H-1->L+1 (93%)
12	23050.51	433.82	0.0017	Singlet-A	H-2->L+1 (61%)
13	23840.13	419.46	0.0289	Singlet-A	H-6->LUMO (55%), H-5->LUMO (11%), H-4->LUMO (27%)
14	23886.91	418.63	0.0011	Singlet-A	H-3->L+1 (57%)
15	24019.99	416.31	0.0055	Singlet-A	H-7->LUMO (34%), H-5->LUMO (50%)
16	24466.82	408.71	0.0136	Singlet-A	H-4->LUMO (31%), H-1->L+2 (49%)
17	24897.52	401.64	0.0034	Singlet-A	H-7->LUMO (45%), H-5->LUMO (17%), H-4->LUMO (13%)
18	26175.91	382.03	0.0206	Singlet-A	H-8->LUMO (55%)
19	26359.81	379.36	0.0948	Singlet-A	H-9->LUMO (40%)
20	26868.74	372.17	0.3614	Singlet-A	H-6->LUMO (17%), H-4->LUMO (11%), H-2->L+2 (13%),
21	27222.01	367.34	0.0674	Singlet-A	H-12->LUMO (12%), H-9->LUMO (32%), H-2->L+2 (10%)
22	27317.99	366.05	0.0069	Singlet-A	H-13->LUMO (12%), H-12->LUMO (13%), H-3->L+2 (18%),
23	27643.84	361.74	0.0239	Singlet-A	H-13->LUMO (21%), H-9->LUMO (11%), H-8->LUMO (18%),
24	27809.99	359.58	0.2007	Singlet-A	H-14->LUMO (16%), H-13->LUMO (12%), H-11->LUMO (11%)
25	27906.78	358.33	0.0311	Singlet-A	H-14->LUMO (12%), H-13->LUMO (13%), H-12->LUMO (13%)
26	28092.29	355.96	0.0285	Singlet-A	H-13->LUMO (16%), H-11->LUMO (71%)
27	28168.91	355.00	0.012	Singlet-A	H-15->LUMO (20%), H-14->LUMO (35%)
28	28251.98	353.95	0.0099	Singlet-A	H-15->LUMO (34%), H-12->LUMO (28%), H-10->LUMO (23%)
29	28471.37	351.23	0.0015	Singlet-A	H-16->LUMO (90%)
30	28549.60	350.26	0.0107	Singlet-A	H-15->LUMO (33%), H-14->LUMO (18%), H-10->LUMO (24%)

Table S4: Summary of UV-vis spectral data of deprotonated 6 [6]-1

	Energy	Wavelength	Oscillator		
<u>No.</u>	(cm^{-1})	(nm)	Strength	Symmetry	Major contributions
1	12920.19	//3.98	0.095	Singlet-A	HOMO->LUMO (91%)
2	15047.07	664.58	0.1861	Singlet-A	H-1->LUMO (80%)
3	15567.30	642.37	0.0171	Singlet-A	H-3->L+6 (12%), H-2->LUMO (15%)
4	15826.21	631.86	0.0078	Singlet-A	H-3->LUMO (10%), H-2->L+6 (15%)
5	19442.80	514.32	0.141	Singlet-A	H-3->L+6 (23%), H-2->LUMO (10%), HOMO->L+1 (14%)
6	19579.91	510.72	0.2006	Singlet-A	H-1->L+1 (25%), HOMO->L+1 (56%)
7	19748.48	506.36	0.0135	Singlet-A	H-3->LUMO (15%), H-2->L+6 (27%)
8	20888.14	478.74	0.2826	Singlet-A	H-4->LUMO (21%), H-3->LUMO (16%), H-2->LUMO (13%
9	20980.90	476.62	0.3244	Singlet-A	H-4->LUMO (34%), H-1->L+1 (34%), HOMO->L+1 (10%)
10	21840.68	457.86	0.0179	Singlet-A	H-4->LUMO (25%), H-2->LUMO (31%)
11	22217.34	450.09	0.0035	Singlet-A	H-3->LUMO (38%), H-2->LUMO (14%)
12	22669.82	441.11	0.1675	Singlet-A	HOMO->L+2 (62%)
13	22882.75	437.01	0.0094	Singlet-A	H-6->LUMO (17%), H-5->LUMO (64%)
14	23906.27	418.30	0.1515	Singlet-A	H-1->L+2 (79%)
15	24766.06	403.77	0.0498	Singlet-A	H-8->LUMO (74%)
16	24826.55	402.79	0.0283	Singlet-A	H-7->LUMO (26%), H-6->LUMO (36%), H-5->LUMO (28%
17	25480.66	392.45	0.0102	Singlet-A	H-9->LUMO (11%), H-2->L+1 (59%)
18	25748.44	388.37	0.0413	Singlet-A	H-4->L+1 (18%), H-3->L+1 (38%)
19	25812.16	387.41	0.1185	Singlet-A	H-7->LUMO (23%), H-4->L+1 (26%), H-3->L+1 (26%)
20	26738.08	373.99	0.1395	Singlet-A	H-9->LUMO (46%), H-3->L+1 (15%), H-2->L+1 (13%)
21	27112.32	368.83	0.2647	Singlet-A	H-7->LUMO (15%), H-4->L+1 (41%)
22	27424.46	364.63	0.0557	Singlet-A	H-10->LUMO (20%), H-9->LUMO (15%)
23	27929.36	358.04	0.0023	Singlet-A	HOMO->L+6 (13%)
24	28279.41	353.61	0.0014	Singlet-A	H-11->LUMO (35%), H-10->LUMO (50%)
25	28586.70	349.81	0.0902	Singlet-A	H-14->LUMO (10%), H-12->LUMO (18%)
26	28702.04	348.40	0.0969	Singlet-A	HOMO->L+3 (76%)
27	28830.28	346.85	0.0221	Singlet-A	H-11->LUMO (11%), H-4->L+2 (44%)
28	29027.08	344.50	0.0042	Singlet-A	H-6->L+1 (17%), H-5->L+1 (53%)
29	29481.98	339.19	0.0456	Singlet-A	HOMO->L+4 (62%), HOMO->L+5 (16%)
30	29614.25	337.67	0.0086	Singlet-A	HOMO->L+5 (65%)

Table S5: Summary of UV-vis spectral data of 7a

No	Energy (cm ⁻¹)	Wavelength (nm)	Oscillator Strength	Symmetry	Major contributions
1	7817.125	1279.2	0.1511	Singlet-A	HOMO->LUMO (100%)
2	12533.04	797.89	0.0414	Singlet-A	H-3->LUMO (12%), H-2->LUMO (11%), H-1->LUMO (45%)
3	12601.60	793.54	0.0036	Singlet-A	H-3->LUMO (14%), H-2->LUMO (49%), H-2->L+4 (10%)
4	15442.29	647.57	0.026	Singlet-A	H-3->LUMO (30%), H-1->LUMO (31%), HOMO->L+1 (17%)
5	18149.08	550.99	0.0024	Singlet-A	H-9->LUMO (17%), H-9->L+4 (10%), H-2->L+3 (25%)
6	18950.80	527.68	0.0497	Singlet-A	H-3->L+3 (31%), H-2->LUMO (10%), H-1->L+3 (15%)
7	19241.96	519.69	0.5325	Singlet-A	HOMO->L+1 (53%), HOMO->L+2 (15%)
8	19907.37	502.32	0.1005	Singlet-A	H-3->LUMO (20%), HOMO->L+2 (35%)
9	20417.92	489.76	0.2757	Singlet-A	HOMO->L+1 (12%), HOMO->L+2 (30%)
10	22077.00	452.95	0.0555	Singlet-A	H-4->LUMO (26%), H-2->L+4 (11%), H-1->L+1 (11%)
11	22331.87	447.79	0.037	Singlet-A	H-4->LUMO (34%), H-2->L+4 (10%)
12	22528.67	443.87	0.4429	Singlet-A	H-5->LUMO (72%)
13	23484.44	425.81	0.1055	Singlet-A	H-7->LUMO (31%), H-1->L+1 (55%)
14	24513.60	407.93	0.0562	Singlet-A	H-9->LUMO (23%), H-2->L+3 (14%), H-1->L+2 (28%)
15	25634.71	390.09	0.001	Singlet-A	H-6->LUMO (74%)
16	25687.95	389.28	0.0034	Singlet-A	H-8->LUMO (88%), H-7->LUMO (10%)
17	25766.99	388.09	0.014	Singlet-A	HOMO->L+3 (87%)
18	25900.07	386.09	0.439	Singlet-A	H-16->LUMO (10%), H-11->LUMO (16%), H-7->LUMO (19%)
19	26008.15	384.49	0.2771	Singlet-A	H-16->LUMO (11%), H-12->LUMO (12%), H-10->LUMO (13%)
20	26243.66	381.04	0.0032	Singlet-A	H-17->LUMO (21%), H-15->LUMO (13%), H-10->LUMO (18%)
21	26738.89	373.98	0.0864	Singlet-A	H-13->LUMO (30%), H-12->LUMO (13%),
22	26855.03	372.36	0.0024	Singlet-A	H-12->LUMO (16%), H-2->L+1 (58%)
23	26939.72	371.19	0.0838	Singlet-A	H-11->LUMO (25%), HOMO->L+4 (34%)
24	27056.67	369.59	0.1426	Singlet-A	H-11->LUMO (13%), H-3->L+1 (14%), H
25	27172.01	368.02	0.0171	Singlet-A	H-17->LUMO (12%), H-16->LUMO (17%),
26	27362.35	365.46	0.1169	Singlet-A	H-3->L+1 (23%), H-1->L+2 (31%)
27	27476.88	363.94	0.0645	Singlet-A	H-14->LUMO (51%), H-10->LUMO (25%)
28	27768.86	360.11	0.0094	Singlet-A	H-15->LUMO (37%), H-10->LUMO (12%)
29	27864.84	358.87	0.0326	Singlet-A	H-20->LUMO (13%), H-15->LUMO (10%),
30	27985.82	357.32	0.0546	Singlet-A	H-20->LUMO (17%), H-3->L+1 (25%),

Table S6: Summary of UV-vis spectral data of 7b

No.	Energy (cm ⁻¹)	Wavelength (nm)	Oscillator Strength	Symmetry	Major contributions
1	7238.826	1381.44	0.1542	Singlet-A	HOMO->LUMO (100%)
2	11785.37	848.50	0.071	Singlet-A	H-2->LUMO (13%), H-1->LUMO (61%)
3	12323.34	811.46	0.0046	Singlet-A	H-3->LUMO (65%), H-3->L+2 (10%), H-3->L+4 (14%)
4	14264.72	701.03	0.0282	Singlet-A	H-2->LUMO (46%), H-1->LUMO (25%)
5	17916.80	558.13	0.001	Singlet-A	H-9->LUMO (13%), H-3->L+3 (28%)
6	18594.30	537.79	0.0078	Singlet-A	H-3->LUMO (15%), H-2->L+3 (34%), H-1->L+3 (12%),
7	18837.88	530.84	0.4287	Singlet-A	H-2->LUMO (13%), HOMO->L+1 (59%)
8	18969.35	527.16	0.0995	Singlet-A	H-2->L+3 (10%), HOMO->L+2 (63%)
9	19581.52	510.68	0.0997	Singlet-A	H-3->L+3 (17%), H-2->LUMO (20%), HOMO->L+1 (12%)
10	20712.31	482.80	0.4039	Singlet-A	H-4->LUMO (61%), HOMO->L+2 (11%)
11	21765.67	459.43	0.0314	Singlet-A	H-9->L+3 (11%), H-3->LUMO (15%), H-3->L+2 (14%),
12	22206.05	450.32	0.1961	Singlet-A	H-5->LUMO (58%), H-1->L+1 (20%)
13	22866.62	437.31	0.2961	Singlet-A	H-5->LUMO (16%), H-1->L+1 (62%)
14	23342.49	428.40	0.0078	Singlet-A	H-8->LUMO (21%), H-6->LUMO (56%)
15	23772.38	420.65	0.1534	Singlet-A	H-9->LUMO (14%), H-3->L+3 (13%), H-1->L+2 (41%)
16	24175.66	413.63	0.0083	Singlet-A	H-14->LUMO (12%), H-8->LUMO (26%), H-6->LUMO (36%)
17	24970.92	400.46	0.0051	Singlet-A	H-7->LUMO (93%)
18	25405.65	393.61	0.0609	Singlet-A	H-14->LUMO (10%), H-12->LUMO (15%), H-8->LUMO (26%)
19	25517.76	391.88	0.0375	Singlet-A	H-9->LUMO (34%), H-1->L+2 (22%)
20	25727.47	388.68	0.0052	Singlet-A	H-16->LUMO (23%), H-11->LUMO (14%), HOMO->L+3 (14%)
21	26017.02	384.36	0.0483	Singlet-A	H-14->LUMO (10%), H-12->LUMO (14%), H-11->LUMO (13%), H
22	26063.80	383.67	0.0413	Singlet-A	H-14->LUMO (11%), H-12->LUMO (34%), HOMO->L+3 (30%)
23	26290.44	380.36	0.0712	Singlet-A	H-11->LUMO (35%), H-10->LUMO (37%)
24	26734.85	374.04	0.0038	Singlet-A	H-3->L+1 (88%)
25	26851.00	372.42	0.0029	Singlet-A	H-13->LUMO (39%), H-2->L+1 (29%), HOMO->L+4 (13%)
26	26902.62	371.71	0.0041	Singlet-A	H-13->LUMO (42%), H-2->L+1 (33%), HOMO->L+4 (16%)
27	27125.23	368.66	0.0083	Singlet-A	H-16->LUMO (35%), H-14->LUMO (17%), H-11->LUMO (14%)
28	27342.19	365.73	0.1097	Singlet-A	H-20->LUMO (10%), H-17->LUMO (10%), HOMO->L+4 (22%)
29	27428.49	364.58	0.0341	Singlet-A	H-20->LUMO (11%), H-17->LUMO (12%), H-15->LUMO (13%)
30	27566.41	362.76	0.2361	Singlet-A	H-15->LUMO (13%), H-2->L+1 (16%), HOMO->L+4 (33%)

Table S7: Summary of UV-vis spectral data of 7c

No.	Energy (cm ⁻¹)	Wavelength (nm)	Oscillator Strength	Symmetry	Major contributions
l	7476.759	1337.4	0.1067	Singlet-A	HOMO->LUMO (100%)
2	11497.43	869.75	0.0778	Singlet-A	H-1->LUMO (75%)
3	12744.36	784.66	0.0051	Singlet-A	H-2->LUMO (54%), H-2->L+3 (12%)
4	14219.55	703.25	0.022	Singlet-A	H-3->LUMO (39%), H-1->LUMO (20%)
5	17647.41	566.65	0.133	Singlet-A	HOMO->L+1 (57%), HOMO->L+2 (30%)
6	18216.83	548.94	0.0029	Singlet-A	H-3->LUMO (10%), H-2->L+4 (29%)
7	18290.23	546.73	0.0149	Singlet-A	H-3->L+4 (25%), H-2->LUMO (16%), H-1->L+4 (11%)
8	18493.48	540.73	0.0259	Singlet-A	H-3->LUMO (23%)
9	19081.46	524.06	0.6204	Singlet-A	HOMO->L+1 (32%), HOMO->L+2 (57%)
10	20804.26	480.67	0.0256	Singlet-A	H-2->L+3 (12%), H-1->L+1 (14%), H-1->L+2 (10%)
11	21140.59	473.02	0.0448	Singlet-A	H-4->LUMO (12%), H-1->L+1 (27%), H-1->L+2 (27%)
12	21864.88	457.35	0.1487	Singlet-A	H-8->LUMO (24%), H-4->LUMO (46%), H-1->L+1 (13%)
13	22226.22	449.91	0.2772	Singlet-A	H-5->LUMO (22%), H-2->L+4 (10%), H-1->L+1 (18%),
14	23181.98	431.36	0.2974	Singlet-A	H-8->LUMO (26%), H-5->LUMO (18%), H-4->LUMO (14%)
15	23977.25	417.06	0.3204	Singlet-A	H-8->LUMO (11%), H-5->LUMO (17%), H-3->L+2 (10%)
16	24599.10	406.51	0.0083	Singlet-A	H-17->LUMO (15%), H-14->LUMO (11%), H-9->LUMO (16%)
17	24853.16	402.36	0.0152	Singlet-A	H-6->LUMO (91%)
18	25360.49	394.31	0.1193	Singlet-A	H-17->LUMO (18%), H-16->LUMO (10%), H-9->LUMO (30%)
19	25432.27	393.20	0.0092	Singlet-A	H-7->LUMO (88%)
20	25708.92	388.97	0.0076	Singlet-A	H-2->L+1 (49%), H-2->L+2 (29%)
21	25837.97	387.02	0.0244	Singlet-A	H-17->LUMO (10%), H-15->LUMO (15%), H-10->LUMO (31%),
22	26264.63	380.74	0.0212	Singlet-A	H-3->L+1 (34%), H-3->L+2 (22%), H-2->L+2 (16%)
23	26324.32	379.87	0.0472	Singlet-A	H-17->LUMO (11%), H-15->LUMO (16%), H-14->LUMO (25%),
24	26406.59	378.69	0.0044	Singlet-A	H-3->L+2 (18%), H-2->L+1 (11%), H-2->L+2 (13%), H-1->
25	26770.34	373.54	0.0206	Singlet-A	H-12->LUMO (12%), H-11->LUMO (68%)
26	27148.62	368.34	0.0062	Singlet-A	H-10->LUMO (14%), H-3->L+1 (10%), H-3->L+2 (15%), H-1
27	27347.84	365.65	0.0022	Singlet-A	H-13->LUMO (16%), HOMO->L+4 (51%)
28	27403.49	364.91	0.0043	Singlet-A	H-13->LUMO (48%), H-12->LUMO (17%), HOMO->L+4 (14%)
29	27503.50	363.59	0.0056	Singlet-A	H-15->LUMO (30%), H-14->LUMO (26%), H-10->LUMO (12%),
30	27834.19	359.27	0.2224	Singlet-A	H-21->LUMO (32%), H-18->LUMO (10%), H-12->LUMO (14%)

No	Energy	Wavelength (nm)	Oscillator	Symmetry	Major contributions
1	5802.352	1723.43	0.1322	Singlet-A	HOMO->LUMO (100%)
2	10554.57	947.45	0.0334	Singlet-A	H-1->LUMO (75%)
3	12720.16	786.15	0.1084	Singlet-A	H-2->LUMO (54%), H-2->L+3 (12%)
4	13145.22	760.73	0.0127	Singlet-A	H-3->LUMO (39%), H-1->LUMO (20%)
5	14729.29	678.91	0.2259	Singlet-A	HOMO->L+1 (57%), HOMO->L+2 (30%)
6	16459.35	607.55	0.0253	Singlet-A	H-3->LUMO (10%), H-2->L+4 (29%)
7	17187.67	581.81	0.0137	Singlet-A	H-3->L+4 (25%), H-2->LUMO (16%), H-1->L+4 (11%)
8	17610.30	567.84	0.0352	Singlet-A	H-3->LUMO (23%)
9	18519.29	539.97	0.0744	Singlet-A	HOMO->L+1 (32%), HOMO->L+2 (57%)
10	18907.24	528.89	0.0497	Singlet-A	H-2->L+3 (12%), H-1->L+1 (14%), H-1->L+2 (10%)
11	19606.53	510.03	0.0458	Singlet-A	H-4->LUMO (12%), H-1->L+1 (27%), H-1->L+2 (27%)
12	20113.04	497.18	0.1619	Singlet-A	H-8->LUMO (24%), H-4->LUMO (46%), H-1->L+1 (13%)
13	20198.54	495.08	0.4759	Singlet-A	H-5->LUMO (22%), H-2->L+4 (10%), H-1->L+1 (18%),
14	20543.74	486.76	0.0709	Singlet-A	H-8->LUMO (26%), H-5->LUMO (18%), H-4->LUMO (14%)
15	21981.83	454.92	0.0398	Singlet-A	H-8->LUMO (11%), H-5->LUMO (17%), H-3->L+2 (10%)
16	22146.37	451.54	0.0223	Singlet-A	H-17->LUMO (15%), H-14->LUMO (11%), H-9->LUMO (16%)
17	22683.53	440.84	0.06	Singlet-A	H-6->LUMO (91%)
18	22945.66	435.81	0.0146	Singlet-A	H-17->LUMO (18%), H-16->LUMO (10%), H-9->LUMO (30%)
19	23247.31	430.15	0.0132	Singlet-A	H-7->LUMO (88%)
20	23515.09	425.25	0.0023	Singlet-A	H-2->L+1 (49%), H-2->L+2 (29%)
21	23807.06	420.04	0.022	Singlet-A	H-17->LUMO (10%), H-15->LUMO (15%), H-10->LUMO (31%),
22	24165.98	413.80	0.0304	Singlet-A	H-3->L+1 (34%), H-3->L+2 (22%), H-2->L+2 (16%)
23	24749.12	404.05	0.0665	Singlet-A	H-17->LUMO (11%), H-15->LUMO (16%), H-14->LUMO (25%),
24	25012.05	399.80	0.0362	Singlet-A	H-3->L+2 (18%), H-2->L+1 (11%), H-2->L+2 (13%), H-1->
25	25206.43	396.72	0.0417	Singlet-A	H-12->LUMO (12%), H-11->LUMO (68%)
26	25440.33	393.07	0.0494	Singlet-A	H-10->LUMO (14%), H-3->L+1 (10%), H-3->L+2 (15%), H-1
27	25629.07	390.18	0.136	Singlet-A	H-13->LUMO (16%), HOMO->L+4 (51%)
28	26056.54	383.78	0.0136	Singlet-A	H-13->LUMO (48%), H-12->LUMO (17%), HOMO->L+4 (14%)
29	26125.10	382.77	0.0252	Singlet-A	H-15->LUMO (30%), H-14->LUMO (26%), H-10->LUMO (12%),
30	26289.64	380.37	0.0171	Singlet-A	H-21->LUMO (32%), H-18->LUMO (10%), H-12->LUMO (14%)

Table S9: Summary of UV-vis spectral data of 7e

No.	Energy (cm ⁻¹)	Wavelength (nm)	Oscillator Strength	Symmetry	Major contributions
1	4615.910	2166.42	0.09060	Singlet-A	HOMO->LUMO (117%)
2	11126.41	898.76	0.09960	Singlet-A	H-2->LUMO (22%), HOMO->L+1 (71%)
3	12239.46	817.03	0.00040	Singlet-A	H-3->LUMO (65%), H-1->LUMO (16%)
4	13556.56	737.65	0.01110	Singlet-A	H-2->LUMO (11%), H-1->LUMO (74%)
5	14017.10	713.41	0.16550	Singlet-A	H-2->LUMO (34%), HOMO->L+1 (20%), HOMO->L+2 (10%)
6	15776.20	633.87	0.05700	Singlet-A	H-5->LUMO (10%), HOMO->L+2 (66%)
7	17256.23	579.50	0.10870	Singlet-A	H-5->LUMO (11%), H-4->LUMO (48%), H-2->LUMO (10%)
8	17342.53	576.62	0.00150	Singlet-A	H-3->L+4 (12%), H-2->L+1 (20%), H-2->L+3 (17%)
9	17712.74	564.57	0.01350	Singlet-A	H-4->LUMO (15%), H-3->L+1 (16%), H-3->L+3 (28%)
10	18589.46	537.94	0.02060	Singlet-A	H-10->LUMO (29%), H-6->LUMO (18%)
11	19429.08	514.69	0.31940	Singlet-A	H-5->LUMO (49%)
12	19945.28	501.37	0.40410	Singlet-A	H-6->LUMO (67%)
13	20473.57	488.43	0.00430	Singlet-A	H-10->L+3 (13%), H-2->L+4 (22%)
14	21532.58	464.41	0.02290	Singlet-A	H-10->LUMO (11%), H-2->L+1 (14%), H-1->L+1 (17%),
15	21580.17	463.39	0.09370	Singlet-A	H-2->L+1 (18%), H-1->L+1 (59%)
16	22121.36	452.05	0.01350	Singlet-A	H-7->LUMO (70%)
17	22599.65	442.48	0.01620	Singlet-A	H-10->LUMO (10%), H-3->L+4 (14%), HOMO->L+3 (15%)
18	23160.21	431.78	0.00210	Singlet-A	H-8->LUMO (78%), H-7->LUMO (10%)
19	23448.95	426.46	0.02220	Singlet-A	H-11->LUMO (58%), HOMO->L+3 (10%)
20	23536.87	424.87	0.00220	Singlet-A	H-9->LUMO (73%)
21	23619.94	423.37	0.05830	Singlet-A	H-11->LUMO (15%), H-9->LUMO (15%), H-3->L+1 (18%)
22	24233.73	412.65	0.11780	Singlet-A	H-10->LUMO (11%), H-2->L+1 (26%)
23	24549.90	407.33	0.01230	Singlet-A	H-12->LUMO (75%)
24	24915.27	401.36	0.08790	Singlet-A	H-14->LUMO (12%), H-13->LUMO (54%)
25	25153.20	397.56	0.03230	Singlet-A	H-4->L+1 (63%)
26	25380.65	394.00	0.01040	Singlet-A	H-15->LUMO (11%), H-3->L+1 (24%)
27	25528.25	391.72	0.00460	Singlet-A	H-14->LUMO (69%), H-13->LUMO (17%)
28	25723.44	388.75	0.03890	Singlet-A	H-15->LUMO (37%), H-1->L+2 (40%)
29	25928.30	385.68	0.03220	Singlet-A	H-15->LUMO (21%), H-1->L+2 (38%)
30	26192.85	381.78	0.01780	Singlet-A	H-5->L+1 (64%)

No.	Energy (cm ⁻¹)	Wavelength (nm)	Oscillator Strength	Symmetry	Major contributions
1	4615.910	2166.42	0.09060	Singlet-A	HOMO->LUMO (117%)
2	11126.41	898.76	0.09960	Singlet-A	H-2->LUMO (22%), HOMO->L+1 (71%)
3	12239.46	817.03	0.00040	Singlet-A	H-3->LUMO (65%), H-1->LUMO (16%)
4	13556.56	737.65	0.01110	Singlet-A	H-2->LUMO (11%), H-1->LUMO (74%)
5	14017.10	713.41	0.16550	Singlet-A	H-2->LUMO (34%), HOMO->L+1 (20%), HOMO->L+2 (10%)
6	15776.20	633.87	0.05700	Singlet-A	H-5->LUMO (10%), HOMO->L+2 (66%)
7	17256.23	579.50	0.10870	Singlet-A	H-5->LUMO (11%), H-4->LUMO (48%), H-2->LUMO (10%)
3	17342.53	576.62	0.00150	Singlet-A	H-3->L+4 (12%), H-2->L+1 (20%), H-2->L+3 (17%)
)	17712.74	564.57	0.01350	Singlet-A	H-4->LUMO (15%), H-3->L+1 (16%), H-3->L+3 (28%)
10	18589.46	537.94	0.02060	Singlet-A	H-10->LUMO (29%), H-6->LUMO (18%)
11	19429.08	514.69	0.31940	Singlet-A	H-5->LUMO (49%)
2	19945.28	501.37	0.40410	Singlet-A	H-6->LUMO (67%)
3	20473.57	488.43	0.00430	Singlet-A	H-10->L+3 (13%), H-2->L+4 (22%)
14	21532.58	464.41	0.02290	Singlet-A	H-10->LUMO (11%), H-2->L+1 (14%), H-1->L+1 (17%),
5	21580.17	463.39	0.09370	Singlet-A	H-2->L+1 (18%), H-1->L+1 (59%)
6	22121.36	452.05	0.01350	Singlet-A	H-7->LUMO (70%)
.7	22599.65	442.48	0.01620	Singlet-A	H-10->LUMO (10%), H-3->L+4 (14%), HOMO->L+3 (15%)
18	23160.21	431.78	0.00210	Singlet-A	H-8->LUMO (78%), H-7->LUMO (10%)
19	23448.95	426.46	0.02220	Singlet-A	H-11->LUMO (58%), HOMO->L+3 (10%)
20	23536.87	424.87	0.00220	Singlet-A	H-9->LUMO (73%)
21	23619.94	423.37	0.05830	Singlet-A	H-11->LUMO (15%), H-9->LUMO (15%), H-3->L+1 (18%)
22	24233.73	412.65	0.11780	Singlet-A	H-10->LUMO (11%), H-2->L+1 (26%)
23	24549.90	407.33	0.01230	Singlet-A	H-12->LUMO (75%)
24	24915.27	401.36	0.08790	Singlet-A	H-14->LUMO (12%), H-13->LUMO (54%)
25	25153.20	397.56	0.03230	Singlet-A	H-4->L+1 (63%)
26	25380.65	394.00	0.01040	Singlet-A	H-15->LUMO (11%), H-3->L+1 (24%)
27	25528.25	391.72	0.00460	Singlet-A	H-14->LUMO (69%), H-13->LUMO (17%)
28	25723.44	388.75	0.03890	Singlet-A	H-15->LUMO (37%), H-1->L+2 (40%)
29	25928.30	385.68	0.03220	Singlet-A	H-15->LUMO (21%), H-1->L+2 (38%)
30	26192.85	381.78	0.01780	Singlet-A	H-5->L+1 (64%)

Table S11: Summary	of UV-vis	spectral	data of 7g
--------------------	-----------	----------	------------

	Energy	Wavelength	Oscillator		
<u>No.</u>	(cm^{-1})	(nm)	Strength	Symmetry	Major contributions
l	4615.910	2166.42	0.09060	Singlet-A	HOMO->LUMO (117%)
2	11126.41	898.76	0.09960	Singlet-A	H-2->LUMO (22%), HOMO->L+1 (71%)
3	12239.46	817.03	0.00040	Singlet-A	H-3->LUMO (65%), H-1->LUMO (16%)
4	13556.56	737.65	0.01110	Singlet-A	H-2->LUMO (11%), H-1->LUMO (74%)
5	14017.10	713.41	0.16550	Singlet-A	H-2->LUMO (34%), HOMO->L+1 (20%), HOMO->L+2 (10%)
6	15776.20	633.87	0.05700	Singlet-A	H-5->LUMO (10%), HOMO->L+2 (66%)
7	17256.23	579.50	0.10870	Singlet-A	H-5->LUMO (11%), H-4->LUMO (48%), H-2->LUMO (10%)
8	17342.53	576.62	0.00150	Singlet-A	H-3->L+4 (12%), H-2->L+1 (20%), H-2->L+3 (17%)
9	17712.74	564.57	0.01350	Singlet-A	H-4->LUMO (15%), H-3->L+1 (16%), H-3->L+3 (28%)
10	18589.46	537.94	0.02060	Singlet-A	H-10->LUMO (29%), H-6->LUMO (18%)
11	19429.08	514.69	0.31940	Singlet-A	H-5->LUMO (49%)
12	19945.28	501.37	0.40410	Singlet-A	H-6->LUMO (67%)
13	20473.57	488.43	0.00430	Singlet-A	H-10->L+3 (13%), H-2->L+4 (22%)
14	21532.58	464.41	0.02290	Singlet-A	H-10->LUMO (11%), H-2->L+1 (14%), H-1->L+1 (17%),
15	21580.17	463.39	0.09370	Singlet-A	H-2->L+1 (18%), H-1->L+1 (59%)
16	22121.36	452.05	0.01350	Singlet-A	H-7->LUMO (70%)
17	22599.65	442.48	0.01620	Singlet-A	H-10->LUMO (10%), H-3->L+4 (14%), HOMO->L+3 (15%)
18	23160.21	431.78	0.00210	Singlet-A	H-8->LUMO (78%), H-7->LUMO (10%)
19	23448.95	426.46	0.02220	Singlet-A	H-11->LUMO (58%), HOMO->L+3 (10%)
20	23536.87	424.87	0.00220	Singlet-A	H-9->LUMO (73%)
21	23619.94	423.37	0.05830	Singlet-A	H-11->LUMO (15%), H-9->LUMO (15%), H-3->L+1 (18%)
22	24233.73	412.65	0.11780	Singlet-A	H-10->LUMO (11%), H-2->L+1 (26%)
23	24549.90	407.33	0.01230	Singlet-A	H-12->LUMO (75%)
24	24915.27	401.36	0.08790	Singlet-A	H-14->LUMO (12%), H-13->LUMO (54%)
25	25153.20	397.56	0.03230	Singlet-A	H-4->L+1 (63%)
26	25380.65	394.00	0.01040	Singlet-A	H-15->LUMO (11%), H-3->L+1 (24%)
27	25528.25	391.72	0.00460	Singlet-A	H-14->LUMO (69%), H-13->LUMO (17%)
28	25723.44	388.75	0.03890	Singlet-A	H-15->LUMO (37%), H-1->L+2 (40%)
29	25928.30	385.68	0.03220	Singlet-A	H-15->LUMO (21%), H-1->L+2 (38%)
30	26192.85	381.78	0.01780	Singlet-A	H-5->L+1 (64%)

Fig. S55 ¹H chemical shifts predicted for the Isomers of **7** at uB3LYP/LanL2DZ(Fe) and 6-31G** (for rest of the atoms) level of theory.

Fig. S56 NICS (0) and NICSzz(0) value for Isomers of **7** at uB3LYP/LanL2DZ(Fe) and 6-31G** (for rest of the atoms) level of theory.

Fig. S57 AICD plot for Isomers of **7** at uB3LYP/LanL2DZ(Fe) and 6-31G** (for rest of the atoms) level of theory.

Fig. S58: HOMO-LUMO gap of DFT optimized structures of **5** and **6**.

Table 12: HOMO-LUMO Gap (eV) of isomers of **7** at uB3LYP/LanL2DZ(Fe) and 6-31G** (for rest of the atoms) level of theory.

S.No	Isomers	HOMO (eV)	LUMO (eV)	HOMO-LUMO gap (eV)
1	7a	-4.51	-3.18	1.34
2	7b	-4.54	-3.28	1.26
3	7c	-4.58	-3.20	1.38
4	7d	-4.27	-3.34	0.92
5	7e	-4.19	-3.38	0.81
6	7f	-4.21	-3.41	0.81
7	7g	-4.22	-3.40	0.82

Table 13: Total electronic energy (E), zero point energy (ZPE), free energy (G) in hartree of **5**, **6**, deprotonated **6** and isomers of **7a-7g** at uB3LYP/LANL2DZ (Fe) and 6-31G** (for rest of the atoms) level of theory. Relative energies of isomers of **7** are given in kcal/mol.

	E	E+ZPE	G	ΔE	ΔE+ZPE	ΔG
5	-2687.429556	-2686.729981	-2686.814487			
6	-3756.401141	-3755.502144	-3755.608186			
[6] -1	-3755.822907	-3754.939911	-3755.045953			
7	-2819.959645	-2819.224889	-2819.311229	0.0	0.0	0.0
7b	-2819.933375	-2819.199346	-2819.28591	16.48	16.03	15.89
7c	-2819.916055	-2819.182523	-2819.26865	27.35	26.59	26.72
7d	-2819.881366	-2819.149068	-2819.233544	49.12	47.58	48.75
7e	-2819.882653	-2819.149738	-2819.234266	48.31	47.16	48.30
7f	-2819.87675	-2819.143636	-2819.228661	52.02	50.99	51.81
7g	-2819.873341	-2819.140538	-2819.225326	54.16	52.93	53.90

Cartesian Coordinates 5 E=-2687.429555, NImag =0

26	-2.425901	-2.274255	-0.867697
9	-0.309113	5.302817	-2.569528
9	1.094789	4.496902	1.858379
7	-1.844225	1.871450	-0.618060
1	-1.638507	1.449214	-1.510475
6	3.737647	2.200152	-0.125176
6	-3.650816	-0.872129	0.100072
6	-6.175527	1.807073	-0.575706
6	-1.729292	-3.748267	-2.127285
6	-1.616855	3.035597	1.257990
6	-2.936316	1.553084	0.162285
6 6	-2.442103	-2.782096	-2.885502
0	-3.903195	0.001110	-0.291311
6	-1.421231	2.221130	-0.120901
6	-1.027702	_1 300501	0.030732
6	-2.012077	-2 723051	1 138860
6	-1 790333	-1 522336	-2 716949
6	0.368338	-3.753036	-0.619501
6	-5.368791	0.978080	0.213802
6	-0.600677	-3.097499	-1.494330
6	1.469233	2.524404	-0.306650
6	0.662158	7.604040	0.050642
6	1.457007	-3.123151	-0.043698
6	-0.671557	-1.703507	-1.861444
6	0.104968	5.756079	-1.364708
6	0.217990	3.321618	-0.621320
6	0.230337	7.128876	-1.187261
6	-2.814966	2.275523	1.333910
7	2.730891	3.100420	-0.471053
6	0.813250	5.352270	0.852584
6	0.958894	6.714785	1.083952
6	-3.834052	-3.170220	0.360075
6	1.596589	1.213040	0.033607
6	2.923442	-1.574650	0.384011
0	-0.040002	0.370027	1.407904
6	3.030999	-0.294000	0.378805
6	0.386878	1 817150	-0.367320
6	-7 096031	0 999398	1 922854
6	-4 400615	-2 030292	-0 285471
6	-0.015148	-5.703136	0.925941
6	-7.891634	1.825836	1.127931
6	0.187041	-5.215195	-0.375574
6	0.227076	-6.135236	-1.437291
6	0.071145	-7.500862	-1.202330
6	-0.181045	-7.069174	1.158835
6	-0.138484	-7.972401	0.095723
6	5.099566	-0.362839	0.621837
6	7.878746	-0.579914	1.108289
6	7.083048	0.189044	1.958150
9	4.965222	1.025249	2.524931
6	5.723298	0.285676	1.695687
6	7.314348	-1.242016	0.018635
6	5.946982	-1.119094	-0.19/052
9 7	5.406/19	-1.750019	-1.255931
1 6	1.140014	-1./00020	-0.1940/1
υ	2.002000	-3.114010	0.700413

6 8 1 1	3.450735 4.927217 2.913716 -4.027453 0.072097	-2.811843 2.467601 4.084810 0.603892 3.237839	0.966705 -0.108442 -0.589389 -1.388003 -1.706887
6 Ene	rgy = -3756.4	01141, NIma	g =0.0
E 299999999977776666666666666666666666666	rgy = -3756.4 0.081765 -0.253828 2.826296 2.155224 -1.122581 -1.425422 2.865921 -3.416792 0.250843 0.017947 1.376829 0.592185 0.192892 -0.336052 0.278275 0.822509 0.751224 1.856706 2.119045 1.565077 -0.888055 0.362485 -1.619112 1.200848 -0.922898 0.571901 3.603119 1.255945 0.362485 -1.619112 1.200848 -0.922898 0.571901 3.603119 1.255945 0.351461 0.934125 1.305292 0.392059 1.634909 1.629845 0.308272 1.605275 -1.506063 -0.814582 -0.167681 -0.133190 -0.437517 -2.245946 2.394011 0.714951 2.062457 2.460025 -0.661317	01141, NIma 5.958271 -0.007730 2.771063 12.982884 6.204661 12.160472 8.558704 10.176717 12.485291 3.942382 9.047770 9.014494 6.103697 3.927931 4.817806 2.629126 4.011626 8.843465 7.442444 6.779483 4.960713 10.345748 6.068712 10.431618 4.861706 6.214327 7.098679 1.476429 7.403703 4.914328 4.746412 2.640792 11.086074 12.150901 8.704825 7.262181 7.407841 7.662469 9.893350 10.896408 11.923222 8.412740 9.446651 -0.746567 -1.591823 0.184818 10.092018 10.188021 13.014618	g =0.0 0.059765 6.654541 8.940319 6.580534 10.466390 3.622897 9.592612 9.251335 11.086501 5.180663 3.907185 6.601522 6.429129 3.810315 6.220413 6.937168 7.354038 2.699447 2.185896 2.857784 3.073741 6.366288 3.741458 4.021288 1.609457 7.791294 2.348092 7.725344 8.361668 9.359797 5.611307 2.798296 2.610347 7.904202 0.761309 3.333188 2.542028 8.361668 9.359797 5.611307 2.798296 2.610347 7.904202 0.761309 3.333188 2.542028 8.531007 7.565792 7.700540 3.954453 3.649985 9.317036 9.920102 7.579800 1.971142 0.969945 4.334392
1 6	-0.387799 0.669223	2.167246 11.028104	2.433866 5.146614

6	2.111548	6.345046	-0.212005
1	2.905959	5.631850	-0.044400
6	0.383694	12.493160	5.106119
6	-2.525484	5.766490	4.776078
1	-2.650424	4.734557	5.089045
6	2.236848	1.573731	8.731465
6	2.651440	0.509124	9.519317
1	3.419054	0.679325	10.265710
6	-1.540451	11.271167	10.152685
6	-1.862351	5.524963	0.742200
1	-2.599181	6.246605	1.062405
6	1.133813	13,429184	5.827571
6	0.260669	1.783831	4,476596
1	0.411490	0.715888	4,486773
6	1 102076	-0.912175	8 335889
1	0.624103	-1 868098	8 154003
6	-0 105969	4 029764	0 756464
1	0 750238	3 451636	1 068743
6	0 421458	7 552953	-1 217828
1	-0 302900	7 907176	-1 938498
6	-0.680286	10 0/5136	9 9/835/
1	-0.000200	0 1630/6	10 213676
1	0 15/252	10 0018/3	10.65/368
6	0.134232	7 00/670	0 122002
1	0.040410	0 765176	0.133092
ו ה	2 277179	6 766692	0.390779 5 385054
1	-3.211110	6 507970	5.303934 6 170562
l G	-3.972333	0.007079	0.179002
1	-3.100003	13.551254	10.545909
ו ה	-3.792731	5 054027	0 596225
1	-1.075900	5.054057	-0.360333
ו ה	-2.231109	10 200120	-1.400009
1	-3.714737	12.399130	9.970201
ו ה	-4.755100	12.342023	5 704712
1	1 50/579	14.795490	6 272950
ו ה	2 0294370	7 055227	10 455272
6	2.020479	12 450220	10.455275
6	-1.040303	7 267004	0.045201
6	0.002702	6 751062	10 000722
0	0.032300	0.751905	10.009733
0	-3.133070	0.090010	4.902370
ו ה	-3.7 10040	0.070370	2 415245
1	4.009391	0.200070	3.413243
ן ה	3.201022	0.0900ZZ	4.090130
1	1.592525	0.029001	-1.431402
ו ה	2 900091	0.900090	-2.343107
6	-2.090901	11.294002	9.794070
1	-1.020001	13.365737	10.920024
ו ה	-1.374900	14.405110	11.300370
0	-0.90007	14.37 1000	4.270402
ו ה	-1.703340	14.700720	5.004437
0 1	-0.175456	10.200020	3.0000000
ו ה	-0.309404	6 507052	4.970323
1	7 275022	0.307933	2.751279
l G	0.224006	0.270077	2.904903
0 1	0.324000	6.210210	12.240313
ו ה	-0.000011	0.219210	12.923224
0 1	0.009010	0.992199	3.013/31
ו ה	0.002/9/	0.009014	4.440200
0 1	-0.09/309	4.11910/	-0.070020
ו ה	-U. 102231 1 500776	J.U 1033 1 7 615702	-1.440/43 1 /07000
1	4.002110	2 21/627	1.401303 0.652207
ו 6	4.200342 2 265506	0.244001 7 026191	0.00209/
0	2.000000	1.330124	11.000400

1 6 1 6 1	3.288719 1.501942 1.747627 5.931800 6.676760 0.873737	8.403959 7.304845 7.279385 7.322050 7.730495 8.363481	12.125530 12.699590 13.756404 1.686651 1.009181 5.867897
Dep	orotonated 6	[6] -1	0
E= -	3755.822906	57, NImag =0.	
E 2999999997777666666616666666666666666666	3755.822906 -0.353860 0.383225 3.005580 2.935202 -1.389364 -0.315532 2.567572 -3.499068 -1.070744 0.177169 1.669972 0.965611 0.125368 -0.098227 0.328736 1.097236 0.863600 2.267560 2.167310 1.754755 -0.784745 0.766757 -1.646235 1.820176 -0.876237 0.502255 3.523276 1.648845 0.463090 0.937516 1.322626 0.70039 2.558218 2.848920 0.361002 1.153188 -1.211559 -0.184447 -0.289863 -0.021352 -0.376902 -2.083509 -1.714403 2.696449 3.095524 1.286952 2.858217 3.414966	67, NImag =0. 6.214215 -0.049585 2.994424 12.445407 6.248239 12.592041 8.792023 9.839578 12.618705 3.938878 9.001845 8.949200 6.083246 3.952636 4.818509 2.698153 4.055901 8.857478 7.519595 6.842037 4.913585 10.263988 5.936187 10.342971 4.819130 6.241741 6.958026 1.577590 7.473781 4.976765 4.847816 2.692804 11.031881 12.074588 8.739572 7.614569 7.232091 7.539585 9.947928 10.907398 11.929827 8.136652 9.122749 -0.600218 -1.425131 0.232169 10.031433 10.239213	0 0.355504 6.756627 9.275916 7.154934 10.506267 3.734328 10.077110 8.118877 11.050373 5.444014 3.873810 6.822255 6.718726 4.061878 6.514013 7.184635 7.637563 2.705915 1.986835 2.739780 3.356130 6.527876 4.037687 4.222151 1.893232 8.067215 1.575439 7.940363 8.700856 8.657116 9.657139 5.842117 3.182376 3.189356 8.010932 0.849498 4.344324 4.173995 8.501740 7.556787 7.549508 4.954091 5.218332 9.480793 10.062273 7.726051 2.231188 1.314857 1.514857 1.514973 1.514857 1.5149508 1.5148508 1.5148508 1.5148508
6	0.324698	2.629504	3.605644
1	0.197084	2.283356	2.591267
6	1.306761	10.923023	5.384052

6	1.275649	7.176725	-0.506853
1	2.124532	6.654908	-0.924527
6	1.314019	12.420347	5.438361
6	-2.961599	5.564654	4.366632
1	-3.298377	4.553528	4.150078
6	2.573902	1.748194	8.991773
6	3.092065	0.709062	9.753310
1	3.804406	0.945386	10.536079
6	-2 221126	11 168418	9 583406
6	-2 016157	5 205947	1 102114
1	-2 903363	5 682110	1 493252
6	2 121180	13 13256/	6 33/312
6	0 755127	1 880003	1 661832
4	1.062042	0.945601	4.001032
I C	1.002042	0.040001	4.030033
0	1.784714	-0.840396	8.452683
1	1.437594	-1.838972	8.210771
6	0.094203	4.281921	0.974284
1	1.097057	3.973951	1.232981
6	-0.808556	8.141135	-0.273328
1	-1.815653	8.480153	-0.476321
6	-1.178217	10.082202	9.720923
1	-1.698030	9.133262	9.890440
1	-0.591258	10.282630	10.624166
6	-0.145499	8.202017	0.985986
1	-0.549508	8.600544	1.905166
6	-3.829816	6.472538	4.975035
1	-4 840857	6 163644	5 230214
6	-4 176783	13 200094	9 282471
1	-1 02/330	13 078750	0 165255
6	1 777517	10.070700	0.254402
4	-1.///31/	4.041910 E 01702E	-0.234403
l G	-2.440470	J.U 17 UJJ	-1.004900
0 4	-4.322411	11.900000	0.003929
1	-5.166661	11.790542	7.953136
6	2.143233	14.522150	6.408435
1	2.802124	15.001372	7.123918
6	1.642053	8.174401	10.828534
6	-2.130813	12.398016	10.237343
6	0.591625	7.500430	10.186371
6	-0.322231	6.870217	11.043066
6	-3.390318	7.765010	5.269457
1	-4.048002	8.469413	5.771871
6	4.058244	5.867522	2.275523
1	3.487866	5.434043	3.092775
6	0.069001	7.502371	-1.200866
1	-0.150800	7.271007	-2.234932
6	-3 347580	11 011752	8 768494
6	-3 075336	13 413077	10 110083
1	-2 931675	14 341533	10 651493
6	0.486861	14.596878	10.001400
1	0.400001	15 13/810	3 076220
ו ה	1 215052	15.154019	5.570225
4	1.315952	10.200200	5.550510
	1.310989	10.338313	5.001298
6	6.056413	5.900195	0.911016
1	7.031493	5.493953	0.654823
6	-0.215593	6.889038	12.430288
1	-0.970313	6.384971	13.023557
6	5.310115	5.342036	1.949533
1	5.701046	4.497466	2.511026
6	-0.470455	4.271242	-0.335783
1	0.028374	3.945205	-1.238807
6	4.287457	7.510992	0.535385
1	3.896415	8.353667	-0.026281
6	1.792813	8.218432	12.211142

1	2.638801	8.751103	12.630822
6	0.854238	7.568122	13.012007
1	0.955810	7.592860	14.092847
6	5.538816	6.988851	0.205743
1	6.111616	7.435659	-0.603300
7a E=	-2819.959645	2, NImag =0.	.0
2997766161616616616616616161666666666166666161	-0.523470 4.375813 6.449034 1.967176 6.376479 -0.599033 -1.843288 -1.236599 -1.535317 -2.604193 2.609250 3.245678 0.846558 -0.862585 -1.332547 -0.383031 -2.923703 -3.141014 3.065229 0.359103 1.406984 -0.314103 0.151433 0.532711 1.315273 -0.889467 -1.537929 -0.556829 4.765159 7.272563 8.007164 -0.005911 0.728636 1.698319 5.342920 4.342498 6.269565 6.195677 1.297991 0.684171 6.183662 6.383738 7.337677 8.103008 -1.690251 -2.456736 4.090926 1.920067 -2.371569 -2.155506 3.275718	2.801568 8.011740 5.013988 4.790502 2.889652 3.300459 6.636434 7.196412 3.296571 3.186124 6.638750 7.414365 5.245962 4.449024 5.362342 4.622576 7.254836 8.298634 5.605976 2.246408 2.263304 1.136617 0.210005 4.164571 4.840284 0.945026 5.283464 2.276957 4.277692 8.430784 9.189407 -0.110349 2.836996 2.376006 7.726169 5.408294 8.716935 9.681822 6.424634 6.988882 4.008724 6.926816 1.480158 0.868133 3.193708 -1.327943 4.568537 3.524204 -1.615548	0.860124 1.405638 4.394744 2.821486 0.794448 2.919562 3.936617 3.231699 -0.866317 -0.969169 3.936995 4.337031 3.514684 -0.379422 -0.042113 3.526219 4.566266 4.357138 3.028097 2.683791 2.944495 2.100253 1.793240 -0.357967 -0.042249 -1.682553 4.180262 -1.174183 1.744674 3.533321 3.783941 -1.779829 -0.831854 -0.943186 2.300737 2.526344 2.607299 2.118684 4.229747 4.915747 1.426445 3.803029 4.140286 4.866370 1.955234 1.500472 1.181814 -1.729848 5.063409 5.266963 -1.547137
6	5.358154	6.449409	2.876366
6		5.186949	5.690643

1	-4.070672	4.617240	6.377001
6	-1.864427	2.806105	2.442252
1	-2.787723	3.367245	2.438725
6	-3.082156	-0.294604	-1.590804
1	-2.663885	-0.923086	-0.810177
6	-3.731391	6.534297	5.447275
1	-4.574742	7.014456	5.934915
6	-2.289935	0.726447	-2.144756
6	-2.855674	1.540704	-3.142860
1	-2.256915	2.330839	-3.585860
6	-4.163218	1.332643	-3.577902
1	-4.576669	1.964907	-4.358508
6	-4.393198	-0.499566	-2.023982
1	-4.988947	-1.291374	-1.578735
6	-4.938141	0.312611	-3.019271
1	-5.958178	0.154175	-3.356835
6	3.778203	-2.932622	-2.029463
6	4.717353	-5.448482	-2.935419
1	5.079097	-6.411570	-3.281098
6	3.840487	-5.385459	-1.852442
1	3.503448	-6.274682	-1.332005
9	2.546551	-4.086963	-0.380493
6	3.395769	-4.138870	-1.426783
6	5.130766	-4.281489	-3.578263
1	5.805066	-4.299740	-4.426880
6	4.651293	-3.060202	-3.118443
9	5.047086	-1.939450	-3.752839
1	3.038888	2.955881	1.164437
7	1.316061	-0.161248	-1.341892
6	-0.232074	-1.378267	-2.454609
6	0.915939	-2.105803	-2.421460
1	-1.159807	-1.648557	-2.935548
1	1.090586	-3.075255	-2.863962
1	1.869609	0.515154	-0.814786
6	4.969123	1.126801	-0.053829
6	6.128635	0.296169	-0.380580
6	5.637107	-0.843004	-0.917372
6	4.177590	-0.678368	-0.969726
7	3.801922	0.507267	-0.432820
1	7.150966	0.579223	-0.179912
1	6.187377	-1.707703	-1.258948
1	7.014025	4.655578	1.688481
1	1 902706	4 100404	2 092990

7b

Energy = -2819.933375, NImag=0.0

Fe, -0.595633, 2.771580, 0.793116 F, 4.346750, 8.129516, 1.912799 F, 6.780228, 4.870992, 4.305252 N, 2.094751, 4.797151, 2.859213 N, 6.438746, 3.021163, 0.685305 C, -0.550773, 3.343706, 2.841528 C, -1.738477, 6.725367, 3.693965 H, -1.100370, 7.232645, 2.976795 C, -1.724546, 3.162900, -0.892483 H, -2.793013, 3.012746, -0.933333 C, 2.692051, 6.599041, 4.079208 H, 3.314643, 7.339818, 4.558770 C, 0.934678, 5.261968, 3.485728 C, -1.069137, 4.353338, -0.474085 H, -1.554210, 5.258041, -0.134980 C, -0.309838, 4.668619, 3.426185

C, -2.820060, 7.399797, 4.261636 H, -3.011045, 8.434007, 3.989299 C, 3.189173, 5.591095, 3.168128 C, 0.393191, 2.281400, 2.588277 H, 1.447604, 2.303629, 2.816793 C, -0.310614, 1.150841, 2.084595 H, 0.132909, 0.209022, 1.791562 C, 0.334103, 4.116669, -0.518958 H, 1.111292, 4.822448, -0.259019 C, -1.062543, 0.816119, -1.714846 C, -1.468903, 5.383235, 4.020816 C, -0.735260, 2.166604, -1.231746 C, 4.918261, 4.275355, 1.939077 C, 7.436380, 8.389331, 3.777780 H, 8.177575, 9.137080, 4.040941 C, -0.171343, -0.235758, -1.769253 C, 0.545392, 2.782277, -0.971343 H, 1.527998, 2.367173, -1.138804 C. 5.402202, 7.771082, 2.672842 C, 4.491971, 5.401142, 2.720299 C, 6.335401, 8.748081, 3.000122 H, 6.192201, 9.759501, 2.637235 C, 1.358023, 6.407512, 4.266554 H, 0.708616, 6.961310, 4.927877 C, 6.271189, 4.128356, 1.346405 C, 6.626993, 6.136373, 3.869542 C, 7.590775, 7.074755, 4.218679 H, 8.433004, 6.766670, 4.827599 C, -1.692017, 1.490508, 2.002182 H, -2.481115, 0.861310, 1.614565 C, 4.266077, 3.112890, 1.547752 C, 1.809254, -1.396233, -1.632145 C, -2.331251, 4.736736, 4.927657 H, -2.138952, 3.702916, 5.197696 C, 3.169579, -1.619903, -1.458088 C, 5.196113, 2.352562, 0.773331 C, 5.500426, 6.435431, 3.088938 C, -3.409767, 5.411568, 5.494871 H, -4.053923, 4.896125, 6.201676 C, -1.840295, 2.834129, 2.446618 H, -2.763692, 3.393839, 2.472123 C, -3.237700, -0.456205, -1.657771 H, -2.820308, -1.084680, -0.876616 C, -3.659601, 6.746583, 5.164882 H, -4.503062, 7.270110, 5.605367 C, -2.454371, 0.583456, -2.190848 C, -3.025211, 1.400668, -3.184624 H, -2.435387, 2.205880, -3.612352 C, -4.324718, 1.177669, -3.635338 H, -4.740557, 1.813727, -4.411673 C, -4.539685, -0.678589, -2.108953 H, -5.126897, -1.485402, -1.679414 C, -5.088216, 0.136851, -3.099589 H, -6.101719, -0.034388, -3.450332 C, 3.757257, -2.873983, -2.014021 C, 4.900619, -5.250886, -3.028357 H, 5.342001, -6.162894, -3.417829 C, 4.186635, -5.284680, -1.830788 H. 4.055030. -6.198918. -1.263332 F, 2.945762, -4.134334, -0.193376 C, 3.637336, -4.099927, -1.352638 C, 5.049626, -4.055041, -3.731356 H, 5.596232, -4.001976, -4.665968

C, 4.476073, -2.898893, -3.214676 F, 4.600378, -1.755632, -3.908901 H, 3.276369, 2.766890, 1.795432 N, 1.134294, -0.240527, -1.285234 C, -0.339606, -1.539133, -2.391702 C, 0.832797, -2.224814, -2.306996 H, -1.248690, -1.864474, -2.874586 H, 1.044171, -3.209498, -2.697522 H, 1.607617, 0.561467, -0.910157 C, 4.966491, 1.157615, 0.111693 C, 5.949765, 0.385043, -0.665777 N, 5.433095, -0.677317, -1.203972 C, 4.041674, -0.653801, -0.862614 C, 3.755700, 0.425164, -0.028802 H, 2.062401, 4.202826, 2.045413 H, 2.837035, 0.635511, 0.499404 H, 6.994112, 0.652970, -0.780109 H, 7.065338, 4.864007, 1.424552

7c

Energy = -2819.916055, NImag =0.0

Fe, -0.152975, 2.453861, -0.145605 F, -5.393634, -1.899205, 2.343623 F, -4.409901, -5.071204, -1.021428 N, -3.268806, -0.191756, -0.623320 N, -0.511184, -4.068869, 0.266572 C, -1.844630, 2.386621, -1.437291 C, -4.792187, 3.865837, 0.109667 H, -4.720593, 3.246068, 0.998534 C, 0.597093, 3.615214, 1.398607 H, 0.843241, 4.661967, 1.296108 C, -5.471121, -0.517026, -0.250038 H, -6.408698, -1.022473, -0.070973 C, -3.878680, 1.054243, -0.755184 C, -0.676804, 3.090263, 1.754441 H, -1.569338, 3.669024, 1.947718 C, -3.259937, 2.246740, -1.069898 C, -5.570293, 5.024740, 0.129316 H, -6.106266, 5.297100, 1.034250 C, -4.183584, -1.178792, -0.274286 C, -0.875861, 1.376677, -1.792989 H, -1.037609, 0.312918, -1.853601 C, 0.357611, 2.011564, -2.118419 H, 1.263591, 1.503957, -2.416639 C, -0.583168, 1.667868, 1.736068 H, -1.385674, 0.972046, 1.940172 C, 2.962351, 2.675537, 0.958921 C, -4.083327, 3.489025, -1.044945 C, 1.517293, 2.524745, 1.189196 C, -2.515537, -2.993333, -0.259634 C, -6.694810, -5.225804, 1.776682 H, -7.401914, -5.916833, 2.223972 C, 3.775695, 1.659021, 0.497408 C, 0.749437, 1.315717, 1.377975 H, 1.121418, 0.302777, 1.330533 C, -5.586681, -3.099814, 1.757326 C, -3.855585, -2.500576, -0.010579 C, -6.500261, -3.966533, 2.344245 H, -7.027697, -3.650232, 3.236996 C, -5.294227, 0.799242, -0.541990 H, -6.063580, 1.550382, -0.641150 C, -1.768312, -3.956719, 0.584580

C, -5.083441, -4.698299, 0.083866 C, -5.980846, -5.601440, 0.638590 H, -6.109611, -6.571220, 0.171684 C, 0.189204, 3.416443, -1.954394 H, 0.951626, 4.171353, -2.087466 C, -1.595813, -2.595965, -1.202290 C, 4.398557, -0.457546, -0.171147 C, -4.172189, 4.320014, -2.177438 H, -3.635755, 4.044247, -3.080459 C, 4.221052, -1.759630, -0.601408 C, -0.339425, -3.212183, -0.841532 C, -4.847396, -3.412353, 0.602993 C, -4.949132, 5.476647, -2.157818 H, -5.011688, 6.097128, -3.047429 C, -1.144883, 3.647335, -1.518976 H, -1.569462, 4.608880, -1.271868 C, 4.470921, 4.625614, 0.462610 H, 4.654369, 4.196701, -0.517986 C, -5.651953, 5.834531, -1.003998 H, -6.255395, 6.737464, -0.989360 C, 3.596443, 3.963293, 1.344547 C, 3.349271, 4.555919, 2.598226 H, 2.684576, 4.059088, 3.298073 C, 3.961474, 5.754641, 2.957117 H, 3.764463, 6.186274, 3.934483 C, 5.084404, 5.825859, 0.823218 H, 5.751620, 6.320101, 0.122534 C, 4.832542, 6.395812, 2.071832 H, 5.306681, 7.331801, 2.352467 C, 5.225138, -2.818510, -0.423092 C, 7.093397, -4.941353, -0.133484 H, 7.806836, -5.751337, -0.021754 C, 6.375304, -4.805530, -1.322300 H, 6.506614, -5.485679, -2.156015 F, 4.795154, -3.630918, -2.599143 C, 5.469545, -3.761479, -1.438713 C, 6.893579, -4.041699, 0.913160 H, 7.422762, -4.128668, 1.855307 C, 5.970949, -3.015781, 0.752363 F, 5.777749, -2.177672, 1.792620 H, -1.760531, -1.924746, -2.031797 N, 3.352585, 0.448885, -0.036491 C, 5.219455, 1.522623, 0.624628 C, 5.579939, 0.262386, 0.264517 H, 5.866427, 2.298162, 1.006710 H, 6.573401, -0.160145, 0.282865 H, 2.394291, 0.234739, -0.260161 C, 1.037241, -1.801657, -2.394811 C, 0.887192, -2.805365, -1.332795 N, 2.093179, -3.004598, -0.670814 C, 2.907910, -2.086301, -1.160589 C, 2.296364, -1.323437, -2.267562 H, -2.278817, -0.317709, -0.478740 H, 2.802821, -0.579913, -2.869835 H, -2.191655, -4.504855, 1.422252 H, 0.284809, -1.516507, -3.117397

7d

Energy = -2819.881366, NImag =0.0

Fe, -1.691873, 3.480599, 0.298803 F, 6.230923, 5.080186, 0.783969 F, 3.679331, 1.763148, 2.975491 N, 1.310304, 4.456802, 2.061433 N, 3.759873, 4.653816, -2.302820 C, -1.554615, 3.933325, 2.421593 C, -0.992576, 7.099423, 4.391198 H, -0.080451, 7.420319, 3.898735 C, -2.228257, 3.230368, -1.663919 H, -3.082471, 2.651720, -1.980840 C, 2.822826, 4.828496, 3.662374 H, 3.772764, 4.900527, 4.172533 C, 0.603502, 4.901570, 3.152322 C, -2.233523, 4.617105, -1.351094 H, -3.097498, 5.266904, -1.365039 C, -0.813627, 4.904392, 3.194133 C, -1.646545, 7.964809, 5.263429 H, -1.227248, 8.948260, 5.456713 C, 2.661603, 4.404527, 2.315457 C, -1.134995, 2.581229, 2.102311 H, -0.174206, 2.152382, 2.349885 C, -2.230201, 1.888379, 1.526348 H, -2.226371, 0.856806, 1.204546 C, -0.914231, 4.980628, -0.958921 H, -0.589702, 5.959159, -0.632642 C, -0.499420, 1.342884, -1.718494 C, -1.513437, 5.816405, 4.105731 C, -0.872553, 2.717611, -1.531127 C, 2.629992, 5.508199, -0.491766 C, 7.248306, 2.331699, 2.900303 H, 8.158923, 1.899194, 3.302027 C, 0.750307, 0.741185, -1.472865 C, -0.093769, 3.821902, -1.025286 H, 0.965987, 3.835833, -0.834841 C, 6.148806, 3.984172, 1.556978 C, 3.626270, 4.055906, 1.325683 C, 7.322728, 3.453743, 2.074186 H, 8.267539, 3.922307, 1.824771 C, 1.579752, 5.183629, 4.157491 H, 1.352222, 5.549649, 5.147889 C, 2.901930, 5.628894, -1.834014 C, 4.866179, 2.328067, 2.680082 C, 6.015634, 1.757745, 3.209049 H, 5.928191, 0.874647, 3.830212 C, -3.313997, 2.806047, 1.377866 H, -4.270452, 2.592182, 0.921205 C, 3.408854, 4.384813, -0.028158 C, 2.940437, 0.343049, -0.927653 C, -2.725496, 5.449124, 4.734033 H, -3.136084, 4.460803, 4.556940 C, 4.354904, 0.445917, -0.722254 C, 4.076315, 3.894486, -1.253756 C, 4.879087, 3.447079, 1.831140 C, -3.378654, 6.319890, 5.600829 H, -4.303335, 6.006843, 6.077698 C, -2.892729, 4.065609, 1.891308 H, -3.480509, 4.972327, 1.915467 C, -2.158353, -0.566767, -1.467066 H, -1.804277, -0.722473, -0.452530 C, -2.844382, 7.582520, 5.872900 H, -3.355854, 8.260055, 6.550143 C, -1.578581, 0.445121, -2.249543 C, -2.046892, 0.621472, -3.562454 H, -1.603862, 1.394627, -4.183371 C, -3.061424, -0.187468, -4.075221 H, -3.403236, -0.038110, -5.095429

C, -3.173761 , -1.376128 , -1.979104 H, -3.609141 , -2.151634 , -1.355213 C, -3.629849 , -1.188490 , -3.285017 H, -4.419524 , -1.818242 , -3.684137 C, 4.985167 , -0.882234 , -0.389288 C, 6.140928 , -3.372126 , 0.278525 H, 6.586717 , -4.328241 , 0.534106 C, 5.519660 , -2.610860 , 1.267338 H, 5.463060 , -2.939935 , 2.298727 F, 4.349296 , -0.658514 , 1.870850 C, 4.956548 , -1.390185 , 0.909640 C, 6.190624 , -2.914210 , -1.039067 H, 6.665867 , -3.485087 , -1.828613 C, 5.616276 , -1.686051 , -1.343242 F, 5.645192 , -1.262320 , -2.617810 N, 1.971564 , 1.316453 , -1.098205 C, 0.992709 , -0.667684 , -1.522428 C, 2.291163 , -0.905194 , -1.153214 H, 0.259065 , -1.405298 , -1.804231 H, 2.776030 , -1.865788 , -1.089827 H, 2.192222 , 2.303555 , -1.115447 C, 5.134634 , 2.901697 , -1.357895 C, 5.264995 , 1.486713 , -0.921649 N, 6.601297 , 1.095782 , -1.031860 C, 7.225972 , 2.101028 , -1.610467 C, 6.373979 , 3.224314 , -1.865113 H, 0.872103 , 4.163974 , 1.198661 H, 8.289763 , 2.042340 , -1.825546 H, 2.052436 , 6.182540 , 0.125070 H, 6.654376 , 4.187164 , -2.268976
7e Energy = -2819.882653, NImag =0.0
Fe, -1.603476, 3.445073, 0.306669 F, 6.295395, 5.090088, 0.937130 F, 3.704550, 1.756764, 3.051629 N, 1.357919, 4.480254, 2.123036 C, 3.595556, 4.586649, -2.155069 C, -1.515349, 3.943009, 2.430706 C, -0.999746, 7.197919, 4.258514 H, -0.062725, 7.482627, 3.791318 C, -2.123913, 3.219529, -1.663653 H, -2.993194, 2.675934, -2.001429 C, 2.831704, 4.903586, 3.746184 H, 3.768386, 5.002151, 4.276263 C, 0.623544, 4.939525, 3.185400 C, -2.079505, 4.604206, -1.345388 H, -2.916215, 5.288372, -1.370826 C, -0.803834, 4.943599, 3.180312

H, -2.119661, 0.830475, 1.268348 C, -0.750852, 4.918279, -0.939879 H, -0.392558, 5.884940, -0.614933 C, -0.457781, 1.279487, -1.714103 C, -1.526201, 5.907957, 4.014958 C, -0.787013, 2.657605, -1.526463

C, -1.677995, 8.114183, 5.056670

H, -1.253722, 9.101382, 5.217233

C, 2.705309, 4.449347, 2.410712

C, -1.069450, 2.589885, 2.141963

H, -0.110759, 2.177248, 2.422770

C, -2.143734, 1.870288, 1.561916

C, 2.674108, 5.460081, -0.412083 C, 7.278295, 2.299985, 3.016456 H, 8.182504, 1.852078, 3.415825 C, 0.785049, 0.650241, -1.459932 C, 0.022942, 3.729579, -0.994283 H, 1.073271, 3.681159, -0.765643 C, 6.202080, 3.984783, 1.696227 C, 3.687096, 4.080302, 1.440127 C, 7.368554, 3.436658, 2.212270 H, 8.319309, 3.900482, 1.977031 C, 1.567844, 5.249895, 4.206459 H, 1.312070, 5.632691, 5.183606 N, 2.765755, 5.612288, -1.715112 C, 4.897527, 2.319612, 2.781422 C, 6.039262, 1.728946, 3.305000 H, 5.941573, 0.832416, 3.904917 C, -3.235273, 2.770164, 1.365296 H, -4.179205, 2.532173, 0.894847 C, 3.469079, 4.342252, 0.080584 C, 2.973660, 0.236790, -0.939567 C, -2.766920, 5.586388, 4.613098 H, -3.181035, 4.593664, 4.472950 C, 4.393548, 0.336999, -0.763973 C, 4.074760, 3.789270, -1.132460 C, 4.927675, 3.456938, 1.958673 C, -3.443499, 6.507782, 5.406171 H, -4.390011, 6.229136, 5.861091 C, -2.841064, 4.046931, 1.857572 H, -3.440800, 4.945905, 1.847676 C, -2.181614, -0.572417, -1.452640 H, -1.853559, -0.717311, -0.427928 C, -2.905067, 7.777374, 5.634381 H, -3.434562, 8.494317, 6.254805 C, -1.555963, 0.404859, -2.243650 C, -1.996672, 0.570484, -3.567458 H, -1.519599, 1.318135, -4.194391 C, -3.028155, -0.215288, -4.082680 H, -3.349050, -0.073396, -5.110743 C, -3.212699, -1.359855, -1.967571 H, -3.683396, -2.108717, -1.336760 C, -3.640523, -1.183353, -3.284524 H, -4.442922, -1.795610, -3.685506 C, 5.028385, -0.987523, -0.428088 C, 6.197154, -3.465510, 0.250987 H, 6.647321, -4.418357, 0.510959 C, 5.628804, -2.673173, 1.247770 H, 5.618936, -2.975171, 2.288903 F, 4.504447, -0.691974, 1.852137 C, 5.059497, -1.457249, 0.884894 C, 6.189887, -3.042664, -1.079126 H, 6.626381, -3.637022, -1.873707 C, 5.610168, -1.818222, -1.388358 F, 5.591716, -1.419147, -2.671944 N, 2.024252, 1.221239, -1.161278 C, 0.987527, -0.760184, -1.411746 C, 2.294117, -1.004602, -1.058224 H, 0.224754, -1.496850, -1.605240 H, 2.754512, -1.970596, -0.927428 H, 2.276924, 2.194416, -1.293846 C, 5.174069, 2.823332, -1.249397 C, 5.295332, 1.382542, -0.943523 N, 6.647185, 0.999176, -1.040679 C, 7.292575, 2.055890, -1.466353

C, 6.439522, 3.208345, -1.620154 H, 0.944506, 4.155253, 1.259419 H, 8.362890, 2.020873, -1.652418 H, 3.823499, 4.484077, -3.209872 H, 2.137315, 6.169538, 0.208701 H, 6.741013, 4.212996, -1.886493 7f Energy = -2819.876750 NImag=0.0 Fe, -1.577696, 3.427654, 0.332153 F, 6.309518, 5.106226, 0.976023 F, 3.720967, 1.793199, 3.124333 N, 1.371009, 4.489221, 2.159214 C, 3.581102, 4.547076, -2.101552 C, -1.503123, 3.931614, 2.453190 C, -1.028489, 7.228420, 4.207026 H, -0.089914, 7.508231, 3.740166 C, -2.111882, 3.209044, -1.636217 H, -2.987646, 2.674132, -1.971314 C, 2.827621, 4.965856, 3.781851 H, 3.759348, 5.089428, 4.315354 C, 0.623032, 4.958519, 3.208140 C, -2.054662, 4.592345, -1.311725 H, -2.885403, 5.283992, -1.329533 C, -0.807222, 4.948807, 3.189018 C, -1.721006, 8.159490, 4.975111 H, -1.306962, 9.154428, 5.112468 C, 2.715022, 4.485226, 2.457517 C, -1.034696, 2.582942, 2.170802 H, -0.071822, 2.185721, 2.459195 C, -2.095945, 1.844941, 1.592765 H, -2.054508, 0.804025, 1.304829 C, -0.720143, 4.893708, -0.916600 H, -0.351088, 5.856406, -0.592171 C, -0.461366, 1.260612, -1.727034 C, -1.542983, 5.928415, 3.993618 C, -0.778141, 2.636296, -1.517979 C, 2.679615, 5.464648, -0.370089 C, 7.297265, 2.324080, 3.061148 H, 8.202895, 1.875153, 3.456315 C, 0.780039, 0.618681, -1.485176 C, 0.043155, 3.698108, -0.980962 H, 1.094274, 3.636851, -0.759099 C, 6.218550, 4.003972, 1.738589 C, 3.706033, 4.106854, 1.491757 C, 7.387095, 3.452365, 2.245706 H, 8.338366, 3.903905, 1.990665 C, 1.552799, 5.299070, 4.229151 H, 1.284582, 5.694343, 5.197977 N, 2.756635, 5.591578, -1.671938 C, 4.914618, 2.352259, 2.845249 C, 6.057544, 1.762461, 3.366986 H, 5.960950, 0.873330, 3.978154 C, -3.200714, 2.727590, 1.387350 H, -4.138987, 2.472324, 0.914720 C, 3.490899, 4.356861, 0.136116 C, 2.970049, 0.184356, -0.985322 C. -2.784532, 5.610561, 4.591907 H, -3.187873, 4.610400, 4.475615 C, 4.387173, 0.288184, -0.809099 C, 4.084320, 3.780130, -1.071918 C, 4.944027, 3.482959, 2.014290

C, -3.474386, 6.546141, 5.356321 H, -4.420968, 6.270994, 5.813068 C, -2.829518, 4.012198, 1.875265 H, -3.443491, 4.901310, 1.859092 C, -2.211632, -0.567252, -1.467796 H, -1.889602, -0.713686, -0.441322 C, -2.948857, 7.826325, 5.553378 H, -3.488856, 8.554488, 6.151253 C, -1.569225, 0.399234, -2.258750 C, -2.003683, 0.567439, -3.584272 H, -1.514224, 1.307134, -4.211161 C, -3.044926, -0.204498, -4.101018 H, -3.361113, -0.059931, -5.130201 C, -3.251569, -1.342062, -1.984289 H, -3.734593, -2.083055, -1.353406 C, -3.672966, -1.162489, -3.302912 H, -4.482566, -1.764437, -3.705102 C, 5.014542, -1.045820, -0.485687 C, 6.188154, -3.530952, 0.162526 H, 6.641930, -4.484866, 0.411512 C, 5.742266, -2.689721, 1.182154 H, 5.830515, -2.957574, 2.228840 F, 4.726259, -0.664549, 1.823314 C, 5.166898, -1.471886, 0.836177 C, 6.055262, -3.156382, -1.175019 H, 6.393863, -3.789980, -1.986745 C, 5.471543, -1.928565, -1.468009 F, 5.339266, -1.567279, -2.757725 N, 2.026323, 1.178203, -1.206762 C, 0.967574, -0.793188, -1.430354 C, 2.276125, -1.049262, -1.090182 H, 0.193122, -1.522285, -1.605312 H, 2.721497, -2.021174, -0.949687 H, 2.284855, 2.148887, -1.343088 C, 5.172862, 2.795288, -1.184195 C, 5.275301, 1.352512, -0.937263 C, 6.721368, 1.097712, -1.074440 N, 7.400279, 2.157112, -1.416066 C, 6.456257, 3.189232, -1.473648 H, 0.970159, 4.145834, 1.296353 H, 3.790200, 4.421308, -3.157703 H, 2.153376, 6.187079, 0.245335 H, 7.199503, 0.131450, -0.966356 H, 6.773283, 4.203165, -1.686554

7g

. 9					
Energy = -2819.873341 NImag=0.0					
26	-1.602708	3.435488	0.312834		
9	6.267597	5.119316	0.928815		
9	3.784071	1.748304	3.104601		
7	1.369213	4.430563	2.139370		
6	3.634166	4.555598	-2.135109		
6	-1.512599	3.915774	2.437594		
6	-0.991085	7.181271	4.234620		
1	-0.056025	7.461239	3.760816		
6	-2.122994	3.223975	-1.660769		
1	-2.993310	2.685035	-2.003553		
6	2.841063	4.899986	3.750946		
1	3.777706	5.018358	4.276852		
6	0.631729	4.905821	3.193721		
6	-2.076167	4.606156	-1.330129		
1	-2.911403	5.292321	-1.350004		
6	-0.796115	4.912802	3.184921		

6	-1.669046	8.106864	5.022229
1	-1.246774	9.097155	5.167950
6	2.716187	4.422350	2.425007
6	-1.0/1313	2.562343	2.140141
1	-0.114498	2.144109	2.418850
0 1	-2.148248	1.850640	1.556352
l G	-2.12/0/9	0.812088	1.200040
0 1	-0.747140	4.913400	-0.921437
і А	-0.307 140	1 292446	-0.367027
6	-0.400201	5 887621	-1.752000
6	-0.787348	2 658490	-1 530935
6	2 679784	5 414721	-0 401205
6	7.342570	2.389121	3.036631
1	8.261024	1.976265	3.441766
6	0.778610	0.647234	-1.470115
6	0.023747	3.722780	-0.986553
1	1.073943	3.668385	-0.760012
6	6.212959	4.020469	1.691561
6	3.699623	4.048202	1.453368
6	7.397118	3.510740	2.209306
1	8.332469	3.997068	1.958735
6	1.573178	5.239791	4.208273
1	1.315386	5.637114	5.179043
7	2.793027	5.576892	-1.699029
6	4.961078	2.336753	2.815573
6	6.121310	1.789329	3.345114
1	6.052007	0.906168	3.968589
0 1	-3.230982	2.70004	1.300081
і А	-4.101000	4 2029/39	0.093000
6	2 961170	4.293000	-0.095402
6	-2 754262	5 570843	4 616214
1	-3 166481	4 575491	4 489790
6	4.378928	0.308749	-0.739446
6	4.092183	3.748656	-1.114082
6	4.955823	3.456860	1.970345
6	-3.429833	6.500988	5.399925
1	-4.374001	6.226543	5.862098
6	-2.839329	4.027510	1.866655
1	-3.436262	4.928333	1.862753
6	-2.204536	-0.555519	-1.496685
1	-1.893736	-0.703642	-0.467042
6	-2.893162	7.774614	5.608789
l G	-3.422008	0.490020	0.221508
6	-1.557092	0.410200	-2.277412
1	-1 484967	1 330708	-4 226311
6	-3 009103	-0 188879	-4 138314
1	-3 313981	-0.042790	-5 170677
6	-3.234827	-1.333589	-2.027418
1	-3.721637	-2.078571	-1.404214
6	-3.641734	-1.152214	-3.350305
1	-4.443755	-1.756790	-3.763567
6	4.984061	-1.031233	-0.398940
6	6.136414	-3.521431	0.272281
1	6.580714	-4.477479	0.530087
6	5.673737	-2.678144	1.282374
1	5.739471	-2.945954	2.330753
9	4.652858	-0.650068	1.904030
6	5.109187	-1.458194	0.925104
6	6.030495	-3.146191	-1.067693
1	0.3/9/1/	-3./82234	-1.8/3045

6	5.457901	-1.916044	-1.371977
9	5.349488	-1.556578	-2.664368
7	2.019977	1.210089	-1.168573
6	0.967769	-0.764414	-1.406688
6	2.268340	-1.016784	-1.038957
1	0.198911	-1.495941	-1.595466
1	2.711616	-1.987823	-0.888060
1	2.284853	2.178458	-1.313739
6	5.204427	2.793225	-1.226670
6	5.303215	1.339437	-0.902826
6	6.728140	1.071388	-1.032278
6	7.296623	2.221645	-1.481665
7	6.377308	3.269934	-1.589487
1	0.959007	4.094331	1.278276
1	8.335162	2.396488	-1.737842
1	3.892761	4.472114	-3.183636
1	2.132128	6.117754	0.217306
1	7.215785	0.121685	-0.874938